MINIMUM-STABLE WEDGES OF SEMICONTINUOUS FUNCTIONS

D. A. EDWARDS

1. Introduction.

Mokobodzki [13] has shown that every lower semicontinuous concave function from a compact convex subset K of a locally convex separated real topological vector space into $R \cup \{\infty\}$ can be approximated from below by an increasing filtering family of continuous real concave functions on K; he has also proved in [13] a similar result for upper semicontinuous functions. Theorems 1 and 2 of the present paper generalize these two results of Mokobodzki.

Next, theorem 1 is applied in § 5 to extend the scope of the argument used in [10] to characterize Choquet simplexes. The main result here is the separation theorem, theorem 3. Some consequences are indicated, including a proposition of Mr E. B. Davies [7] that implies that every closed G_{δ} face of a Choquet simplex is exposed.

A simple application of the preceding theory to classical potential theory is described in § 6. This application rests on condition (S) of § 5. Boboc and Cornea [4] have indicated that more delicate arguments reveal other situations in potential theory that meet the condition (S): these are not considered here.

2. Preliminaries.

Let X be a compact Hausdorff space and let C(X) be the Banach space of all real continuous functions on X. We shall denote by M(X), $M_+(X)$, and P(X) respectively the Radon, the positive Radon, and the probability Radon measures on X. If $f:X\to R\cup \{\infty\}$ is a Borel measurable function bounded below and $\mu\in M_+(X)$, we shall denote by $\mu(f)$ the extended real number $\int^*\!\!f d\mu$; $\mu(-f)$ will then mean $-\mu(f)$. We recall that M(X) is the Banach dual of C(X) for the pairing $(\mu,h)\to \mu(h)$ and that P(X) is a vaguely (i.e. weak*) compact subset of M(X).

We consider a wedge \mathscr{W} in C(X) that contains the constant functions.

To each point $x \in X$ we assign the set of measures

$$R_x \equiv R_x(\mathcal{W}) = \{ \mu \in M_+(X) : \mu(f) \leq f(x) \ \forall f \in \mathcal{W} \}.$$

Note that, since \mathscr{W} contains the constant functions, $R_x \subseteq P(X)$; it follows that R_x is vaguely compact.

By a \mathcal{W} -concave function we shall mean any semibounded Borel measurable extended real-valued function f on X such that $\mu(f) \leq f(x)$ whenever $x \in X$ and $\mu \in R_x$. \mathcal{W} -convex functions are defined analogously. Except where the contrary is indicated, we shall assume that \mathcal{W} is minimum-stable (min-stable) in the sense that

$$\min(f,g) \in \mathcal{W}$$
 whenever $f,g \in \mathcal{W}$.

The main theorems of §§ 3 and 4 below (theorems 1 and 2) characterize certain lower semicontinuous, and certain upper semicontinuous, \mathcal{W} -concave functions in terms of monotone approximation by elements of \mathcal{W} .

The following construction will be used. For each upper semicontinuous function $f: X \to \mathbb{R} \cup \{-\infty\}$ and point $x \in X$ write

$$\hat{f}(x) = \inf\{g(x) : g \in \mathcal{W}, f \leq g\},\,$$

so that $\hat{f}: X \to \mathbb{R} \cup \{-\infty\}$ is upper semicontinuous and

$$f(x) \leq \hat{f}(x) \leq \max_{y \in X} f(y)$$
.

For fixed x the restriction to C(X) of the map $f \to \hat{f}(x)$ is real-valued and linear. This fact makes it easy to prove, by a Hahn-Banach argument, the following theorem.

PROPOSITION 1. For each function $f \in C(X)$ and point $x \in X$,

$$\hat{f}(x) = \max \{ \mu(f) : \mu \in R_x \}.$$

We can now characterize the \(\mathscr{W}\)-concave continuous functions:

COROLLARY. For each $f \in C(X)$ the following assertions are equivalent:

- (i) $f \in \mathcal{W}$;
- (ii) f is W-concave;
- (iii) $f = \hat{f}$.

This is a trivial extension of Satz 7 of [2]; the equivalence (i) \Leftrightarrow (ii) is a special case of théorème 1 of [6]. That (i) implies (ii) is obvious. Proposition 1 supplies the step (ii) \Rightarrow (iii). Finally, by Dini's theorem, the minimum-stability of \mathscr{W} implies that (i) follows from (iii).

For the remainder of this section we may drop the assumption that W is min-stable. By a W-affine function will be meant one that is W-concave and also W-convex. (Thus the W-affine continuous functions are just those in $\mathcal{A} = \overline{W} \cap (-\overline{W})$ when W is min-stable.)

A function defined merely on a non-empty closed subset E of X is called, by a convenient abuse of language, \mathscr{W} -concave (\mathscr{W} -convex etc.) if it is \mathscr{W}_E -concave (\mathscr{W}_E -convex etc.) with respect to the set of restrictions

$$\mathcal{W}_E \equiv \{f|E: f \in \mathcal{W}\}.$$

Thus to say that a function g on E is \mathscr{W} -concave means that g is a semi-bounded extended real-valued Borel measurable function such that $\mu(g) \leq g(x)$ whenever $x \in E$ and $\mu \in R_x(\mathscr{W})$ with supp μ (the support of μ) a subset of E (so that $\mu(g)$ has a clear meaning).

A non-empty closed subset E of X is, by definition, a \mathscr{W} -extreme subset of X if for each $x \in E$ and $\mu \in R_x(\mathscr{W})$ we have $\sup \mu \subseteq E$. The following construction is useful. Suppose that E is a \mathscr{W} -extreme set, that

$$f: X \to \mathbb{R} \cup \{\infty\}, \qquad g: E \to \mathbb{R} \cup \{\infty\}$$

are lower semicontinuous and \mathcal{W} -concave, and that $g \leq f|E$. Define $f_1: X \to \mathbb{R} \cup \{\infty\}$ by

$$f_1(x) = \begin{cases} g(x) & \text{for} \quad x \in E, \\ f(x) & \text{for} \quad x \in X \setminus E. \end{cases}$$

Then f_1 is lower semicontinuous and \mathcal{W} -concave.

Now suppose (for convenience' sake) that \mathscr{W} separates the points of X. Then we recall that the *Choquet boundary* $\partial_{\mathscr{W}}X$ of X relative to \mathscr{W} is then defined as the set of all one-point \mathscr{W} -extreme subsets of X (see [1], [2]).

3. Lower semicontinuous \mathcal{W} -concave functions.

The main theorem here generalizes proposition 2 of [13]; it also describes a situation that satisfies the approximation condition (A) of [9], though we shall not use this fact here.

THEOREM 1. A function $f: X \to \mathbb{R} \cup \{\infty\}$ is lower semicontinuous and \mathcal{W} -concave if and only if it is the pointwise limit of a non-empty increasing filtering family of elements of \mathcal{W} .

Approximation from below without the filtering condition is dealt with by the following more elementary statement, analogous to *Lemma* 2.4.2 of [3].

Proposition 2. A function $f: X \to \mathbb{R} \cup \{\infty\}$ satisfies the equation

$$(1) f(x) = \sup\{g(x) : g \in \mathcal{W}, g \leq f\}$$

for all x in X if and only if it is lower semicontinuous and such that, for each point (x,y) of X^2 for which f(x) < f(y), we can find a $g \in \mathcal{W}$ such that g(x) < g(y).

PROOF. The necessity of the conditions in proposition 2 is clear. To prove their sufficiency take first the case of a bounded f. The condition on pairs of points implies that for each $(x,y) \in X^2$ and each $\varepsilon > 0$ we can find $g_{x,y} \in \mathcal{W}$ such that

$$g_{x,y}(x) = f(x) - \varepsilon, \qquad g_{x,y}(y) = f(y) - \varepsilon.$$

The lower semicontinuity of f implies now that $g_{x,y}(z) < f(z)$ for all z in an open neighbourhood U_y of y. But X is compact, so we can choose finitely many points y_1, y_2, \ldots, y_n in X such that

$$X = U_{y_1} \cup U_{y_2} \cup \ldots \cup U_{y_n}.$$

Writing

$$g_x = \min(g_{x,y_1}, g_{x,y_2}, \dots, g_{x,y_n}),$$

we have

$$g_x \in \mathcal{W}, \qquad g_x < f, \qquad g_x(x) = f(x) - \varepsilon$$

which yields equation (1). For a general f we consider the functions

$$f_n \equiv \min(f, n)$$

and apply the above reasoning.

PROOF OF THEOREM 1. To prove theorem 1 we have to do somewhat more. Suppose that $f: X \to \mathbb{R} \cup \{\infty\}$ is lower semicontinuous and \mathscr{W} -concave. To prove the stated approximation property it is enough to show that for each $u \in C(X)$ with u < f we can find $g \in \mathscr{W}$ such that $u \leq g < f$.

The lower semicontinuity of f allows us to choose $\varepsilon > 0$ that $u + \varepsilon \le f$. Taking $x \in X$ and $\mu \in R_x$ we have

$$\mu(u) + \varepsilon \leq \mu(f) \leq f(x)$$
.

Hence, by proposition 1, $\hat{u} + \varepsilon \leq f$. For each x in X we can accordingly find a function $h_x \in \mathcal{W}$ such that

$$u \leq h_x, \quad h_x(x) < f(x),$$

and then an open neighbourhood V_x of x such that $h_x(z) < f(z)$ for all $z \in V_x$. Choosing a finite covering

$$X = V_{x_1} \cup V_{x_2} \cup \ldots \cup V_{x_k}$$

and taking

$$h = \min(h_{x_1}, h_{x_2}, \ldots, h_{x_k}),$$

we have $h \in \mathcal{W}$ and $u \leq h < f$, as desired.

If, conversely, f satisfies the approximation condition then it is obviously lower semicontinuous and \mathcal{W} -concave.

4. Upper semicontinuous \mathcal{W} -concave functions.

The following result generalizes *proposition* 1 of Mokobodzki's paper [13].

THEOREM 2. A function $f: X \to \mathsf{R} \cup \{-\infty\}$ is upper semicontinuous and \mathscr{W} -concave if and only if it is the infimum of a non-empty family of elements of \mathscr{W} .

PROOF. Since \mathscr{W} is min-stable the functions that satisfy this infimum condition are actually pointwise limits of non-empty decreasing *filtering* families of elements of \mathscr{W} and hence are \mathscr{W} -concave as well as upper semicontinuous.

Suppose, conversely, that $f: X \to \mathbb{R} \cup \{-\infty\}$ is upper semicontinuous and \mathscr{W} -concave. It suffices to show that $f = \hat{f}$. Choose $x \in X$, $\varepsilon > 0$, and take first the case $f(x) > -\infty$. Then, for each $\mu \in R_x$,

$$\mu(f) \leq f(x) < f(x) + \varepsilon$$
.

Since f is upper semicontinuous we can find for each $\mu \in R_x$ a function v_{μ} in C(X) such that

$$f \, \leqq \, v_{\scriptscriptstyle \mu}, \qquad \mu(v_{\scriptscriptstyle \mu}) \, < f(x) + \varepsilon \; . \label{eq:force_function}$$

It follows that there is a relative vague neighbourhood O_μ of μ in R_x such that

$$v(v_u) < f(x) + \varepsilon, \quad v \in O_u$$
.

Recalling that R_x is vaguely compact, we find a finite covering

$$R_x = O_{\mu_1} \cup O_{\mu_2} \cup \ldots \cup O_{\mu_n}.$$

Defining now

$$v = \min(v_{\mu_1}, v_{\mu_2}, \dots, v_{\mu_m})$$

we have $v \in C(X)$, $v \ge f$, and, for all $v \in R_x$,

$$\nu(v) \leq \min_{1 \leq r \leq m} \nu(v_{\nu_{\tau}}) < f(x) + \varepsilon.$$

By proposition 1 this implies that

$$\hat{v}(x) < f(x) + \varepsilon.$$

We can therefore find a function g in $\mathscr W$ such that $g \ge v \ge f$ and

$$g(x) < f(x) + \varepsilon$$
,

which shows that $\hat{f}(x) = f(x)$ at each point x for which $f(x) > -\infty$.

If $f(x) = -\infty$ one shows by a similar argument that for each natural number n there is a function $g \in \mathcal{W}$ such that $g \ge f$ and g(x) < -n, from which it follows that $\hat{f}(x) = -\infty$.

COROLLARY. An upper semicontinuous function $f: X \to \mathbb{R} \cup \{-\infty\}$ is \mathscr{W} -concave if and only if $f = \hat{f}$.

5. A separation property.

In this section we suppose that \mathcal{W} satisfies the separation condition (S): whenever -f, $g \in \mathcal{W}$ with f < g we can find a \mathcal{W} -affine continuous function h such that f < h < g.

This comes very close to saying that \mathcal{W} is a "geometrical simplex" in the sense of Boboc and Cornea [4].

The wedge of all continuous concave functions on a Choquet simplex has property (S) [4]; we shall consider a second example in § 6.

The results of §§ 3 and 4 make it natural to enquire when semicontinuous \mathcal{W} -affine functions can be approximated by filtering families of elements of \mathcal{A} . A partial answer is given by

PROPOSITION 3. Suppose that \mathcal{W} has the property (S) and that $g: X \to \mathbb{R} \cup \{\infty\}$ is a lower semicontinuous \mathcal{W} -affine function. Then g is the supremum of an increasing filtering family of elements of \mathcal{A} .

For ordinary affine functions Mokobodzki has a better result (corollaire to proposition 2 of [13]).

PROOF. Let $f \in C(X)$ satisfy f < g. We seek an h in $\mathscr A$ to satisfy f < h < g. By theorem 2 we can find u in $-\mathscr W$ such that f < u < g. Then by theorem 1 there is a $v \in \mathscr W$ such that u < v < g. By property (S) we can now find $h \in \mathscr A$ to satisfy u < h < v, and this concludes the proof.

With the help of theorem 1 we now show that property (S) implies a similar property for the semicontinuous functions of that theorem. The following theorem generalizes the main result of [10].

THEOREM 3. Suppose that W has the property (S) and that

$$-f,g\colon X\to \mathsf{R}\cup\{\infty\}$$

are \mathcal{W} -concave lower semicontinuous functions such that $f \leq g$. Then there is a \mathcal{W} -affine real continuous function h such that $f \leq h \leq g$.

PROOF. Suppose first that f < g. Then we can find a function $w \in C(X)$ such that f < w < g, by a well known theorem of topology. Next we can choose, by theorem 1, functions $-u, v \in \mathcal{W}$ such that

$$f < u < w < v < g.$$

Finally by condition (S) we can find $h \in \mathcal{A}$ satisfying u < h < v, which completes the proof for this case.

To complete the proof one argues from the above special case by using a device of Dieudonné [8] (already used for concave functions on a Choquet simplex in [10]).

First define

$$\alpha = \inf\{g(x) : x \in X\}, \qquad \beta = \sup\{f(x) : x \in X\}.$$

Dismissing the trivial cases $\alpha = \infty$, $\beta = -\infty$, we can suppose α, β real. In this case it suffices to consider the two functions $\max(\alpha, f)$ and $\min(\beta, g)$. This assertion is trivial when $\alpha \ge \beta$. When $\alpha < \beta$ we have

$$f \leq \max(\alpha, f) \leq \min(\beta, g) \leq g$$
,

and $-\max(\alpha, f)$, $\min(\beta, g)$ are bounded real lower semicontinuous \mathcal{W} -concave functions. We can therefore take it that f, g are bounded real functions: suppose this. (These remarks clarify a passage in [10].)

One now defines by recurrence three sequences $\{f_m\}$, $\{g_m\}$, $\{h_m\}$ of real-valued functions on X such that:

- (a) $-f_m, g_m$ are lower semicontinuous and \mathcal{W} -concave;
- (b) $h_m \in \mathscr{A}$;
- (c) for each $m \ge 0$,

$$(2) f-2^{-m} \le f_m < h_m < g_m \le g+2^{-m}.$$

To construct such sequences take $f_0 = f - 1$, $g_0 = g + 1$ and choose, using the first part of the proof, $h_0 \in \mathscr{A}$ so that $f_0 < h_0 < g_0$. At the nth step define

$$\begin{array}{ll} f_{n+1} \, = \, \max \left(f - 2^{-(n+1)}, \, h_n - 2^{-(n+1)} \right) \, , \\ g_{n+1} \, = \, \, \min \left(g + 2^{-(n+1)}, \, h_n + 2^{-(n+1)} \right) \, . \end{array}$$

Then $-f_{n+1}, g_{n+1}: X \to \mathbb{R}$ are \mathscr{W} -concave and $f_{n+1} < g_{n+1}$. We can therefore, by the first part of the proof, take $h_{n+1} \in \mathscr{A}$ so that $f_{n+1} < h_{n+1} < g_{n+1}$, which yields (2) for m = n+1, and also

$$h_n - 2^{-(n+1)} < h_{n+1} < h_n + 2^{-(n+1)}$$
,

so that

$$||h_{n+1}-h_n|| \leq 2^{-(n+1)}$$
.

Hence $h = \lim_{n \to \infty} h_n$ exists in \mathscr{A} and satisfies $f \le h \le g$.

COROLLARY. Suppose that W has the property (S) and that

$$-f,g:X\to\mathsf{R}\cup\{\infty\}$$

are \mathscr{W} -concave lower semicontinuous functions such $f \leq g$. Suppose further that E is a \mathscr{W} -extreme subset of X and that $h: E \to R$ is a \mathscr{W} -affine continuous function such that

$$f|E \leq h \leq g|E.$$

Then there exists a function \overline{h} in $\mathscr A$ that extends h and satisfies $f \leq \overline{h} \leq g$.

PROOF. To prove this let

$$\begin{split} g_1(x) &= \begin{cases} g(x) & \text{for} \quad x \in X \diagdown E \ , \\ h(x) & \text{for} \quad x \in E \ , \end{cases} \\ f_1(x) &= \begin{cases} f(x) & \text{for} \quad x \in X \diagdown E \ , \\ h(x) & \text{for} \quad x \in E \ . \end{cases} \end{split}$$

By a remark of § 2 the functions $-f_1,g_1$ are \mathscr{W} -concave and lower semi-continuous, and, obviously, $f_1 \leq g_1$. So by theorem 3 we can choose $\overline{h} \in \mathscr{A}$ such that $f_1 \leq \overline{h} \leq g_1$. This \overline{h} clearly meets our requirements.

Effros [11] has used a particular case of this corollary (see his theorem 2.4) in a study of the facial structure of Choquet simplexes.

We shall call a subset A of X a \mathscr{W} -peak set if there exists a $g \in \mathscr{W}$ such that

$$A \ = \ \left\{x \in X: \, g(x) = \max\nolimits_{y \in x} g(y)\right\}.$$

Davies [7] has deduced from the corollary to theorem 3 the following result.

PROPOSITION 4. Suppose that \mathscr{W} has the property (S) and that E is a subset of X such that (a) E is a G_{δ} set, (b) E is \mathscr{W} -extreme, (c) E is an intersection of \mathscr{W} -peak sets. Then there exists a function $h \in \mathscr{A}$ such that

$$h(x) = 1$$
 for $x \in E$,
 $h(x) < 1$ for $x \in X \setminus E$.

It follows immediately that if Q is a G_0 face of a Choquet simplex K then there exists a continuous affine function $h: K \to \mathbb{R}$ such that h(x) = 1 on Q, and h(x) < 1 on $X \setminus Q$. (That is, Q is exposed.) For the case of the

extreme points of a metrizable Choquet simplex this was conjectured by Bauer (p. 121 of [2]) and has been announced as a result by Boboc and Cornea [4].

6. Superharmonic functions.

We consider here the application of the preceding theory to a simple situation in classical potential theory.

Let Ω be a bounded domain in \mathbb{R}^n for some $n \geq 2$ and take X to be $\overline{\Omega}$. If a function $f: X \to \mathbb{R} \cup \{\infty\}$ can be extended to a function defined and superharmonic on some neighbourhood (depending on f) of X we say that f belongs to the class \mathscr{S} . If an extension of the above type to a continuous superharmonic function is possible we say that f belongs to the class \mathscr{W} . Obviously $\mathscr{W} \subseteq \mathscr{S}$ and, by the trivial half of theorem 1 and a result of classical potential theory (see § 6 of Chapitre II of [5]) all the functions in \mathscr{S} are \mathscr{W} -concave. Finally we say that $f \in \mathscr{H}$ if f admits an extension to a function defined and harmonic in a neighbourhood (depending on f) of X. Obviously $\mathscr{H} \subseteq \mathscr{W} \cap (-\mathscr{W})$, and the functions in \mathscr{H} are all \mathscr{W} -affine.

The wedge \mathscr{W} has the property (S). In fact one can prove directly, without using theorem 3, the analogous separation property for \mathscr{S} :

PROPOSITION 5. Suppose that $-f,g \in \mathcal{S}$ with f < g. Then there is a function $h \in \mathcal{H}$ such that f < h < g.

PROOF. We can find bounded open sets G, G_1 such that

$$X \subseteq G \subseteq \bar{G} \subseteq G_1$$

with -f,g extensible to superharmonic functions (denoted by the same symbols -f,g) on G_1 . Now choose $k \in C(G^*)$ so that

$$f|G^* < k < g|G^*$$
,

and solve the Dirichlet problem for G with boundary data k. The solution function $h:G\to \mathbb{R}$ clearly satisfies

$$f|G < h < g|G.$$

On restricting h to X we obtain the desired element of \mathcal{H} .

COROLLARY 1. The set $\mathcal{A} \equiv \overline{W} \cap (-\overline{W})$ of all W-affine continuous real functions coincides with $\overline{\mathcal{H}}$.

PROOF. We have remarked that $\overline{\mathscr{H}} \subseteq \mathscr{A}$. Suppose conversely that

 $f \in \mathcal{A}$. Then f is both \mathcal{W} -concave and \mathcal{W} -convex and so, by the corollary to proposition 1, we can choose $-u, v \in \mathcal{W}$ so that

$$f - \varepsilon < u < f < v < f + \varepsilon$$
.

By proposition 5 we can find $g \in \mathcal{H}$ so that u < g < v. This proves that $f \in \overline{\mathcal{H}}$.

COROLLARY 2. Suppose that $-f,g:X\to R\cup\{\infty\}$ are \mathscr{W} -concave lower semicontinuous functions (e.g. members of \mathscr{S}) and that $f\leq g$. Then there is a function $h\in \mathscr{H}$ such that $f\leq h\leq g$.

This is now immediate, by theorem 3.

Now consider the \mathcal{H} -peak sets. A single-point \mathcal{H} -peak set is called an \mathcal{H} -peak point. (By the maximum principle every such point is in the topological boundary Ω^* of Ω .) We can now give a very short proof of the following result of Gamelin and Rossi [12].

PROPOSITION 6. The Choquet boundary $\partial_{\mathscr{H}}X$ of X relative to \mathscr{H} is precisely the set of all \mathscr{H} -peak points of X.

PROOF. That \mathscr{H} -peak points are in the Choquet boundary is clear. Conversely if $x_0 \in \partial_{\mathscr{H}} X$ then a fortiori $x_0 \in \partial_{\mathscr{H}} X$. The set $\{x_0\}$ therefore satisfies conditions (a) and (b) of proposition 4; that it also satisfies (c) is clear from, for instance, the fact that ordinary affine functions are everywhere harmonic. Using proposition 5 and its corollary 1 we see that proposition 4 can be applied to show that x_0 is an \mathscr{H} -peak point of X.

Proposition 6 makes it possible to apply the corollary to theorem 3 to the present situation to obtain the following result.

PROPOSITION 7. Let $-f,g:X\to \mathsf{R}\cup\{\infty\}$ be \mathscr{W} -concave lower semicontinuous functions (e.g. members of \mathscr{S}) such that $f\subseteq g$. Suppose further that E is a closed non-empty set of $\overline{\mathscr{H}}$ -peak points of X and that $h:E\in\mathsf{R}$ is a continuous function such that

$$f|E \leq h \leq g|E.$$

Then there exists a function $\overline{h} \in \overline{\mathscr{H}}$ that extends h and satisfies $f \leq \overline{h} \leq g$.

Proof. By proposition 6 the set E is $\overline{\mathscr{H}}$ -extreme and hence also \mathscr{W} -extreme. Moreover, since

$$E \subseteq \partial_{\overline{\mathscr{H}}} X \subseteq \partial_{\mathscr{W}} X ,$$

the function $h: E \to \mathbb{R}$ is trivially \mathscr{W} -affine. By the corollary to theorem 3 and corollary 1 of proposition 5, the result now follows.

The weaker statement that

$$\overline{\mathscr{H}}|E = C(E)$$

whenever E is as in proposition 7 complements a result (theorem 1.3) of Gamelin and Rossi [12].

It is clear from a remark of Boboc and Cornea [4] about condition (S) that the foregoing results about $\overline{\mathscr{H}}$ -peak points have their counterparts for the regular points for the Dirichlet problem in Ω (see also Satz 16 of Bauer [2]).

Note added in proof, 1 July, 1966.

Mr. E. B. Davies has pointed out to me that the approximation technique used above to prove theorem 3 can also be applied, *mutatis mutandis*, to theorem 1 (and that there is a somewhat similar use of the technique in another connection in L. Nachbin's book *Order and Topology* (van Nostrand, 1965)). This remark yields immediately the following statement.

THEOREM 1'. Let $f: X \to \mathbb{R} \cup \{\infty\}$ be a lower semicontinuous \mathscr{W} -concave function and let $u \in C(X)$ be such that $u \leq f$. Then there exists a \mathscr{W} -concave function $v \in C(X)$ such that $u \leq v \leq f$.

It is now a simple exercise to prove the following

COROLLARY. Let E be a \mathcal{W} -extreme subset of X and suppose that K is a compact subset of X with $K \cap E = \emptyset$. Then there is a \mathcal{W} -concave function $v \in C(X)$ such that

- (a) $0 \le v \le 1$,
- (b) v(x) = 0 for all $x \in E$,
- (c) v(x) = 1 for all $x \in K$.

If also E is a G_{δ} set then we can find a \mathcal{W} -concave function $v \in C(X)$ satisfying (a), (b), and such that v(x) > 0 for all $x \in X \setminus E$.

Mr. A. Y. Lazar has kindly communicated to me a number of theorems about Choquet simplexes that he has obtained independently by methods rather different from those used above. In particular he has proved substantial portions of proposition 4 and the corollary to theorem 3; his methods also yields further results, to be published.

REFERENCES

- H. Bauer, Minimalstellen von Funktionen und Extremalpunkte II, Arch. Math. 11 (1960), 200-205.
- H. Bauer, Silovscher Rand und Dirichletsches Problem, Ann. Institut Fourier (Grenoble) 11 (1961), 89-136.
- 3. H. Bauer, Konvexität in topologischen Vektorräumen, Vorlesung an der Universität Hamburg, Hamburg, 1965, pp. 109.
- N. Boboc and A. Cornea, Cônes des fonctions continues sur un espace compact, C. R. Acad. Sci. Paris 261 (1965), 2564-2567.
- M. Brelot, Élements de la théorie classique du potentiel, Les Cours de la Sorbonne, Paris, 1959, pp. 191.
- G. Choquet and J. Deny, Ensembles semi-réticulés de fonctions continues, J. Math. Pures Appl. 36 (1957), 179–190.
- 7. E. B. Davies, A generalized theory of convexity. (To appear.)
- J. Dieudonné, Une généralisation des espaces compacts, J. Math. Pures Appl. 23 (1944), 65-76.
- 9. D. A. Edwards, Choquet boundary theory for certain spaces of lower semicontinuous functions, Proceedings of the Tulane Symposium on function algebras 1965. (To appear.)
- D. A. Edwards, Séparation des fonctions réelles définies sur un simplexe de Choquet,
 C. R. Acad. Sci. Paris 261 (1965), 2798-2800.
- E. G. Effros, Structure in simplexes, Mimeographed notes, Mathematical Institute, Aarhus University, Aarhus 1965, pp. 31.
- T. W. Gamelin and H. Rossi, Jensen measures and algebras of analytic functions, Mimeographed notes, M.I.T., 1965, pp. 54.
- 13. G. Mokobodzki, Quelques propriétés des fonctions numériques convexes sur un ensemble convexe compact, Séminaire Brelot-Choquet-Deny de la théorie du potentiel, 6e année (1962), exposé no 9, pp. 3.

MATHEMATICAL INSTITUTE, 10 PARKS ROAD, OXFORD, ENGLAND