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ON GAUSSIAN MEASURES EQUIVALENT
TO WIENER MEASURE II

DALE E. VARBERG
1. Introduction.

Let P, be a Gaussian probability measure determined by a covariance
function r(s,t) (see [2, pp. 71-74] but note that we are assuming the
mean function to be zero). Similarly, let P,, denote the familiar Wiener
measure determined by the covariance function w,(s,t)=¢? min(s,t).
The problem is to determine simple and easily checked conditions on r
which guarantee that P, and P, are equivalent (mutually absolutely
continuous with respect to each other). An earlier paper of the author
[12] offered one solution to this problem though it may be questioned
whether the conditions given there are simple and easily checked. Be
that as it may, the paper did suggest a way of attacking the problem—
by studying the linear transformations of the Wiener process and espe-
cially how Wiener measure transforms under them. In the present paper,
we pursue this route further and arrive at a solution that certainly meets
the criterion that we have set up. We show (Theorem 8) that sufficient
conditions for equivalence are that

() 7(0,¢)=0,
(ii) o~2 0%[r(s,t) —w,(s,t)]/0tos exists, is square integrable and has small-
est eigenvalue greater than —1.

In §2-§4, we introduce the material that is required to establish the
main results on equivalence which follow in § 5. In particular, in § 2
we solve a special nonlinear integral equation, in § 3 we study a represen-
tation problem for Gaussian processes and in § 4 we generalize Wood-
ward’s theorem on the transformation of Wiener integrals. Our theorems
are stated in pairs. The first theorem in a pair assumes that a certain
kernel is of bounded variation and allows a strong conclusion while the
second assumes only that this kernel is square integrable and conse-
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quently offers a somewhat weaker conclusion. The final section of the
paper is devoted to examples.

2. An integral equation.

Let {C,, B, P,, } be the Wiener process, i.e., let Cy=C\(0,b) be the class
of all continuous real valued functions z defined on I=[0,b] with
2(0)=0, let B be the smallest Borel field of subsets of C, with respect
to which xz(f) is measurable for each (fixed) te and let P, be the
Gaussian probability measure on B determined by the covariance func-
tion

w,(8,t) = o®w(s,t) = o min(s,t) .
We assume that the mean function is identically zero.

There are good reasons for believing that all Gaussian processes whose
measures are equivalent to Wiener measure may be obtained as linear
transformations of the Wiener process of the form

bt
(2.0) y(t) = (t) + f f K(u,8) duda(s) .
00

[In fact, in private correspondance with the author, Hiroshi Sato has
stated that this is a theorem which he has proved.] A major problem
and one which we shall solve in § 3 is therefore: to determine conditions
on r(s,t) which guarantee that the corresponding process {y(t),0=<t<b}
has the representation (2.0). Now if (2.0) holds, then

r(s,t) = E{y(s)y(t)}

bt
B x(s)z(t) + f J‘x(s)K(u,v) dudx(v) +

bbst

+ffx(t)K w,2) dwdx(z) + fjffK u,v) K(w,z) dudwdx(v)dx(z)

0000

= g2 [w(s,t) + f J‘ K(uw) dudv + J-j K(w,z2) dwdz+
00 00

bat
+ K(u,v) K(w,v) dudwdv] .
|
Therefore

(2.1) 02 02(s,8) —w,(s,1)]/0tds = K(t,8)+K(s,t) + f K(s,0)K(t) dv .
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If we assume that K(s,t) is symmetric and let F(s,t) denote the left side
of (2.1), then this equation takes the form

b
(2.2) 9K (s,t) = F(s,t) — J‘ K(s,u) K (tu) du
0

which we shall study as an integral equation in K with F regarded as a
known function.

Our first attempt at a solution of (2.2) will be by means of Picard’s

method of successive approximations. Accordingly, let K(s,t)=0 and
let

b
(2.3) 2K, (s,t) = F(s,t) — f K, _(su) K,_i(tu) du
0

forn=1,2,....

Following [6, p. 148], let L? denote the space of real valued functions
K on I x1I for which

bb 3
K| = [ Kz(s,t)dsdt] < oo,
Il

and let L2 be the space of real valued functions f on I for which

b 3
Il = [ [ @ ds] <o,
0

Lemma 1. Let F(-,-) e L* with m=|F|<1. Let

b

B(s) = |F(s, )] = [f

0

3
F2(s,t) dt]

which by Fubini’s theorem is finite for almost all s. If K,(s,t) is as above,
then

(2.4) K, < m,
(2.5) ”K'n('g: ')” S B(S) ’
(2'6) lKn+1(8’t) _'Kn('s:t)l é B(S)B(t) m’n—l ’

these inequalities holding for n=1,2,....

These inequalities may be proved by induction in the order given
using the triangle inequality for norms and Schwarz’s inequality at
appropriate places.

Math. Scand. 18 — 10
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Before stating our first theorem, we need to recall a definition. Let
BVH denote the class of function K on I xI which are of bounded
variation in the sense of Hardy-Krause. Thus K € BVH if

(1) there exists (8y,8,) €1 x I such that K(s,,t) and K(s,t,) are of bounded
variation on I,

(11) Va'rIxIK(s’t) = sup 21»-1 ]=-1 Aij(K) < ®

where
Ay (K) = |K(83,8;) — K(85, ;1) + K(84-1,8;1) — K(8;-1,8)] -

We remark that K € BVH implies that both Var, ; K(s,t) and Var,_; K(¢,s)
exist for each ¢ and are bounded as functions of ¢ on I.

TrroREM 1. Let F € BVH and be symmetric with |F|<1. Then there
exists K € BVH satisfying (2.2) everywhere.

Proor. Since F € BVH it is bounded and hence B(s)=|F(s,-)| is
finite for all s. Thus by (2.6) of Lemma 1

| Ko(s,8) — Kq(8,t)| + | K5(8,8) — Kq(8,8)| + . . .
S Bs)B(t)[1+m+m?+...] < oo,
Hence
K(s,t) = lim K, (s,8) = K,(8,8) + [Ky(s,t) — K,(s,8)]+

exists everywhere on I x I. That K satisfies (2.2) everywhere follows by
taking limits in (2.3). We must show that K € BVH.

Choose a constant C such that Var;,,;F(s,t)<C and Var, F(st)<C.
It follows as we shall show presently that

(i) [IVary, Kyu(s, )l = Cb3,
(ii) there exists ¢, € I such that Var, K, (s,t,) <C,
(iii) Vary; K, (s,t) < 3[C+C?b],

each of these inequalities holding for n=1,2,.... Assuming these facts
for the moment, we note that

S SA,K) =lim 3 S A,(K,) < liminf VarK,(s,1)

t=1j=1 n—>00 fx=1 =1 n—>o0 IxI
so that Var;,;K(s,t) < 3[C + C?b]. Similarly
Var K(t,,s) = Va.rK (8,%p) < lim inf VarK,(s,t,) =

sel n—>oco  gel
from which we conclude that K € BVH.
We proceed to the proofs of (i)-(iii). (i) follows easily by induction.
To see (ii), we note first that there exists ¢, € I such that |[F(-,t,)||sb~}
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for otherwise |F|> 1. Using this and the symmetry of K, (s,t), it follows
by induction that ||[K,(-,%)]|£b-}, n=1,2,.... Thus

2 VarK,(s,t,) = Var[F(s,t,) — fK —1(s,u) K, (g, w) du]
sel sel

< VarF(s,t,) + fVarKn_l(s,u) | K 1 (tg,%)| du
sel

sel

O’+||Va[rK a1 MK -1t )l

IIA

C+Cbtb—*
= 2C.
Finally

b
2 VarK, .,(s,8) = Var[F(s,t) — f K, (s,u) K (t,u)du]
IxI IxI

0t sup3 3 1K 000 Kolora] Kulty0) -
o — K, (ty-1%)| du
b
S C + | [VarK,(s,u)]? du
sel
0
= C+0C?%

which establishes (iii) and completes the proof of the theorem.

The norm condition of Theorem 1 is a severe one but we have been
unable to remove it. However, we can do somewhat better if we look
for solutions of our integral equation in L? rather than BVH. To that
end, let {g;,4,} be an eigen system for the symmetric kernel F(s,?),
(see [10, pp. 112-115] for the definition of what is there called a charac-
teristic system but note that our eigen values are the reciprocals of the
characteristic values used there, i.e.,

hapult) = f F(t,5)gis) ds) .
Finally, let

(2.7 Ft t dsdt .
) = inf f j (1) 2(t) =(s) ds

00

This is equivalent to saying that 4,~ is the smallest negative eigen value
(4,~=0 if there are no negative eigen values).
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THEOREM 2. Let F € L? and be symmetric with A,—= —1. Then there is
a function K € L? satisfying (2.2) almost everywhere.

Proor. We know [10, p. 115] that we may expand F in the mean
convergent series

F(st) = 2 A;95(8) @4(2) -

Let ’
K(st) = X mips(8) @4t ,

7

where pu;= —1+(1+4;)} and note that u; is real since 4,-= —1. The
convergence of 34,2 guarantees that of Y u,2 and hence the mean con-
vergence of the series for K. Moreover

b
Ko Etw du = 3 upg o) .
5 j
The result now follows from the fact that 2u,=2;—u?.

3. The representation problem.
THEOREM 3. Let 7(s,t) be a covartance function satisfying

(3.0) r(0,8) = 0 for tel = [0,b],
(3.1) F(s,t) = 072 02[r(s,t) —w,(s,t)][0tos exists on Ix1I,
(3.2) FeBVH and |F| < 1.

Then r(st) determines a Gaussian process {y(t),0 <t<b} which has the
representation

bt
(3.3) y(t) = a(t) + f f K(u,8) duda(s)
00

where K is the solution of (2.2) guaranteed by Theorem 1 and {x(t),0 <t < b}
s the Wiener process with covariance function wy(s,t).

Proor. If we define a Gaussian process y(t) by (3.3), it follows from
the calculation at the beginning of section 2 that its covariance function,
call it g(s,t), is given by

st b
o(8,t) = wy(s,t) + o f f 2K (v,w) + f K(v,u) K(w,u) du dwdv
00 0

bt
= wy(8,t) + o? | | F(v,w) dwdv .
Il
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But using (3.0) and (3.1) it is easy to show that
s
o2 f F(v,w) dwdv = r(s,t) —w,(s,t)
00

and thence that o(s,t)) =r(s,t) from which the theorem follows.

We remark that in the result above there is no difficulty with the inter-
pretation of the integral b

J = f f K(u.s) duda(s) .
00

The fact that K € BVH implies that [} K(u,s)du is of bounded variation
in s and so J exists as a standard Riemann-Stieltjes integral. If we
require only that K e L2, this is no longer true. However, J still exists
as a stochastic integral in the sense of Doob [2, pp. 430-431]. If K is
symmetric, this stochastic integral may be represented in a convenient

way as an infinite series. To be specific, let {p;,u;} be an eigen system
for K and let

b
(3.4) Vi@ = [ oo dats),
0

this integral also being interpreted as a stochastic integral [2, pp. 427-
428]. Now {N,(z)} forms a sequence of independent Gaussian variables
each with zero mean and variance ¢% and so {N;%x)—o?} is a sequence
of independent random variables each with zero mean and variance 302
By a well known theorem of Kolmogorov [4, p.236], it follows that
S u[N2(x)— 0% converges except on a null set N of C, and hence so
does Iu;2N2(x). Excluding N, the Riesz—Fisher theorem guarantees
that 3 u; N(x)p;(u) converges in mean to a function in L? (and hence
in L'). It is not difficult to show that for almost all z € C,

bt t
(3.5) f f K(u,s) duda(s) = f S u V(@) g (w) du
00 o’
= 3wl @) f yw) du .
J 0

With the interpretation of the Stieltjes integral, we may state the
following generalization of Theorem 3.

THEOREM 4. Let r(s,t) be a covariance function satisfying (3.0), (3.1),
Fel?* and A-2-1. Then r(st) determines a Gaussian process
{y(),0 <t <b} which has the representation
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bt
y(t) = z(£) + K(u,s) dudz(s),
Il

where K 1is the solution to (2.2) guaranteed by Theorem 2 and {x(t),0 <t <b}
s the Wiener process.

Proor. Let ¢;, 4; and u; be as in the proof of Theorem 2 and N,(x)
as in (3.4). Then

¢
E{z(t)N ()} = o f oy(w) du
and ’

Efy(sly()} =

n—>00 J=1

12
= lim E lx(s)x(t) + > pia(s) N(x) J. @;(u) du+
0

n

8 8t
+ zlﬂjx(t) Ny(x) f pi(w)du + 3 pyu N (@) Ny(x) ff @;(u) px(v) dvdu]
7= 0

Jrk=1 < 00

8l
= w,(s,t) + lim 3 o?(2u;+ u?) f f @;(w) ps(v) dvdu
00

Nn-—>00 jm1

st
= w(st) + o f Flup) dvdu = r(s,i) .
00

We remark that Theorem 4 yields as a byproduct sufficient conditions
on r which insure that it determines a process with continuous sample
functions. Moreover, the result thus obtained does not follow from (or
even overlap) the general results of Loeve [4, p. 520] concerning this
matter.

4. Woodward’s theorem and a generalization.

We begin by recalling the definition of the Fredholm determinant for
a kernel K.

o (— Ay b bl K(8y,8;)...K(s1,8,)
(40) Ak E) =143 j e |dsy ... ds,
n=1 M5 5| K(s,,8y). .. K(3,,8,)

d(A; K) always exists for a kernel K € BVH but unfortunately may not
exist for K € L? since K(s,3) may not even be measurable in this case.
However if we let K*(s,t) = K(s,t) for s+t and K*(s,8)=0, then d(4; K*)
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does exist and so we define the modified Fredholm determinant é(1; K)
by 6(A; K)=d(4; K*). We mention that if {p;, u;}is an eigen system for K,
then [1, p. 217]

(4.1) 6(4; K) =TT (1+2u,) exp(—2uy) .
J

We state now a special case of Woodward’s theorem (see [13] and also
Theorems 2 and 3 of [12]).

TrEOREM 5 (Woodward). Let K € BVH and d(—1; K)+0. Then the
transformation of the Wiener process defined by

bt
(Tz)(t) = x(t) + j f K(u,s) duda(s)
00

ts 1-1 from Cy onto Cy. Moreover if G is integrable,

(4.2) E{Q(z)} = |d(—-1; K)| E{G(Tx)D(x; K)}
where
(4.3) D(z; K) =

bd b
— exp l - 2%2 ! Of [K(s,t) + K(t,8)+ J’ K(u,8) K(uyt) du] dx(s)dx(t)].

Alternatively if H 1s integrable,
(4.4) E{H(T%)} = |d(—1; K)|-* B{H(z)®(x; K-},

where K-1 is the Volterra reciprocal kernel corresponding to K, that 13, a

kernel satisfying
b

b
(4.5) K-Ys,t)+ K(s,t) = — f E-Ysu) K(ut) du = — j K(s,u) K-Y(u,t) du .
0 0
Our plan is to generalize this theorem to an arbitrary symmetric kernel
K e I2. Accordingly, let {p;,u;} be an eigen system for K and N,(z) as
in (3.4). Then formally

d(—1; K) = 8(—1; K) exp (T p)
and J

1
D(x; K) = exp [——57—‘22 (2/“‘1+H12)N12(x)] .
J

Neither of these expressions need exist. However if we remove the
second factor from d(—1; K) and insert it in @(z; K), both become
meaningful. More explicitly, let us define
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1
(4.6) Y(x; K) = exp { ~ 5ot > [2p; (N 2(x) — 0®) + 2 N 2(2)]; .
J
Applying the theorem of Kolmogorov referred to earlier [4, p. 236] and

using the fact that Y u,* converges, we see that ¥(x; K) is well defined
for almost all z € C,. Thus, we are led to

THEOREM 6. Let K € L? and be symmetric and suppose that 6(—1; K)+0.
Then the transformation of the Wiener process defined by

bt
(Tz)(t) = «(8) + Jf K(u,s) dudx(s)
00

(see (3.5)) is essentially 1-1 from C, onto C,. Moreover if G is integrable,

(4.7) E{Q(x)} = §(—-1; K) E{G(Tx)P(x; K)} .
Alternatively if H is integrable,

(4.8) E{H(T=)} = 6(—1; K1) E{H() P(x; K1)}
where

K-(st) = —Z—% 8)@;(t) ,
{,1;} being an eigen system for K .

This theorem is closely related to a more abstract result in [9] which
however is not formulated correctly (see [8, p. 465]). Furthermore, it
presumably can be made to follow from [7, Theorem 3] where the general
setting is quite different though when properly looked at equivalent to
ours (see [8]). Instead of trying to base the proof of Theorem 6 on these
papers, we have chosen to rely on Woodward’s theorem (which we
wanted anyway for Theorem 7) and standard measure theory arguments.

Proor or THEOREM 6. By saying that 7 is essentially 1-1 from C,
onto C,, we mean that there exists a transformation 7-! satisfying
T-Tx=TT-'x=x for almost all x € C;,. That this is the case follows
from the formula

(T-%2)(t) = a(t) f iy

N (@) py(u) du
We shall prove our theorem first for K of finite rank. More precisely, let

N
K(st) = zl.uj @5(8) @5(t)
J-
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where the @;’s are orthonormal and belong to L2 For each j, let {g;,}
be a sequence of functions with continuous derivatives such that

@;(8) = Lim.g;,(s)

n—>oo

and let N

Kn(s,t) = zlﬂj¢jn(8)¢jn(t) .
J=

Then K, e BVH and

d(=1; K,) = 8(~1; K,) exp[ Kn<8:s>d8] = Bd(—=1: Ky) oxp ( )
0

7=1
where

B, = exp[ K, (s,8) ds— E,u,]

]=1
When 7 — oo,
B, -1, é-1;K,)~>4é-1;K)
and
exp ( z,uj) &O(z; K,) - P(z; K),

J=1

these facts being trivial to verify except possibly for the one about d
for which the reader may see [1].

Next let y be the set characteristic function of the quasi-interval

4 ={xely =z, <a, m=1,2,... .M}
and let M
=TI zem(®),
m=1
where
1 z(t,)Sa,—¢,
Xem(®) = { [@p—2(@)]e  a,—eS2(t,)Sa,
0 Ay S %(ty)

8o that y,(x)4 x(x) as ¢ - 0+. Finally, let

|1 sup,[P(=x; K,)] S e,
Afx) = { otherwise ,

and note that A,(x)41 as & - 0+.

Now 8(—1; K)+0 implies that d(—1; K,)#0 for large n» and so we
may apply Woodward’s theorem to the kernel K, with 7', defined in
the obvious manner. We obtain
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E{y (@)} = [d(—1; K,)| E{y,(T,2)D(x; K,)}

2 Bols(—1; Kol BA,@)(T2) exp ( 3 1) 06 K.

J=1

In this inequality let » — o and ¢ - 0+ in that order noting that we may
pass the limits inside the expected values by bounded convergence and
monotone convergence respectively. The results is

(4.9) E{y(z)} 2 |6(—1; K)| E{y(Tx)¥P(x; K)}.
We observe next that
0 < E{¥(z; K)} = [6(—1; K)]1

as may be checked by direct calculation using the fact that N, N,,...,Ny
are independent Gaussian variables with means zero and variances o2.
Hence applying (4.9) to 1—y, we have

1-E{y(x)} = E{1-x(2)}
2 §(—1; K) E{[1 - x(Tx)]¥(x; K)}
=1-6-1;K) E{y(Tz) P(x; K)}.
Thus
E{y(z)} < 6(—1; K) E{3(Tz) ¥(z; K)}

from which we conclude that (4.9) is acutally an equality. This equality
readily extends to arbitrary measurable set characteristic functions and
thence to integrable functions. Hence we have proved (4.7), however,
so far only for certain kernels of finite rank.

Moving on to the general symmetric L? kernel K, we know that it
has the mean convergent expansion

K(st) = El”f%(s)%(t) ;
]ﬂ

where {p;,u;} is its eigen system. In other words, our general K may
be approximated in mean by the kernels of finite rank that we have
just studied.

We find it convenient to shift our notation and let K (s,t) now be de-
fined by

N
Ky(st) = _Zlm%(sm(t) .
j-

The corresponding transformation 7y is then
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bt
(Txa)(®) = a(t) + [ [ Knws) dudas)
00

N
= z(t) + f zl;szj(x)tpj(u) du
07~

and
(Tx12)(®) = alt) - f Jgﬁ— (@) 93(w) du

Let x and y, be as originally introduced and let

1 Y(x; K)<(1-¢)fe,
I'(x; K) ={1—a YP&;K)=a+(l—¢)le, 0Zasl,
0 Y(x; K)21]e,

so that I',(x; K)t1 as ¢ > 0+. One may show that
YTy x; Ky) > Y(Tz; K)
and consequently that

I'(Ty"z; Ky) > I'(T-2; K) as N > 0.
Also
I'(x; Ky) > I',(z; K) and §(-1;Ky)->d6(—-1;K).

Thus, letting N — oo and ¢ — 0+ in the already proved result
E{y(x) T (Ty™'x; Ky)} = 8(—1; Ky) E{y(Tyz)[(x; Ky) P(x; Ky)}

(obtained after letting G(z)=y,(x)I(Ty'x; Ky) in (4.7)), we have by
bounded convergence and monotone convergence

E{y(x)} = 8(—1; K) E{y(Tx) ¥(x; K)} .

This equality extends easily to any measurable set characteristic func-
tion y and thence to an arbitrary integrable function G, thereby yield-
ing (4.7) in the general case. To get (4.8) we may write (4.7) with T
replaced by 7-! and then let G(x)=H(Tx). This completes the proof of
the theorem.

5. Gaussian measures equivalent to Wiener measure.
THEOREM 7. Let r(s,t) be a covariance function satisfying

(5.0) r(0,¢) = 0 for te I = [0,b],
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(5.1) F(s,t) = 0-2 0%[r(s,t) —w,(s,t)]/0tds exists on Ix1I,
(5.2) FeBVH and |F| < 1.

Then the Gaussian measures determined by r(s,t) and w,(s,t)= o? min (s,t)
are equivalent and

1 11
(5.3)  dP,JdP,, = [d(—1; F)]- exp [- = Of Of F-1(s,t) da(s)da(t) | .

where F-1 is the Volterra reciprocal kernel corresponding to F (see (4.5)).

Proor. 312=|F|<1 implies that 4;> —1, j=1,2,..., and henced
that d(—1; F)+0. If we use Theorem 1 to determine a K satisfying
(2.2), then [3, pp. 172-173]d(—1; F)=[d(—1; K)]? so that d(—1; K) +0.
Moreover as is easily checked,

b
F-1(s) = 2K-Y(sz) + f K-Y(s,u) K-1(t,u) du .
0

Thus by Theorem 5,

(5.4) L b

E{H(Tz)} = [d(~1; F)+ E [H(x) exp [- 5 J f F-Y(s) dx(s)dx(t)] }
g 00 e

where ‘ _
bt
(Tz)(@) = (t) + f f K (u,8) duda(s) .
00

But by Theorem 3, the transformation y(t) = (7z)(t) determines a Gauss-
ian process with covariance function 7(s,t). This in turn means that

(5.5) E{H(y)} = E*{H(T2)},

where for clarity we have used the notation E*{...} to denote expecta-
tion on the process with covariance function r. Formula (5.5) together
with (5.4) yield the fact that P, is absolutely continuous with respect to
P, and formula (5.3). That P, is also absolutely continuous with respect
to P, is a consequence of the positivity of dP,/dP,, .

We may weaken the conditions on r but as might be expected there is
some loss in the elegance of the formula for the derivative dP,[dP,, as
we see in

THEOREM 8. Let r(s,t) be a covariance function satisfying

(5.6) r(0,8) = 0 for tel = [0,b],
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(5.7) F(st) = 072 0%[r(s,t) —w,(s,t)][0t0s exists on Ix1I,

(5.8) FelL? and 2,-2 —1 (see (2.7)).

Then the Gaussian measures P, and P, are equivalent and

(6.9) 2
dP,|dP, = [8(—1; F-1)]* exp [202 1+/1 (f 0,(s) da( s)) ]

where {@;,A;} is an eigen system for F and

F(st) = =2 —os(8)gyt) -

1+a,

Proor. We use Theorem 2 to determme a kernel K satisfying (2.2)
As in that theorem, let u;= —1+4(1+4;)! so that 4,-> —1 implies that
u;> —1 and therefore that (—1; K)>0. One may easily check the fol-
lowing calculation.

6(—1; K1) ¥(x; K1)

g[l_lifmexp(le)] pl 53 2 [lej(N%) o?) +
(1+ )2 Rl )”

=exp{%2[ 1+l, lj-j}., 02(11_'_21)(1\712(70) 02)]}

[0 (-2 emo (255 ] omp [ 3 v )

which is precisely the expression given for dP,[dP,, in (5.9). Thus if we
apply Theorem 6, we obtain

i’
B{H(T)} = [8(~1; K—l)]*E{H (2) ex p[ S (N,z(x)—az)]}.

+

]

The proof is now completed exactly as in Theorem 7 with Theorem 4
playing an auxiliary role.

Adding two independent Gaussian processes produces another Gaussian
process. One suspects that adding a suitable Gaussian process y(t) to
the Wiener process z(f) should yield a process z(f) whose measure is
equivalent to Wiener measure. A criterion for a process y(f) with co-
variance function p(s,t) to be suitable is obtained by noting that
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r(s,t) = E{x(s)2(t)} = E{x(s)2(t)} + E{y(s)y(t)}
= W,(8,t) + P(8,1)
and applying the following corollary to Theorem 8.

CoroLLARY. If 7(s,t)=w,(s,t) + p(s,t), where p(s,t) is a covariance func-
tion, p(0,¢)=0 and 0%p(s,t)/0tds exists and is in L2, then P, is equivalent
to P,,.

The proof reduces to the simple observation that since p(s,) is a
covariance function, 02p(s,t)[0tos is positive semidefinite and therefore
A=20.

We remark that this corollary is closely related to results of Parzen
[6, especially pp. 164-165].

We conclude this section with a theorem which connects the results
of the present paper with some earlier ones of the author [11].

THEOREM 9. Let r(s,t) be continuous covariance function with uniformly
bounded second derivatives on I x I except on the diagonal s=t. If P, is
equivalent to P, , then

(5.10) r(0,t) =0 on I,

(5.11) lim TGO el L Tl -
s>t~ t—s s—>t+ t—s

on I.

Conversely if (5.10) and (5.11) hold, then there exists T >0 such that P,
is equivalent to P, on {Cy(0,T), B}, that is, P, and P, are initially equiv-
alent.

Proor. Suppose that P, is equivalent to P, . Then
P, {x:2(0)=0} = 1 = P {z: 2(0)=0}

from which it follows that 7(0,t)=Er{x(0)x(t)}=0. Formula (5.11) is
proved in [11, § 2].

Conversely suppose that (5.10) and (5.11) hold. Then, noting that
w,(8,t) also satisfies (5.11), we may check that O[r(s,t) —w(s,t)]/0s exists
on the diagonal s=¢. The conditions on the second derivatives of r
imply that this first partial derivative exists and is continuous on I x I
and that 02[r(s,t) —w,(s,t)]/0tds exists except possibly on the diagonal
8=t. This together with (0,f)=0 insures that
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st
(5.12) 7r(8,8) = wy(s,t) + f J {0%[r(u,v) — w,(u,v)][0vou} dvdu
00

8t
= wy(s,t) + 0% | | F(u,w) dvdu.
Il

Thus the conclusion of Theorem 4 holds even though F(s,t) may not be
defined at s=¢ and we may apply Theorem 8 provided of course that
A,~> — 1. But for the interval [0,7'], this is clearly true if 7' is sufficiently
small (see (2.7)).

6. Examples.

We illustrate our theorems with a covariance function r which has
arisen in many statistical problems. Let

w(s,t) = min(s,t) and  r(s,f) = w(s,t)—st.

Then F(s,t)= —1 so the hypotheses of Theorem 3 are satisfied if 0<b < 1.
It is a simple exercise to check that K(s,t)=(—1+(1-b)})/b. Hence r
determines a Gaussian process y(f) with representation in terms of the
Wiener process z(t),

bt
y(t) = z(t) + f f K(u,8) duda(s)
00

= x(t) + tx(d)[(— 1+ (1-b)})[b].
Moreover if b<1,
K-Y(s,t) = (1—-(1-b)})/(b(1-b)})

and d(—1; F)=1-b. Hence by Theorem 7, P, is equivalent to P,, and
dP,[dP, = (1—b)-texp[—a2(b)[2(1-0b)].

This example also illustrates the necessity of condition (5.8) of Theorem 8.
For in the present instance, 4,~= —b and hence if A,~= —1, then b=1.
But we know that P, is not equivalent to P, on {Cy(0,1),B} since
P {x:2(1)=0} =1 while P,{x: 2(1)=0}=0.

In conclusion, we mention that our results permit the calculation of

the Wiener integral (expectation) of certain quadratic type functionals.
In particular if ¥ € BVH and is symmetric and if [A| <1/|F|, then

bbd
(6.0) B lexp [gz f f F(s) dx(s)d:c(t)” = [d(A; F)]+.
00
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To prove this, note first that || < 1/|F| implies that d(4; F)+0. Next,
use Theorem 1 to solve the equation

b
2K (s,8) = —AF(s,8) — f K(s,u) K(tu) du
0
for K. By (3, pp. 172-173],
d(4; F) = [d(-1; K)]?
and hence, applying Theorem 5 and formula (4.2) with =1 and G=1,
we get (6.0).
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