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MILMAN’S THEOREM FOR CONVEX FUNCTIONS

ARNE BRONDSTED
1. Introduction.

Let K be a convex compact subset of a locally convex Hausdorff topo-
logical vector space, and let M be a subset of K. Then K is the closed
convex hull of M if and only if the closure of M contains the extreme
points of K, (e.g. [4, p. 335]). The if part of this fundamental result is
the Krein—-Milman theorem, the only if part is Milman’s theorem. Re-
cently, J.-C. Aggeri [1] extended the Krein—-Milman theorem to convex
functions. It is the purpose of the present note to give an analogous
extension of Milman’s theorem (Theorem 1). We also establish a dual
result (Theorem 2).

2. Preliminaries.

Let Z be a locally convex Hausdorff topological vector space over R,
and let f be a function on E with values in ]— o0, + o], not identically
+o0o. Such a function is said to be convex if for all 2,y € E, t € 10,1],

f(A-tw+ty) = (1-)f () +tf(y) .

Convexity of the function f is equivalent to convexity of the supergraph
of f, that is, the set

[f] = {(z.a) e ExR | f(x)=a}.

The supergraph [f] is closed (in the product topology on E x R) if and
only if f is lower semi-continuous (l.s.c.) in the usual sense. Hence, f is
Ls.c. and convex if and only if [f] is a closed convex set. A function which
is the supremum of its affine continuous minorants is clearly l.s.c. and
convex. Conversely, if f is 1.s.c. and convex, then f is the supremum of
its affine continuous minorants.

Any function f which is minorized by some l.s.c. function has a greatest
l.s.c. minorant f;. Clearly,

[fcl] = cl[f] .

And any function f which is minorized by some ls.c. convex function
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has a greatest l.s.c. convex minorant f’. The function f"’ is the supre-
mum of the affine continuous minorants of f. One has

[f"'] = cleconv[f].

(For proofs of the results quoted above, see e.g. [2]. In the terminology
of conjugate convex functions [2], [3], [5], f" is the second conjugate of f).

A function f is said to be subdifferentiable at a point z if some affine
continuous minorant ¢ of f takes the value f(x) at «, that is, if the graph
of @ supports [f] at (z,f()). An affine continuous minorant ¢ of f with
this property is said to be exact at x. The set of points « such that f is
subdifferentiable at z is denoted by domaf.

A function f is said to be inf-compact if for all 1 € R the set

{xeE | f(x)=1}

is compact (or empty). A function f is said to be inf-compact in the direc-
tion £ € E' (the dual of E), if the function

z2 > f(z)—(&,2), z€ekE,

is inf-compact. Clearly, a function which is inf-compact in some direction
is l.s.c.

Following J.-C. Aggeri, we shall say that a point x € E is extreme with
respect to the function f if f(x)<oco and f is not affine on any relatively
open segment containing x. Hence, z is extreme with respect to f if and
only if (z,f(x)) is an extreme point of [f].

The indicator function ypg of a non-empty subset C of E is defined by

(x) = 0 for zeC,
Yol?) = +o00 for x2eENC.

Now, denoting by f., the function f+y,, where D is the set of points
which are extreme with respect to f, the theorem of J.-C. Aggeri [1]
asserts:

(I) If f is convex and inf-compact in all directions, then f is the supremum
of the affine continuous minorants of fexy +Yaomas

Note that the conclusion in (I) is equivalent to
[f] = cl conv [fext’*"/’domoj] s
which in turn implies
[f] = cl conv[fey] -

It is clear that application of (I) to the indicator function 1p0 of a com-
pact convex set C yields the Krein—-Milman theorem.
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3. Main result.
We shall prove the following converse of (I):

TueoreM 1. If f is convexr and inf-compact in some direction, and g is
such that f is the supremum of the affine continuous minorants of g, that s,

[f] = el conv(g],

then gy is a minorant of fey, that is,
[fext] < [gcl] = cl [g].

Proo¥. Let (y,f(y)) € [fexs]; We shall prove that then (y,f(y)) € cl[g].
Let £ € B’ be a direction of inf-compactness for f, and let

H = {(x,a)e ExR | a={,z2—y)+f(y)+1},
K = {(x,a) e ExR | as{&a—y)+f(y)+1},
and
M= ({flnH)u(glnK).
We claim that

(*) cleconvM = [f]n K.

Clearly, clconv M is contained in [f]nK. Suppose (z,c) is in [f]nK, and
not in clconv M. Then, by a standard separation theorem, there exists a
closed hyperplane J in E xR which strictly separates clconvM and
{(z,¢)}. Evidently, J is non-vertical, and the set clconv M is in the upper
half space J+ determined by J. Since [f] is the closed convex hull of [g],
and (z,c) is in the lower half space J- determined by J, there is a point
% € K such that (u,g(u)) is in J-. And since clconv M is in J+, it follows
that (u,g(u)) is not in K. Consequently, the segment

I = [(u,9(w)), (z,¢)]

contains a point p which is in H. From the convexity of [f] it follows
that p is in [f]. So p is in M, and therefore in J+. This, however, con-
tradicts that p belongs to the segment I which is contained in J-. Hence,
we have proved (*).

To complete the proof of the theorem, note that since (y,f(y)) is an
extreme point of [f], it is an extreme point of [f]NnK. And this set is
compact, f being inf-compact in the direction £. Hence, by (*) and Mil-
man’s theorem, (y,f(y)) is in cl M, and therefore in cl[g].

An immediate consequence of (I) and theorem 1 is the following
corollary.
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CoroLLARY. If f is convex and inf-compact in all directions, then
(f ext+'l’domaf)cl ts @ minorant Of f exty that 1:8,

[fext] <el [f ext + wdomaf] .

It is evident that application of theorem 1 to the appropriate indicator
functions yields Milman’s theorem.

4. A dual result.
Consider the following two problems:

(A) Find functions g which have the same affine continuous minorants
as a given l.s.c. convex funclion f.

(B) Find sets @ of affine continuous minorants of a given l.s.c. convex
Sfunction f such thut f is the supremum of the functions in @.

The problems (A) and (B) are dual in a sense which may be described
in terms of conjugate convex functions ([2], [3], [5]): If f is a function on
a real locally convex Hausdorff topological vector space E which is
minorized by some affine continuous function, then the conjugate f' of f
is defined by

f(é) = gug(@, x)—f(x)), E€k .

It is a l.s.c. convex function on E’. The conjugate of f’, that is, the func-
tion f'" on E defined by

f(x) = g}}((&ﬂc}-—f’(&)), zxek,

is the greatest l.s.c. convex minorant of f. Therefore, if f is 1s.c. and
convex, then there is a complete duality between f and f’. If so, then there
is a one-to-one correspondance between the points (z,a) in [f] and the
affine continuous minorants & - (§,z) —a of f’, — and similarly between
the points (&,«) in [f'] and the affine continuous minorants z — (§,2) —«
of f. Hence, the problems (A) and (B) are dual in the sense that a solu-
tion of (A) for f yields a solution of (B) for f’, and conversely. (In order
to make the duality complete, one should require that the set @ be closed
with respect to subtraction of positive constants, and with respect to
performing limits of increasing sequences of functions that differ from a
fixed one by a constant.) Note that the affine continuous minorants of f
of the form z — (&) —f’(£), where f'(§) < + oo, are the maximal ones,
and similarly in E’. Also, note that the function z - (£,,z) —f'(£,) on B
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is exact at a point x, if and only if the function & - (&,7,) —f(x,) on E’
is exact at &,.

Let us say that an affine continuous minorant ¢ of a function f is
extreme if for no non-zero affine continuous function w the function
@ +1iw is a minorant of f for all t € ]—1,1[. Equivalently, z - ({,z2) —«
is extreme if (£, «) is an extreme point of [ f']. In [1], J.-C. Aggeri proved.:

(II) Iffis convex and everywhere finite and continuous, then f is the su-
premum of its extreme exact affine continuous minorants.

In fact, using the duality explained above, (II) follows immediately
from (I) and the following theorem of J. J. Moreau [6]:

(IIX) Let f be a l.s.c. convex function on E. Then f is finite and ©(E,E')
continuous at a point x if and only if f' on E' is o(E',E) inf-compact in
the direction x.

Here ©(E,E') is the Mackey topology on E, and o(E’,E) is the weak
(weak*) topology on E'.

By a similar approach, we shall deduce from theorem 1:

THEOREM 2. Let f be a l.s.c. convex function on E which is finite and
continuous at some point. Let D be a set of affine continuous minorants of
S such that f is the supremum of the functions in @. Then every extreme affine
continuous minorant of f is a pointwise limit of functions in D.

ProoF. Let 4 be the set of all affine continuous functions on E,

equipped with the topology of pointwise convergence on E. Let cl®
denote the closure of @ in 4. Let

&, = {(,,6) e B’ xR | & > (£,2)—« is in cl P}
and let

b, = &, + {(0,f)e B'xR | 0=},

where o is the zero element of E’. Let E' be equipped with the weak
topology o(Z',E).

Now, it is easy to verify that @, is closed in E' x R. Therefore, ®, is
the supergraph of a function ¢ on E’ with ¢'=f. Hence, by theorem 1
and (III), to complete the proof of theorem it suffices to prove that g is
Ls.c., that is, @, is closed. By (III), f’ is inf-compact in some direction
zy€ E. The affine continuous function

f"’<§,xo>—f(xo), §EE, ’
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is & maximal minorant of f’. Let y <f(x,), and let K, be the closed non-
vertical half space

{(6,0) € B' xR | a S (&) — 7} -

It follows from the inf-conpactness that [f']nK, is compact, and since
@, is a closed subset of [f'], the set &;n K, is compact. This implies that
the set

8 =&, nK,+ {(0,x) e B'xR| 0= =f(x0) —y}

is compact. But evidently
SnK,=®,nkK,,

and consequently ®,nK, is compact. Since y <f(x,) is arbitrary, this
proves that @, is closed.
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