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MINIMUM-STABLE WEDGES
OF SEMICONTINUOUS FUNCTIONS

D. A. EDWARDS
1. Introduction.

Mokobodzki [13] has shown that every lower semicontinuous concave
function from a compact convex subset K of a locally convex separated
real topological vector space into RU{cc} can be approximated from
below by an increasing filtering family of continuous real concave func-
tions on K; he has also proved in [13] a similar result for upper semi-
continuous functions. Theorems 1 and 2 of the present paper generalize
these two results of Mokobodzki.

Next, theorem 1 is applied in § 5 to extend the scope of the argument
used in [10] to characterize Choquet simplexes. The main result here is
the separation theorem, theorem 3. Some consequences are indicated,
including a proposition of Mr E. B. Davies [7] that implies that every
closed G, face of a Choquet simplex is exposed.

A simple application of the preceding theory to classical potential
theory is described in § 6. This application rests on condition (S) of
§ 5. Boboc and Cornea [4] have indicated that more delicate arguments
reveal other situations in potential theory that meet the condition (S):
these are not considered here.

2. Preliminaries.

Let X be a compact Hausdorff space and let C(X) be the Banach
space of all real continuous functions on X. We shall denote by M(X),
M, (X), and P(X) respectively the Radon, the positive Radon, and the
probability Radon measures on X. If f: X — Ru{co} is a Borel measur-
able function bounded below and u € M (X), we shall denote by wu(f)
the extended real number [*fdu; u(—f) will then mean —u(f). We
recall that M(X) is the Banach dual of C(X) for the pairing (x,h) — u(h)
and that P(X) is a vaguely (i.e. weak*) compact subset of M(X).

We consider a wedge #” in C(X) that contains the constant functions.
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16 D.A. EDWARDS

To each point x € X we assign the set of measures
R, =R0W) = {ue M (X): p(f) Sf@)VfeW}.

Note that, since #~ contains the constant functions, R, < P(X); it follows
that R, is vaguely compact.

By a # -concave function we shall mean any semibounded Borel meas-
urable extended real-valued function f on X such that u(f)=<f(x) when-
ever z€ X and pe€ R,. # -convex functions are defined analogously.
Except where the contrary is indicated, we shall assume that # is
minimum-stable (min-stable) in the sense that

min(f,g) e#~ whenever f,ge¥# .

The main theorems of §§ 3 and 4 below (theorems 1 and 2) characterize
certain lower semicontinuous, and certain upper semicontinuous, % -con-
cave functions in terms of monotone approximation by elements of #.

The following construction will be used. For each upper semicontinuous
function f: X - RU{— o0} and point z € X write

f@) = inf{g(x): g e W, =g},
so that f: X — Ru{— o} is upper semicontinuous and

f@) = f(z) < maxf(y).
yeX
For fixed « the restriction to C(X) of the map f — f(x) is real-valued and
linear. This fact makes it easy to prove, by a Hahn-Banach argu-

ment, the following theorem.

ProrosiTION 1. For each function f e C(X) and point x € X,
J(@) = max{u(f): peR,}.
We can now characterize the % -concave continuous functions:

CoroLLARY. For each fe C(X) the following assertions are equivalent:
(i) feW;

(ii) f 78 # -concave;

(iii) f=F.

This is a trivial extension of Satz 7 of [2]; the equivalence (i) <=(ii)
is a special case of thdoréme 1 of [6]. That (i) implies (ii) is obvious.
Proposition 1 supplies the step (ii) = (iii). Finally, by Dini’s theorem,
the minimum-stability of #~ implies that (i) follows from (iii).

For the remainder of this section we may drop the assumption that
# is min-stable.
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By a # -affine function will be meant one that is # -concave and also
# -convex. (Thus the # -affine continuous functions are just those in
=W n(—#") when #  is min-stable.)

A function defined merely on a non-empty closed subset E of X is
called, by a convenient abuse of language, # -concave (¥ -convex etc.)
if it is # g-concave (# g-convex ete.) with respect to the set of restric-
tions

W= {fIE:feW}.

Thus to say that a function g on E is # -concave means that g is a semi-
bounded extended real-valued Borel measurable function such that
u(9) £ g(x) whenever x € £ and u € R (#") with suppu (the support of u)
a subset of E (so that p(g) has a clear meaning).

A non-empty closed subset E of X is, by definition, a # -extreme
subset of X if for each z € ¥ and y € R (#") we have suppus E. The
following construction is useful. Suppose that F is a # -extreme set,
that

f:X > Ru{}, g:E - RuU {x}

are lower semicontinuous and # -concave, and that g<f|E. Define
fi:X - Ru{ec} by
_fg(®) for =zek,
Fi) = {f(w) for zeX\E.
Then f, is lower semicontinuous and % -concave.
Now suppose (for convenience’ sake) that #~ separates the points of
X. Then we recall that the Choquet boundary 0, -X of X relative to W~
is then defined as the set of all one-point # -extreme subsets of X (see

(11, [2]).

3. Lower semicontinuous # -concave functions.
The main theorem here generalizes proposition 2 of [13]; it also de-

scribes a situation that satisfies the approximation condition (A) of [9],
though we shall not use this fact here.

TuEOREM 1. 4 function f:X — Ru{co} is lower semicontinuous and
W -concave if and only if it is the pointwise limit of a non-empty increasing
filtering family of elements of W',

Approximation from below without the filtering condition is dealt

with by the following more elementary statement, analogous to Lemma
2.4.2 of [3].

Math. Scand. 19 — 2
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ProposITION 2. 4 function f:X — Ru{oo} satisfies the equation

(1) f(@) = sup{gx) : g e ¥, g <f}

for all x in X if and only if it is lower semicontinuous and such that, for each
point (x,y) of X2 for which f(x)<f(y), we can find a ge# such that
g(x) <g(y).

Proor. The necessity of the conditions in proposition 2 is clear. To
prove their sufficiency take first the case of a bounded f. The condition
on pairs of points implies that for each (z,y) € X2 and each ¢>0 we can
find g, , € # such that

Iz, y(x) = f(x) —-é&, 9z, y(y) = f(y) —¢&.
The lower semicontinuity of f implies now that g, ,(2) <f(z) for all z in an

open neighbourhood U, of y. But X is compact, so we can choose finitely
many points yy,¥s,. . .,¥, in X such that

X=U,uU,u...0U0,.
Writing

gz = min(gx,yl’ga:,ygr' . "gz,y,,) )
we have

ngW’ ga:<f’ ga:(x)=f(x)_8:
which yields equation (1). For a general f we consider the functions
‘ fa = win(f,n)
and apply the above reasoning.

Proor or THEOREM 1. To prove theorem 1 we have to do somewhat
more. Suppose that f:X — Ru{cc} is lower semicontinuous and # -con-
cave. To prove the stated approximation property it is enough to show
that for each u € C(X) with u <f we can find g € # such that u <g<f.

The lower semicontinuity of f allows us to choose ¢>0 that u+¢=f.
Taking x € X and u € R, we have

uu)+e = p(f) = fe).

Hence, by proposition 1, #+¢<f. For each x in X we can accordingly
find a function A, € #” such that

U = hy  h@) < fl2),

and then an open neighbourhood ¥, of & such that A,(z) <f(z) for all
z€ V,. Choosing a finite covering
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X=V,uV,u...uV,
and taking
h = min(h,,,h,,,...,h,.),

xp Vagr o Ny

we have he# and u<h<f, as desired.
If, conversely, f satisfies the approximation condition then it is ob-
viously lower semicontinuous and # -concave.

4. Upper semicontinuous % -concave functions.

The following result generalizes proposition 1 of Mokobodzki’s paper
[13].

THEOREM 2. A function f: X — RU{— oo} is upper semicontinuous and
W -concave if and only if it is the infimum of a non-empty family of ele-
ments of W'.

Proor. Since #” is min-stable the functions that satisfy this infimum
condition are actually pointwise limits of non-empty decreasing filtering
families of elements of # and hence are # -concave as well as upper
semicontinuous.

Suppose, conversely, that f:X — Ru{—oo} is upper semicontinuous
and # -concave. It suffices to show that f=f. Choose z€ X, ¢>0, and
take first the case f(x)> —oo. Then, for each pe R,,

wf) 2 f@) < fl@)+e.

Since f is upper semicontinuous we can find for each u € R, a function
v, in C(X) such that

fSv, p)<fl@)+e.
It follows that there is a relative vague neighbourhood O, of u in R,
such that
y(v,) < f(x)+e, v€0,.

Recalling that R, is vaguely compact, we find a finite covering

R, =0,uU0,uU...U0,,.
Defining now

v

s+ oY

v = min (v i)

oY
we have v € C(X), v=f, and, for all v € R,,

»(v) £ min »(v,) < f(x)+e.
l=srsm
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By proposition 1 this implies that
Vz) < f(z)+e.
We can therefore find a function g in %" such that g=v=f and

g@) < f(@)+e,

which shows that f(x)=f(x) at each point & for which f(z)> — c.

If f(x)= — oo one shows by a similar argument that for each natural
number 7 there is a function g € #” such that g = f and g(x) < —n, from
which it follows that f(z)= — co.

COROLLARY. An wupper semicontinuous function f:X — RU{—oo} is
W -concave if and only if f=F.

5. A separation property.

In this section we suppose that #” satisfies the separation condition
(S): whenever —f, ge W with f<g we can find a W -affine continuous

Sfunction h such that f<h<g.

This comes very close to saying that #” is a ‘“‘geometrical simplex” in
the sense of Boboc and Cornea [4].

The wedge of all continuous concave functions on a Choquet simplex
has property (S) [4]; we shall consider a second example in § 6.

The results of §§ 3 and 4 make it natural to enquire when semicontinu-
ous # -affine functions can be approximated by filtering families of ele-
ments of &7. A partial answer is given by

ProposITION 3. Suppose that W has the property (S) and that
g:X — Ru{co} i3 a lower semicontinuous # -affine function. Then g is
the supremum of an increasing filtering family of elements of <.

For ordinary affine functions Mokobodzki has a better result (corollaire
to proposition 2 of [13]).

Proor. Let f € O(X) satisfy f<g. We seek an h in & to satisfy f<h<g.
By theorem 2 we can find w in —%" such that f <% <g. Then by theorem 1
there is a v € ¥ such that u<v<g. By property (S) we can now find
h e o to satisfy u<h<wv, and this concludes the proof.

With the help of theorem 1 we now show that property (S) implies a
similar property for the semicontinuous functions of that theorem.
The following theorem generalizes the main result of [10].
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THEOREM 3. Suppose that W~ has the property (S) and that
_f’g: X - RU{oo}

are W -concave lower semicontinuous functions such that f<g. Then there
18 a W -affine real continuous function h such that f<h<g.

Proor. Suppose first that f<g. Then we can find a function w € C(X)
such that f<w<g, by a well known theorem of topology. Next we can
choose, by theorem 1, functions —u,v € #” such that

f<u<w<v<yg.

Finally by condition (S) we can find % € & satisfying w <h <v, which
completes the proof for this case.

To complete the proof one argues from the above special case by
using a device of Dieudonné [8] (already used for concave functions on
a Choquet simplex in [10]).

First define

« = inf{g(x) :z€ X}, B =sup{f(x):xeX}.

Dismissing the trivial cases x =o0, = — oo, we can suppose «,f real. In
this case it suffices to consider the two functions max(«,f) and min (8,g).
This assertion is trivial when «>f. When « <f we have

f = max(«,f) < min(,9) < ¢,

and —max(«,f), min(8,g) are bounded real lower semicontinuous
# -concave functions. We can therefore take it that f,g are bounded
real functions: suppose this. (These remarks clarify a passage in [10].)

One now defines by recurrence three sequences {f,}, {Jn}, {hm} of
real-valued functions on X such that:

(a) —fmr 9 are lower semicontinuous and % -concave;

(b) hmed;
(¢) for each m 20,
(2) f_2-m§fm<hm<gm§-g+2_m'

To construct such sequences take fy=f—1, go=g+1 and choose, using
the first part of the proof, hy € o so that fy<hy<g,. At the nth step
define

fn+1 = max (f._ 2—(n+1), hn — 2—(n+1)) ,

Jns1 = Min(g+2-+D, f 4 2-(D)

Then —f,,1,9,41:X - R are # -concave and f,,; <gn+1- We can there-
fore, by the first part of the proof, take h, ., € & 80 that f, ) <h,4; <
Jn+1> Which yields (2) for m=n+1, and also
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hy—2-0t) < b, .\ < h,+2-?+D
so that
i1 —tll S 2-(+D

Hence h=1lim,_, h, exists in .o/ and satisfies f<h<g.
CoroLLARY. Suppose that #~ has the property (S) and that
-f,9: X > RuU {c}

are W -concave lower semicontinuous functions such f<g. Suppose further
that E is a W -extreme subset of X and that h:E — R is a # -affine continu-
ous function such that

fIE shsyglE.
Then there exists a function b in </ that extends h and satisfies f<h<g.

Proor. To prove this let

for ze X\Z,
for zek,

)
)
_ Jf(@) for zeX\FE,
fl(x)_{ ) for z€kE.

By a remark of § 2 the functions —f,,g, are # -concave and lower semi-
continuous, and, obviously, f;<¢,. So by theorem 3 we can choose
h € o such that f; <k <g,. This h clearly meets our requirements.

Effros [11] has used a particular case of this corollary (see his theorem
2.4) in a study of the facial structure of Choquet simplexes.

We shall call a subset A of X a # -peak set if there exists a g€ ¥’
such that

4 = {x eX: g(x)_—"ma’xyea:g(y)} .

Davies [7] has deduced from the corollary to theorem 3 the following
result.

ProposITION 4. Suppose that W~ has the property (S) and that E is a
subset of X such that (a) E is a G, set, (b) E is W -extreme, (c) E is an
intersection of W -peak sets. Then there exists a function h € &Z such that

hiz) =1 for zek,
hiz) <1 for zeX\E.

It follows immediately that if @ is @ G, face of a Choquet simplex K
then there exists a continuous affine function h:K — R such that h(z)=1
on @, and h(x) <1 on X\Q. (That is, @ is exposed.) For the case of the
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extreme points of a metrizable Choquet simplex this was conjectured by

Bauer (p. 121 of [2]) and has been announced as a result by Boboc and
Cornea [4].

6. Superharmonic functions.

We consider here the application of the preceding theory to a simple
situation in classical potential theory.

Let Q be a bounded domain in R” for some n =2 and take X to be (2.
If a function f:X — RU{co} can be extended to a function defined and
superharmonic on some neighbourhood (depending on f) of X we say
that f belongs to the class &. If an extension of the above type to a
continuous superharmonic function is possible we say that f belongs to
the class #°. Obviously # <% and, by the trivial half of theorem 1
and a result of classical potential theory (see § 6 of Chapitre II of [5]) all
the functions in % are # -concave. Finally we say that f € 5 if f admits
an extension to a function defined and harmonic in a neighbourhood
(depending on f) of X. Obviously # <#'n(—%#"), and the functions in
# are all ¥ -affine.

The wedge %~ has the property (S). In fact one can prove directly,
without using theorem 3, the analogous separation property for &:

ProrosiTIiON 5. Suppose that —f,ge & with f<g. Then there is a
Sfunction h € 5 such that f<h<g.

Proor. We can find bounded open sets G, @, such that
XcGec@ca

with —f,g extensible to superharmonic functions (denoted by the same
symbols —f,g) on G,. Now choose k € C(G*) so that

fIG* < k < g|G*,

and solve the Dirichlet problem for G with boundary data k. The solution
function k:G@ — R clearly satisfies

fIG < h < g|G.
On restricting » to X we obtain the desired element of J#.

COROLLARY 1. The set & =W n(—#") of all W -affine continuous real
functions coincides with .

Proor. We have remarked that #<./. Suppose conversely that
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fe . Then fis both # -concave and # -convex and so, by the corollary
to proposition 1, we can choose —u,v € #” so that

fme<u<f<v<f+te.

By proposition 5 we can find g € # so that w <g<wv. This proves that
fes#.

CoroLLARY 2. Suppose that —f,g:X — Ru{oc} are # -concave lower
semicontinuous functions (e.g. members of &) and that f<g. Then thereisa

function h € # such that f<h<g.

This is now immediate, by theorem 3.

Now consider the s -peak sets. A single-point H -peak set is called
an -peak point. (By the maximum principle every such point is in the
topological boundary 2* of 2.) We can now give a very short proof of
the following result of Gamelin and Rossi [12].

ProrosiTiON 6. The Choquet boundary 07X of X relative to H is
precisely the set of all S -peak points of X.

Proo¥r. That s#-peak points are in the Choquet boundary is clear.
Conversely if z, € 0 X then a fortiori x, € 0,-X. The set {x,} therefore
satisfies conditions (a) and (b) of proposition 4; that it also satisfies (c)
is clear from, for instance, the fact that ordinary affine functions are
everywhere harmonic. Using proposition 5 and its corollary 1 we see

that proposition 4 can be applied to show that z,is an A -peak point of X.

Proposition 6 makes it possible to apply the corollary to theorem 3 to
the present situation to obtain the following result.

ProposITION 7. Let —f,g:X — Ru{co} be # -concave lower semicon-
tinuous functions (e.g. members of &) such that f < g. Suppose further that £

18 a closed non-empty set of H -peak points of X and that h:E € R is a con-
tinuous function such that

fIE S h Zg|E.
Then there exists a function k € I that extends h and satisfies f < h=g.

Proor. By proposition 6 the set E is #-extreme and hence also
W -extreme. Moreover, since
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the function /: £ — R is trivially # -affine. By the corollary to theorem 3
and corollary 1 of proposition 5, the result now follows.
The weaker statement that

H#|E = C(E)

whenever E is as in proposition 7 complements a result (theorem 1.3) of
Gamelin and Rossi [12].

It is clear from a remark of Boboc and Cornea [4] about condition (S)

that the foregoing results about H -peak points have their counterparts
for the regular points for the Dirichlet problem in Q (see also Saiz 16
of Bauer [2]).

Note added in proof, 1 July, 1966.

Mr. E. B. Davies has pointed out to me that the approximation tech-
nique used above to prove theorem 3 can also be applied, mutatis
mutandis, to theorem 1 (and that there is a somewhat similar use of the
technique in another connection in L. Nachbin’s book Order and Topology

(van Nostrand, 1965)). This remark yields immediately the following
statement.

THEOREM 1'. Let f: X — RuU {0} be a lower semicontinuous # -concave
Sfunction and let w e C(X) be such that w<f. Then there exists a W -con-
cave function v € C(X) such that usv<f.

It is now a simple exercise to prove the following

CoROLLARY. Let E be a W -extreme subset of X and suppose that K is a
compact subset of X with KnE=0. Then there is a W -concave function
v e C(X) such that

(a) 0=v=1,
(b) v(x)=0 for all x € E,
(¢) v(x)=1 for all x € K.

If also E is a G, set then we can find a W -concave function v € C(X) satis-
Sfying (a), (b), and such that v(x)>0 for all x € X\E.

Mr. A. Y. Lazar has kindly communicated to me a number of theorems
about Choquet simplexes that he has obtained independently by methods
rather different from those used above. In particular he has proved
substantial portions of proposition 4 and the corollary to theorem 3;
his methods also yields further results, to be published.
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