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ON THE STRUCTURE OF
A CERTAIN CLASS OF LOCALLY COMPACT RINGS

AUDUN OFSTI

1. Introduction.

The structure and general properties of compact rings is well known.
In comparison, the property of local compactness does not determine the
structure of rings, but leaves us with a wide range of possibilities. We
therefore often have to do with locally compact rings with additional
properties, the most common of which is perhaps boundedness:

For every neighbourhood V of 0 there exists a neighbourhood U of 0 such
that, if R is the ring, RU< V.

In this note we shall study a class of locally compact rings with still
another property. For brevity, we give a name to these rings.

DErFiniTION. 4 K-ring is a ring satisfying the following conditions:
a) local compactness, '
b) boundedness,

¢) descending chain condition on ideals containing a given open tdeal.

K-rings are introduced in [7, p. 450] by Kaplansky in order to unify
and generalize the classical decomposition of Artin rings [10, IV, § 3,
Theorem 3] and his own similar decomposition of compact commutative
rings [6, Theorem 17]. For both compact rings and (discrete) Artin rings
are K-rings. (The Artin case is trivial, 0 being an open ideal. A compact
ring satisfies a) trivially and b) by [6, Lemma 10]. Moreover, in a com-
pact ring the quotient ring modulo any open ideal is discrete and com-
pact, thus finite, and condition c) is obviously satisfied.) Further, Kap-
lansky shows [7, pp. 450-451] that the decomposition of compact com-
mutative rings (and Artin rings) extends to K-rings.

In this note, we shall study in some more detail the structure of K-rings.
It will be proved that a (commutative) K-ring is a direct product (sum)
of a compact ring and an Artin ring (Theorem 5). We use the terminology
of Nagata [8] and say that a commutative ring with unit and only one

Received December 9, 1965.



ON THE STRUCTURE OF A CERTAIN CLASS OF LOCALLY COMPACT RINGS 135

maximal ideal is quasi-local. (A noetherian ring is a ring with unit and
a.c.c., and a local ring is a noetherian quasi-local ring.) We prove that
if a quasi-local K-ring satisfies the 1st axiom of countability it is local
(Theorem 6). Finally it is proved that a K-ring with unit is noetherian
if and only if it has the radical topology, that is, the topology determined
by the powers of the radical (Theorem 9). This theorem also asserts
that in a K-ring with unit and open radical, the a.c.c. is equivalent to
the 1st axiom of countability.

2. The structure of K-rings.

A radical ring is a ring which coincides with its Jacobson radical.
The Jacobson radical of a (commutative) ring is the (set-theoretic) union
of all ideals in which every element x has a quasi-inverse, that is, an
element y such that +y+xy=0. (It follows that a radical ring has no
unit and that the radical in a commutative ring with unit coincides with
the intersection of the maximal ideals). Kaplansky’s unifying and gen-
eralizing theorem mentioned above can now be stated:

THEOREM 1. 4 commutative K-ring, R, is (isomorphic and homeomor-
phic to) the direct product of a radical ring and quasi-local rings.

The proof of Theorem 1 is sketched in [7, pp. 450-451]. We regard
this as sufficient in what concerns the algebraic part. However, we shall
prove the topological part of the theorem: that the given ring, and the
algebraic direct product are homeomorphic when each factor in the prod-
uct is taken in its relative topology as a subspace of R and the product
is given the product topology. For this we shall need the following
well-known fact of which we shall make extensive use throughout the
paper:

Lremma 1. A locally compact and bounded commutative ring with unit is
totally disconnected and has a fundamental system of neighbourhoods of 0
consisting of compact open ideals.

Proor. The ring is totally disconnected by [7, Theorem 1] as the unit
element cannot be a zero-divisor. It then follows from [5, Theorem 3.2]
that there is a fundamental system of neighbourhoods of 0 of compact
open groups. (The separability condition can be avoided simply by
using generalized sequences in lieu of countable ones.) The proof is
completed by [6, Lemma 9].

Proof of the topological part of Theorem 1: By the algebraic part of
the theorem the ring R is the algebraic direct product (sum) of a radical
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ring B and a ring with unit C. It follows from the remark on direct sums
(products) [7, p. 448] that R=B+C has the product topology. It is
then easily seen that both B and C are locally compact (in the relative
topology), that they are bounded (since multiplication is direct) and
satisfy property c¢ in the definition of K-rings. It is therefore sufficient,
by the associativity of the product topology, to prove the topological
part for a K-ring with unit. (Indeed, we shall limit ourselves to K-rings
with unit throughout the paper, remembering that full generality can
always be obtained by adding a radical ring.)

Suppose then, that R is a K-ring with unit. If, by Theorem 1, {e },.;
(I an index set) are the units of the quasi-local rings, the algebraic
isomorphism g is given by

aeR - {ae,},.;€]] Re, .
ael

We prove that g is a homeomorphism when [T, .;Re, has the proper
topology. If Re, is taken in its relative topology as a subspace of R
(or anyone less fine) then

9, a€ER > ae € Re,

is continuous by the continuity of multiplication in R. If therefore
I1,.;Re, is given the initial topology relative to the projections =z,
(the product topology), we have that =,og=¢, is continuous for all «
and g is continuous by [1, § 2, Prop. 4]. It remains to be proved that ¢
is open. (If R were compact this would follow from the Tychonoff
theorem and the fact that a map between compact Haussdorff spaces
is a homeomorphism). By Lemma 1 it is sufficient to prove that the set
g(4) = T 4e, = T[4 n Be,
ael ael

is open for all open ideals 4. Since by the definition of a K-ring R/4
has d.c.c. (property c), 4nRe, must equal Re, but for a finite number
of «’s. But then g(4) is open in the product topology when each factor
is taken in the topology induced from R(or finer).

In the remainder of the paper we shall study in greater detail the struc-
ture and properties of K-rings. We drop the word ‘‘commutative’ in
later connections, always assuming that the rings considered are com-
mutative. First we consider the role of property ¢. We have seen that
it is essential to the homeomorphism in Theorem 1. It also fits together
with the properties of products of locally compact spaces to give

TuroREM 2. The algebraic direct product of K-rings with unit, whereof
all but a finite number are compact, is itself a K-ring (with unit) in the
product topology.
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Proor. The product is locally compact by [1, § 9, Prop. 14]. By
Lemma 1, each factor has a topology defined by ideals. A fundamental
system of neighbourhoods of 0 in the product then consists of products
of finite numbers of (factor) ideals and full rings. As these products are
ideals in the product ring this ring is bounded. As the factors of these
products are full rings except a finite number, we see that the product
ring has property c.

The converse of this theorem is also true. The property of being a
K-ring is inherited by the factors of the decomposition given in Theo-
rem 1.

THEOREM 3. 4 K-ring with unit, R, us the direct product of quasi-local
K-rings. All of these, but a finite number, are compact.

Proor. We know by Theorem 1 that R is the direct product, in the
topological sense, of ideals in R with the topology induced from E.
We know [1, § 9, Prop. 14] that the factors are locally compact in this
topology and that all but a finite number are compact. By Lemma 1
R has a fundamental system of neighbourhoods of 0 consisting of ideals.
This property is obviously inherited by any ideal in R in its relative
topology, in particular by each factor, and it easily follows that the fac-
tors are bounded in their relative topology.

Now, suppose I is a factor ideal in R, and let {4,},.; be a descending
chain of ideals in I (they are also ideals in R since I is a factor in R)
which all contain the open ideal (in I’s relative topology) A =BnI where
B is an ideal open in R. Then {B+4,},-, is a chain of ideals in E which
breaks off by property c, say at B+ Ay. It follows by the modular law
that for all >N we have

= In(AN+B) = AN+(IﬂB) = AN'
Thus I has property c.

As mentioned in the introduction, the class of K-rings includes all
compact and Artin rings. And we easily find a large class of K-rings
which are neither compact nor Artin, namely any direct sum (product)
of a (non-Artin) compact ring and an (infinite) Artin ring. It turns out
that this exhausts the possibilities.

THEOREM 4. A non-discrete, quasi-local K-ring ts compact.

Proor. Let R be the ring. By Lemma 1, R has a fundamental system
of neighbourhoods of 0 of compact ideals. If R is non-discrete, there
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exists a compact ideal 4 and an open (and compact) ideal B+ A4 such
that B A. The residue classes of 4 mod B is an open covering of 4
by disjunct sets, thus finite in number since 4 is compact. That is, 4/B
is finite. We show that the field R/M, where M is the unique maximal
ideal in R, has not more elements than A/B which proves that it is finite.
Suppose a,b € R and that a=b mod M. For any x € An [B we then have
axz=bx mod B. For if not, that is, if (¢ —b)x € B, we would have

z = (@a—b)l(a-bxe B,

since a—b ¢ M and is a unit and B is an ideal. This is impossible.

The residue class ring B=R/A has d.c.c. since R has the property c.
The maximal ideal in R is M=M|A and R/M=R|A[M|A~R|M and
therefore finite. R is noetherian, thus

() i = {0}

sz1
by [10, IV, § 7, Theorem 12], and as R has d.c.c. it follows that there
exists an integer s such that M*={0}. Using Lemma 4 from [9] s—1
times we derive that B/M¢=R is finite. This means that R is a finite
union of compact sets and therefore compact.

THEOREM 5. A ring with unit ts a K-ring if and only if it is the direct
product of compact rings and a finite number of local Artin rings.

Proor. The “if” part is seen directly or from Theorem 2. The “only if”’
part follows immediately from Theorems 3 and 4.

CoroLLARY. Any K-ring with unit is the direct sum (product) of an
Artin ring and a compact ring.

3. 1st axiom of countability.

In [6] Kaplansky gives an example of a compact quasi-local, non-local
ring. The possibilities of constructing such rings are limited by [6,
Theorem 20] which states that a quasi-local compact ring in which the
second power of the radical is open, is local and has the radical topology.
Another condition with “localizing” effect is the lst axiom of count-
ability.

LeMMA 2. In a K-ring with unit the radical topology is equal to or finer
than the topology of the ring.

Proor. If R is the ring and N the radical (the intersection of the
maximal ideals) we have by the same reasoning with respect to N as
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in the proof of Theorem 4 with respect to M that, if 4 is an open ideal,
then N¢= {0} for suitable s, that is, N*c A. It then follows from Lemma 1
that every open neighbourhood of 0 contains a power of the radical.

THEOREM 6. A quasi-local K-ring R which satisfies 1st axiom of count-
ability is local.

Prror. If R is discrete, there is nothing to prove. If not, it is compact
by Theorem 4. Using Lemma 1 we see that its maximal ideal M is open,
hence closed and compact. Since M x M is compact in R x R it follows
by the continuity of multiplication that M2 is compact and by induction
that M* is compact for all s. Since R is complete, this and Lemma 2
show that the premises of [1, Ch. I, § 3, Prop. 7] are satisfied and it
follows that R is complete in its radical topology. It then follows from
[8, Theorem 31.1] that, if I is an index set of the same cardinality as a
set of generators for the maximal ideal, then R is isomorphic to a ring
of formal power series in the entities {X,},.; with coefficients from a
complete local ring.

We show that I is a finite set. The theorem then follows from [4,
Theorem 3]. .

Let {4,},., be a decending chain of ideals which form a fundamental
system of neighbourhoods of zero. R/A4, is finite since R is compact.
Furthermore, we have for all n, that if X, X, ¢ 4, and X,+X,, then
X,%=X,mod 4,. (There are no relations between the X,’s.) This implies
that for all » the number of X,’s in (4, must be finite. Accordingly,
the series {c,},-, where

Cn = Z X,
Xa¢dp
is well defined and we easily see that it is a Cauchy-series which con-
verges towards the sum of all the entities X, This sum, however, is

homogeneous of 1st degree and is a formal power series only if it is finite.
Thus I must be finite.

4. Noetherian K-rings.

Theorem 20 [6] entails that if a compact quasi-local K-ring has the
radical topology it is local. We shall prove a kind of converse to this,
namely that a noetherian K-ring has natural topology. In doing this
we shall follow a line of proof which is independent of Theorem 1 and
its analogue for compact rings [6, Theorem 17]. This will also lead to a
determination of the structure of noetherian K-rings based on Lemma 1
alone. (Using Theorem 1 and its consequences, we can prove the results
in this section rather easily.) Finally, we shall make clear the interrela-
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tions between a.c.c., radical topology and lst axiom of countability in a
K-ring with unit.
We start with showing the significance of property ¢ in a noetherian ring.

LemMma 3. A noetherian topological ring R has the property c if and only
if every open prime ideal 1s maximal.

Proor. Suppose every open prime ideal in R is maximal and let 4 be
any open ideal. Every prime ideal containing 4 is open (a group with
an inner point is open), thus maximal. This means that every prime ideal
in R[4 is maximal and R[4 has d.c.c. by [10, IV, § 2, Theorem 2]. Con-
versely, suppose R has property ¢ and let P be any open prime ideal.
For some maximal ideal M, we have P< M and by [10, IV, § 7, Theorem
12'],

(\P+Me=P.

821
By property ¢ then, P+ M3< P, M*< P for some s. Since P is prime and
M maximal, we have that P=M.

Lemma 4. If A and B are ideals in a ring R with unit, if A is compact
and B finitely generated, then the ideal AB is compact.

Proor. Say b,,b,,...,b, generate B. Then
AB = A(Rb,+Rby+ ...+ Rb,) = Ab;+ Aby+ ... + 4b, .
which is compact being the continuous image of a compact set.

LemMmA 5. In a locally compact and bounded noetherian ring R, the
radical is open.

Proor. The theorem is proved if we can prove the existence of a com-
pact open ideal A such that N,,;4%={0}. It then follows that the filter
base {4%},.; has 0 as its unique point of adherence (the ideals A¢ are
all closed by Lemma 4 and induction) and therefore converges to 0 by
[1, § 9, Corollary of Theorem 1]. Being a locally compact group, R is
complete [2, § 3, Prop. 4] and we deduce from [6, Theorem 12] that the
open ideal 4 is contained in the radical, hence the radical is open.

Assume therefore, that N, 4%+ {0} for all compact open ideals 4.
This means, [10, IV: § 7, Theorem 12 and § 6, Theorem 11, Corollary 3]
that

1+4)nUP+o
Pe$p

for all compact open ideals A when P is the set of associated prime
ideals of 0. Using Lemma 1 we derive that
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1<5UP=UI—5

Pep PeB
(0 has a finite number of associated prime ideals) and thus 1€ P for
some P. Now, if B is some compact open ideal we have

B = BP < BP = BP

implies, since B is open, that P is open and closed. Hence P=P
which is impossible.

by the continuity of multiplication and Lemma 4. But B BPcP
=R

THOEREM 7. A noetherian K-ring is semi-local and the topology is the
radical topology.

Proor. Let R be the ring and N its radical. By Lemma 5 N is open
and it follows by Lemma 3 that N’s associated prime ideals P,, P,,...,P

n
are maximal. As R is noetherian N contains some power of its radical

3
W1, 887 (p np,...aP) = (Py-P,....P)y < N.

For any maximal ideal M then, it follows since M is prime and since N

is contained in every maximal ideal that P,< M for some¢,¢:=1,2,...,n.
Then, since P; is maximal, M =P;. Hence all the maximal ideals in R
are among the P;, 1=1,2,...,n, and R is semi-local.

It remains to be shown that the topology in R is the radical topology.
By Lemma 2 it is sufficient to prove that R’s topology is finer than the
radical one. Let 4 be a compact open ideal contained in N with N®c A4
(Lemma 2) and let B be the closure of N*. For all s, we have

N%s c B®* < N°.

Thus the family {B¢},., form a fundamental system of neighbourhoods
of 0 for the radical topology of R. Hence B< 4 is compact, and it follows
by Lemma 4 and induction that B¢ is closed for all s. The ring R/BS,
therefore, is Hausdorff in its quotient topology for all s. We shall prove
that for all s, R/Bs is discrete, thus B® open which completes the proof.

For all s, since B*2 N®* the associated prime ideals of B® are the
maximal ideals in R and R/B® has d.c.c. by [10, IV, § 2, Theorem 2].
In its quotient topology, R/B* has a fundamental system of neighbour-
hoods of 0 consiting of ideals, viz. the images of the open ideals in R
containing Bs. Being Hausdorff, it follows by considering a maximal
descending chain of open ideals that it is discrete.

As locally compact groups are complete [2, § 3, Prop. 4] we can apply

a theorem of Chevalley [3, Prop. 2] to get the structure of noetherian
K -rings,
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THEOREM 8. A noetherian K-ring R isthe finite direct product of local rings.

Proor. It follows from Theorem 7 and the theorem of Chevalley
that R has orthogonal idempotents e;, 1=1,2,...,n, such that R=
Re; + Rey+ . . . + Re,.

The 1st axiom of countability and the condition that a K-ring has its
radical topology can now be related to the property of being noetherian:

THEOREM 9. In a K-ring, R, with unit the following conditions are
equivalent.
1) The ring has a.c.c.
2) The topology in the ring is the radical topology.
3) The topology in the ring satisfies 1st axiom of countability and the
radical 18 open.

Proor. We prove that 1) => 2) => 3) => 1). As 1) = 2) is a part of
Theorem 7 and 2) = 3) is trivial since neighbourhoods are translated
from 0, we only consider the implication 3) => 1).

By Theorem 3, a K-ring is the direct product of quasi-local K-rings
and the topology is the product topology. If this topology satisfies 1st
axiom of countability each factor in the product must satisfy the count-
ability condition and is noetherian by Theorem 6. Further the product
must be finte, for if not, the descending chain of ideals {4,},.,, where

A, = ﬂ M,;, M, maximalidealin R,

i=1
would not break off in contradiction with property ¢ (in the definition
of a K-ring) and the fact that the radical is contained in 4, for all =.
Being a finite product of noetherian rings, R is noetherian.
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