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MATRIX THEOREMS FOR PARTIAL DIFFERENTIAL
AND DIFFERENCE EQUATIONS

JOHN MILLER and GILBERT STRANG

We want to reexamine the Cauchy problem for systems with constant
coefficients, together with the matrix questions which arise after a
Fourier transformation. Our main results are in fact purely matrix-
theoretic, so that after motivating those results in the following para-
graphs, we hardly need to mention partial differential equations again.
We do hope, however, that our ideas will prove to be useful locally in
studying certain systems with variable coefficients; such an application
will of course require a much fuller discussion of differential operators.

After Fourier transformation, a linear Cauchy problem for a constant-
coefficient system of first order in time looks like

o
(1) = = Pl 2,0 = f),
where w = (wy,. ..,04), &= (8(w,?),...,%,(w,t)), and the m x m matrix P

is the symbol of the given d'fferential operator. To stay within the
framework of the Fourier transform, we study (1) in the Hilbert spaces
Ly(H), normed by

2) ullly = f (H(w) w), Aw)) do .
R4
Here H is a measurable Hermitian matrix function, normalized by the

requirement H 2 I, that is, H —I shall be non-negative definite.
Let us call (1) well posed over L,(H) provided that for some «,

(3) lu@lg = lleP“fllg < elifla
for all ¢>0 and all initial data f. Substituting into (2), this can be made
more explicit:
(4) eP*@t H(w) eP@! < e H(w) .
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Differentiating at t=0, we come to a still simpler equivalent condition;
for almost all w,
(5) H(w)P(w)+ P*w)H(w) = 20 H(w) .

(To recover (4), post-multiply by exp(P(w)—«)¢, pre-multiply by its ad-
joint, and integrate.)

Our definition (3) is stronger than the usual one, which permits a
constant factor M on the right side. Nothing is changed, however, since
if (1) is well-posed in this weaker sense with respect to L,(H,), there is
an H, equivalent to H; uniformly in w, such that (3) holds on L,(H,).
We shall point out later how this follows from Theorem IIT; in fact, it is
the chief result of the Kreiss theorems, which our work extends.

A simple example will illustrate the problem we solve here. Consider

the system
o g(-Cozl) (-0 ==
dfy

which has the solution
(7 uy(t) = fi, fz+t—

Because of the derivative in u,, we may choose f e L,= L,(I) such that
u & L,, and the system (6) fails to be well-posed over L,. Nevertheless,
with respect to the larger norm

) i = [ (it + T ) s = f((“;“’ }) i), 80)) o

we no longer lose a derivative, and (6) becomes well-posed. In fact,
condition (5) reduces in this case to

@ (7570 (o) (0 07) (57)

_(0 —iw)<(1+w2 0)
T \iw O = 0o 1/°

This gives the precise value x=%:

(10 lu@)llz = e¥[1fllg -

What we want is to associate with more general systems such a canonical
subspace, namely the largest Ly(H) over which the problem is well-posed.
Without the maximality requirement, this question has been treated
independently by Birkhoff and others (see [1]).
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It is no trouble to bound the possible values of « from below. If some
P(w) has the eigenvalue 4 with eigenvector v, we must have from (5) that

((HP+P*H),v) £ 20(Ho,v),

which yields
, Rel £ «.
Therefore « is not less than
(11) o = esssup sup Red;(P(w)),
@ J

and we must impose on the symbol P the Petrowsky—Gdrding condition
o< oo, Subtracting a constant multiple of the identity, we shall in fact
suppose ¢ <0. Now fixing « =0, there is no doubt that we can construct
H(w) to satisfy (5). The delicate problem is to keep H as small as pos-
sible; this we achieve, up to a constant K’ depending only on the order
m, in Theorem III. The corresponding space L,(H) is consequently
maximal; if (1) is also well-posed over L,(H'), then

(12) we LyH') = ue Ly(H) and |lully < K'(m) ullz.

The theory of partial difference operators leads to a closely related
matrix problem. In place of (1) we have

(13) Ww,t+k, k) = Ay(0)Uw,t,k), Bw,0,k) = f(o).

Without discussing such systems fully, we recall that the 4, are known
as amplification matrices, and that the time-step k ranges over some
interval 0 <k <k, The analogue of (5), equivalent to the condition (3)
on Ly(H,), is simply

(14) A (w) Hi(w) A(w) £ e2* Hi(w) .

The exponent « is to be independent of k, and again there is a lower
bound, namely

log|4,(A4
(15) o' = esssup supw .
@ Ik k

Therefore we impose on (13) the von Neumann condition ¢’ <co. By a
simple manipulation, we may achieve ¢’ <0 and fix x=0 as before.
Thus our two matrix problems can be very concisely stated: given suit-
able P and A, to construct two corresponding matrices H21 as small as
possible so that

HP+P*H £ 0 and A*HA = H,

respectively. Since the second problem is perhaps the more familiar,
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and its solution leads to a solution of the first, it will be treated in full
detail. We need the definitions

o] = (ln/*+ ... +vg/?)t,  |4] = sup |[dv],  o(4) = max [4,(4)| .
Jol=1 1=jsm
TrEOREM I. For a suitable constant K(m), depending only on the order
m of the matrix A, each of the following statements implies the next:

(i) A*HA £ H for some H 21 with (Hv,v)}=C(v) for |v|=1.

(ii) |84 8- =1 for some S with |8~ =1 and |Sv|=C(v) for |v|=1.
(iii) |4Amv| = Cw) for all n20 and |v|=1.
(iv) |(zI —A4)1v| = C(v)/(|z| — 1) for all complex |z| >1 and all |v|=1.
(v) A*HA < }(1+0(A))*H £ H for some H 2 I with (Hv,v)* < K(m)C(v)

Jor all |v|=1.

This theorem is very close to one originally proved by Kreiss [4], and
studied subsequently by Morton [8] and Morton and Schechter [9]. We
ought to emphasize that although these authors discuss families of ma-
trices, their results are really quantitative versions (just as Theorem I is)
of an easy theorem about single matrices:

sup|4® < o <> |S48-1 =1 for some S.

nz0
The factor }(1+p(4))? is an embellishment which has proved useful in
applications, but the essential point is that in the circuit from (i) to (v),
only a factor K(m) is lost at the last step. We should clarify those respects
in which this conclusion is new:

a) The previous estimates in (v), established by induction on m, had
a power of CP?™ in place of C, with p(m) - oo as m — co. Our improve-
ment becomes important when C is not uniformly bounded with respect
to w, that is, (13) is not stable in the Lax—Richtmyer sense over L,.

b) We estimate the action of H on each vector v, where earlier there
appeared only the single constant C'=supC(v). It follows that the H
in (v) is minimal in a stronger sense than just in norm: if H'>1 and
A*H'A<H', then H=<K*m)H': For the proof, we simply set C(v)=
(H'v,v)}, and go from (i) to (v); the parallel argument in the exponential
case yields (12).

¢) We shall prove (iv) = (v) by the explicit construction (from the
elements and eigenvalues of 4) of a suitable matrix H, which possesses
the following additional property:

For some S with 8*S=H, A’ =84 8-1 is upper triangular, with A;;=0
unless A; and A; are in the same cluster (see below), and |4y <
#(1 —max(|4,],]4;])) whenever ¢ +j.
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A trivial modification of S replaces this constant } by any other,
say 1/2m, so that the absolute row and column sums (the /, and [, norms
of A) may also be reduced to }(1+po(4)).

It remains to determine the behavior of the best constant K(m).
Our constant (which we don’t compute) grows roughly like m™, while
examples of McCarthy and Schwartz [6] show that it must grow at
least as fast as some power of log m; this leaves a wide gap. It is not
surprising that K(m) — o in view of the Foguel-Halmos counterexamples
[2], [3] to the Nagy conjecture.

2.

In this section we establish the first three implications in Theorem I.
These are easy steps, valid also for operators on Hilbert space.
With H=_8*8, the equivalence of (i) and (ii) follows from that of the
inequalities
(A4*H Av,v) £ (Hv,v) forallv,
[S4v|? = |Sv|? forallv,
|ISAS8-w|? < |w|? for all w.

In the applications, (ii) corresponds to a change of variables and (i) to
a new norm. In one respect the use of H is to be preferred; it may depend
more smoothly on some relevant parameters than does an improperly
chosen 8. The positive square root S=H?* is as smooth as H, but a
diagonalizing S may not be, although the latter change of variables
looks especially desirable. Mizohata [7] points out how this possibility
can arise, when d =2, from the multiple-connectedness of the unit circle
in R?; there is no difficulty in his context with H.
To show that (ii) implies (iii), we compute

(16) [Am| = |S-1(SAS-Y)» Sy| < |81 |SAS-L* |Sv| £ C(v).
Finally, given (iii), we have for |z|>1

x A™ < ® C(v) C(v) .

(17) eI —A) | = | 3 ——
0%

3.

Before coming to the final step in Theorem I, we warm up with a
more special result of the same kind, which shows how the geometry of
the eigenvalues enters the problem.

TurorEM II. Suppose the resolvent condition (iv) holds, and the eigen-
values of A satisfy
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(18) 0lA;—2;l = 1—|4)]  for all distinct 1,5 .
Then A*H A <% A)H < H for some H 2 I with

(Hv,v)} £ m(2+4md)(1 + 28)*m-3C(v)

for |v|=1. Furthermore, there exists S such that H=8*8 and SAS-! is
dragonal.

Proor. From (iv) it is clear that no eigenvalue lies outside the unit
circle, 8o p(4) < 1. Although (18) admits repeated eigenvalues of modulus
one, suppose for the present that the eigenvalues are distinct. Then we
construct the projections

[—
II/\

A-2
(19) L,=T1I 2 i<m.
J¥i lt“lj
Applying L; to the eigenvectors v,,. . .,v,, we find L;v;=4,v;, so there
are the standard identities

(20) L,iz = Li’ L,,:Lj = 0 fOI‘ 'i=|=j
(21) ) S ) ZL,‘ = I, zAiLi = A .
1 1 -

Now define the Hermitian matrix H by
(22) : =m Z L*L;.
From (20) and (21) we have
A*HA =3 IILJ*'”‘ 2LXL 3 Ly =m3 |42L* Ly < 0% A)H
To prove H 2 I we need only (21) and the Schwarz inequality:

(24) [l = |Z Lw|* £ (T |[Lp))? £ m X |Lw|* = (Ho,v).
From (22),
(25) (Hv,v) £ m? max|Lw|?

and the crucial estimate is that of |L,v|. We use the resolvent condition
in the most natural way, by expanding

(26) L,‘ = kz bik(zkl“A)—l .
’ -]

We shall choose 2, =1/4,; if |4;| is 0 or 1, then it is no longer true that
1<|z] < oo, and a simple limiting argument is required in what follows
To compute the b, apply (26) to the eigenvectors; for each ¢,
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(27) Oy = Dbyt —2), 1sjsm.

k=1
Solving this system, we get

1bad 1=
28) — = 1+l ——F%
‘ -1 e
and, for k=71,

[ 1= |4 =T o 11— 2] |1 = Ly
(29) = (L+|2))(1+|4) -
=1 = DD G e—at L -4 =3
For any distinct ¢ and j,
1-72 Il |

30 It ’ <1+26.

Putting the pieces together,

(31) |Lw| £ 3 byl |(2p] —A) 2|
byl C(v)
- 2 |2 — 1
< [2(1+268)2m-24 (m — 1) 40 (1 + 26)>™-3]C(v) .

Simplifying the last term and using (25),
(32) (Hv,v)t £ m(2+4md)(1+ 20)*m-3C(v) .

'To complete the theorem, we introduce the left (row) eigenvectors 7y,
so that
(33) A'UJ- = Zj'vj, TkA = lk’rk .
Multiplying the first by r, and the second by v;, there is the familiar
biorthogonality condition

(34) rv; = (0) for j+k.

Since v; cannot be orthogonal also to 7;, we may fix the eigenvectors
by the normalization

(35) mly? =1 and ry;=(1), 15jsm.
It follows that
(36) Li = VT4

since both sides, applied to v;, give d;;v;.
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Now let the rows of § be »,...,r,, so that SAS-! is diagonal. By
matrix multiplication

71 m
(37) S*8 = (r*.. .rm*)(f ) = Y r*r;.
T 1
Using (35) and (36), this is precisely
(38) 2ri*moFv)r; =m3 L*L, = H.
1

Finally, we have to return and admit eigenvalues 4; of modulus one
and multiplicity M >1. From the resolvent condition (iv), A; possesses
M linearly independent corresponding eigenvectors; to prove this, one
puts 4 in Jordan form to compute the resolvent (2 —A4)-1, and then
lets z approach A;. The eigenvectors may still be chosen to satisfy (34).

Let us number the eigenvalues so that 4,,...,4y are distinct, and the
rest are duplicates of these. Then instead of (19) we want

N o4}

(39) L, =TI, i=1,..,N.
i1 A=y
J*i

Simply replacing m by N in all the equations (20) to (32), the first part
of the proof continues to hold. In place of (35) and (36), we have
N v, =1 and r; = (1), 15jsm,
Li = 'vilr,;1+ ces +viMTiM s

where ;,,. . .,4,,, are the appearances of the eigenvalue 4;. Then we may
once more identify

m m N
(40) S*S = 2 ’l‘i*ri = Z r,i* (N'U,t*v.t)ri = N z L‘i*L’i = H .
1 1 1

To bound the “condition number” »=|8||S-| in diagonalizing more
general matrices B, we may set A =B[|B| and C(v)=1. Then the condi-
tion on the eigenvalues u; of B becomes

Olus—pyl 2 |B|—|uyl for iy .
The resulting estimate v <m(2+ 4md)(1+ 26)?™-3 can be improved by
looking more closely at our proof.
Theorem II suggests that the proper measure of distance between
eigenvalues involves the ratios (1—|4;)/|4;—4;/. When these are small,
we may safely diagonalize. For poorly separated eigenvalues, however,
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Theorem I requires a new construction, which developed from the obser-
vation that H=33PA*"A" immediately yields A*HA < H.

4.

To complete the proof of Theorem I, it remains to show that (iv) im-
plies (v). From (iv) we know the eigenvalues satisfy |1;/<1; we shall
put them into clusters as Morton [8] has done. Into the cluster C; goes
an eigenvalue, say A,, of largest modulus, together with all others that
can be connected to 4; by a chain of eigenvalues, each link having length
less than (1—|4,|)/4m. The cluster C, is formed in the same way from
the remaining eigenvalues, and so on until every eigenvalue enters one
of the clusters Cy,...,C,. Of course r <m; when r=m, our basic con-
structions coincide with those in Theorem II. An eigenvalue of modulus
one and multiplicity M appears alone in M clusters.

Let 4, be the eigenvalue of largest modulus in C, from which the
cluster was formed. Then since each 4, € C, is connected to 1, by a
chain with fewer than m links,
1-|4,| _ 1-13,]

= .

am 4

(41) 14— 4, = (m—1)

In fact, the point of constructing the clusters is to achieve

1—4;
@ A s o -kl v - )

according as A; and A; are in the same cluster or not; the computation of
y can be copied from [8].
Let us suppose that

(43) o(4) <1 and ;%4 for i4j,

and remove this hypothesis later by a continuity argument.

We want to associate with each cluster several matrices from which
to construct H. Recalling the projections L; defined in (19), let
2(4;—4,)

=[]

summing over the indices ¢ such that A, € C,. Define

(44) Io; = ZLi, Aa = EL;Iq, Ba = Z

o0

(45) H,=I1*I,+ 3 BX"B).
1

-9

From (20), I, acts like the identity relative to C,, and matrices associated
with different clusters are orthogonal. In particular, we write down
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) I}=1, IB,=B, LA, =4,
I,Ap = BjAg = H,A4; =0, «%f.

From the definitions it follows that

(47) A, =21, +3(1-2,)B,

(48) I*H I, =H,, B*H,B,=H,-I*I,<H,.
Then from the appropriate triangle inequality

(49) AXH, A, < (14]+31-14,D)*H, £ H1+e(4))*H, .

From (21) we see at once that

r r
(50) SI, =1, >A,=4
1 1
Now the matrix we want is just
r
(1) H=m3YH,.
1

Combining the last three equations with (46),

(62) AXHA =3 A*m I H, > A, =mYA*H, A, < }(1+0(4))2H .
To see that H = I we use the Schwarz inequality to compute

2Ly
1

The essential problem is to bound

2

(53) ]2 = Sr3|p2 s m3 (Hpv) = (Hv,v).

(54) (Hv,v) = m Y (|Ia12|3+i: |Banv|2) .

There are two means of carrying out this estimate. Conceptually, the
simplest possible approach is to expand I, and B,* as sums of resolvents,
just as L, was expanded in (26), and then apply (iv). This leads to the
best self-contained proof of our result, and the details (which involve a
good deal of algebraic manipulation) will appear elsewhere. Here we
adopt a more economical alternative; with some minor refinements, the
estimates we need can be lifted from those made by Morton [8]. We
denote his epuations by an added asterisk.
Morton’s final result is

(65) (iv) = |A™| £ K,(m)supC(v),

but his proof works without requiring the supremum on the right side,
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by noticing the action on each v in (13*)-(16*) and (18*). Furthermore,
his estimate of A™v is found precisely by bounding the contribution from
each cluster; thus when n=0, that is, =0 in (18%),

(56) L] £ Ky(m) C(v)
and also when n >0,
(67) |4, = Ky(m) C(v) .

Now we introduce one more matrix associated with C,:

(58) D,=A4,+41-1).

From the identities (46), we know

(59) Dr=Ar+AMI-1,), n>0.
According to (56) and (57),

(60) D, w| £ K4(m) C(w), n20.
Then the implication (iii) = (iv) gives -

(61) A |(zI —D,)"W| < —IS:%Z)TCI’-(—U—) . l2>1.

Manipulating with the definitions, we find

(62) (2I-B,)7" = {1-[ANEL-D)7, 2z, = A+ 31-14)z2.

Let 2 lie on the circle Z, of radius 1 about the point 44,/|4,| (or 4, if
4,=0). The minimum of |z,| on this circle occurs when z is closest to
the origin, and an easy computation gives : '

(63) Izal -1z %(1 - M’al)’ Z on Za .
Thus it follows from (61)-(63) that
(64) |(2I —B,)"'v| £ K4(m)C(v), =zon Z,.
From (44), the eigenvalues u, of B, are
2(A;=4
(65) My = ‘h—a‘) el =0, 4,¢0,.

1-14, °
Applying (41), all these eigenvalues satisfy
(66) gl = .

Using only (64) and (66), we will obtain the required bound (70); this
result may have some independent interest. Looking a second time at
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Morton’s argument, we put all the u, into one cluster, so his X =1.
Denoting by D? a divided difference formed at some p+1 of the points
Mq, (11*) becomes

(67) |DP(2")] = mP(3) 7.

To bound P(z)v=(zI —B,)TI(z—pu;)v on Z,, we have only to multiply
the estimate (64) by 6™. Then because P is actually a polynomial of
degree less than m, we conclude (from Cauchy’s formula as in (14*)—(16%*),
or otherwise) that its differences are bounded in the same way:

(68) IDYP())| < Kyfm) C(v) .

As in (4*), B *v is just the divided difference of order m —1 of the
product z"P(z)v formed at the u;. Constructing a Leibniz rule, this
divided difference is the sum of 2™-1 products, each bounded by

(69) |DP(zr) Dm=2=1(P(2)v)| < n™1(3)"Ky(m) C(v) .
Consequently
(70) |B,"v| = n™=1(3)" Ke(m) O(v) .

Substituting (70) and (56) into (54), the infinite series converges to give
the final estimate
(71) (Hv,v)* £ K(m) C(v).

We still have to eliminate the hypothesis (43). It is easy to choose M
(after triangularizing A4, for example) so that

A, = (1-¢)A+e&M
satisfies (43) as ¢ > 0,. Then for |[v|=1 it follows from (iv) that

C(v) . [ Cl) C
———'— £ min , -
|2] = (1 —¢) (lzl—l e)

(72) (I = (1=£)4) 10 <

IA

for |z| > 1, where C=supC(v). (The uniform boundedness theorem ap-
plied to (iv) assures that C(v) can be reduced if necessary so that C < oo.)
Therefore

(73)  |(=I—-4,)W| = § [2(2] — (1 —¢)A) 1 M (2] — (1 —e)A)v
0

1 C(v)
= .
1—¢eC|M| |2|-1

Since (43) holds for 4,, there is an H,>1 with

K(m) C
(14)  AXHA, S H1+oA))H:  (Hyol s = Y:)OIJ(WUI)
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As ¢ 0, some subsequence of H, converges by compactness to an
Hz1I, and taking the limit in (74) gives (v).

5.

In this section, we establish the italicized statement about S which
follows Theorem I. Again we start by assuming (43), and we recall the
left eigenvectors r; defined in (33). Suppose we now number the eigen-
values in the order that they fall into clusters, and let C; contain
A,...,A. We want to prove that H,=.S8,*8,, where the first ¢ rows of
8, are linear combinations of r4,. . .,r,, and the other m —q rows are zero.
From the definition (45),

(75) Hyv, =0 for k>q, rank(H,)=gq.

Writing H,t for the non-negative definite square root,

(76) |Htvg|2 = (Hyvp,v,) = 0 for k>q.

By (34), 4,. . .,r, span the orthogonal complement of the space generated
by vg415- « -sUm. Therefore each row of H,t is a combination of r,,...,r,.
Let V be the space spanned by the columns of H,*. We construct ortho-
normal bases u;,...,%, and %gy;,. .., %, for V and V*. Taking the u,; as

the rows of a unitary matrix U,, we have shown that S;=U,H;* has
the required properties; of course

8*8, = H}U*U,Hj} = H, .

For every C,, we construct in the same way an S, satisfying H =
8,*8,; row j of 8, is non-zero if and only if A; € C,. Then defining
S=mt 3 8, and recalling the multiplication rule (37), we have 8*S=H.

Let A=SA 8-. Since the first row of § is by construction a combina-
tion of ry,...,r,, and r 4 =4;r;, the same is true of the first row of SA.
This must coincide with the first row of A4S, which is a combination with
weights A;; of the rows of §. The first ¢ rows of § contribute a combina-
tion of ry,...,r,, and the last m —q a combination of r¢.4,...,7,. By the
linear independence of the 7, the latter contribution is zero; then because
the rows of S are independent, 4,;=0 for j >g¢. In the same way, Ay;=0
whenever A; and A; are in different clusters. Therefore

i=| - |,
0 A4,
the square block 4, on the diagonal corresponding to the cluster C,.
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With a final unitary similarity U of the same block form, we triangularize
each A, separately. Thus with S=US, we have H=8*3, and 4'=
S A 8-1 has the required (triangular, block diagonal) form.

We have still to estimate the off-diagonal entries of 4’. Denoting by a
prime the result of applying the similarity S, we conclude from the
reasoning of the previous paragraph that 4., I,’, B,’, and L;, ;€ C,,
all have zero entries outside block «. Since I, is the sum of the right
number of mutually orthogonal projections L;’, we know that I, is just
the identity matrix in its block. Therefore by (47) the off-diagonal
entries are introduced through B,’. According to (48), |B,’| <1, and the
same must be true of all its entries. Then the off-diagonal entries of 4,’
are bounded by

HI-IAD) S M1-IA), AeC,.

Again we must circumvent (43). Recall that the sequence 4, - 4 led
to a subsequence H, - H; for each H, we have seen how to construct
8,, and taking a further subsequence, we get S, > S, where S*S=H.
Unless (43) is violated by a repeated eigenvalue of modulus one, the
clusters for 4, and 4 coincide for small . Therefore the limit matrix S
gives an A’=_8A48-! with the right properties. In case A has a repeated
eigenvalue with |4;| =1, we still know 4’ is upper triangular and |4'|=1;
but from this the off-diagonal entries in the rows containing 4; must
vanish, and once more 4’ is all right.

An alternative construction of S, leading to a more computational
argument than we have given in this section, can be derived from the
formula

(1M H, ="§°(Z ALY (3 py Ly =,2.b (X 8 L*) (3 umLy)
=2 (=)t L* Ly,

summing over the projections corresponding to eigenvalues in C,.
It is worth remarking that in (v), H and S cannot be made continuous
functions of 4. The family

17
4, = (60 blil) , y real ,

satisfies (iv) with some C(v) independent of y. Since the eigenvalues of
4, have modulus one, 4, must be diagonal with respect to H, to satisfy
A*H,A <H, However, one of the eigenvectors of 4, is discontinuous
at y =0, from which one easily verifies that H. , 18 too.
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6.
With the definitions

(78) 7(P) = max Rel;(P), ReP = P+ P¥),
we can state the analogues of Theorems I and II for the exponential case.

TarEorEM III. For a suitable K'(m) depending only on the order m of
the matrix P, each of the following statements implies the next:

(') HP+P*H 20 for some H 2 I with (Hv,v)=C(v) for |v|=1.
(ii') ReSPS-1<0 for some S with |S-| =1 and |Sv|=C(v) for |v|=1.
(iii") |ePtv| £ C(v) for all t20 and |v|=1.

(iv') |(zI —P)~tv| £C(v)/Rez for Rez>0 and |v|=1.

(v'y HP+P*H < v(P)HZ0 for some Hz1 with (Hv,v)*<K'(m)C(v)

for jv|=1.

THEOREM IV. Suppose (iv') holds, and the eigenvalues of P satisfy

(79) 0|A;—2;1 2 —Reld; for all distinct 4,5 .
Then

HP+P*H < 2¢(P)H

IIA

0
for some H =1 with

(Hv,v)} £ m(2+4md)(1+26)*-3C(v)  for |v|=1.
Furthermore, there exists S such that H=8*S and SAS-! is diagonal.

Before discussing the proofs, we redeem our earlier promise to apply
Theorem III to a system which is well-posed over Ly(H,) in the weaker
sense

@)z, S Me*|fllg, or e Hy(w) " < MPe™ Hy(w).

If we choose S so that S*S=H,, and set Q=38 (P —«l)8S-1, this becomes
simply
leQ(w)tl <M.
Because (iii’) = (v’), there is an H(w) such that
(80) HQ+Q*H 20, I<HZEZ (K'(mM)3?I.
Substituting back for @, and setting H,=S8*H S, (80) is the same as
H,P+P*H, £ 20H,, H,<H,< K'(m)MH,.

Thus H,(w) provides an equivalent norm for L,(H,), and on Ly(H,) the
problem is well-posed in' the stricter sense that (5) holds, implying

“u(t)“H2 S eat ”f”Hg .
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Turning now to the proofs, Theorem IV goes almost exactly as Theo-
rem II did; one makes the choice 2, = — ; in (26), as in the original paper
by Kreiss [5], and recomputes (28)—(30).

The first three implications in Theorem III are also easy. With
H=_8*8, (i’) and (ii’) are equivalent as before. Then (i') = (iii’) just as
(5) = (4); we integrate the inequality

* d *
*OHP+ P*H)ef* = d—t(eP tHe) < 0
from 0 to ¢, to find
eF""He < H .
From the properties of H given in (i’), we have (iii’):

[ePtv|2 < (eP*tHePlw,v) £ (Hv,v) = C2(v).

The step (iii’) = (iv') involves the Laplace transform in place of the
power series in (17):

|(zI —P)~tv| = ’fe*z’e”v dtl (v)fe‘m‘”dt = C(v)/Rez .
0

The cluster C,’ is now formed by starting with an eigenvalue 4, of
largest real part (necessarily < 0 by (iv’)) and connecting to it those eigen-
values which can be reached with links of length less than —Rex,/4m.
Then Cy,...,C," are formed consecutively in the same way. In analogy
with (43) we may temporarily assume that

(81) ©(P) <0 and A;#4; for i%j,
and then remove this restriction as before. Now we can define

2(101 — }'t)

82 ~=SIL, P, = , -
( ) Ia z (2] « zliLt Ga z Rela

L,
summing over indices ¢ such that 1, € C,’. Next we let
(83) H,=I1*I,+>(@G*G,)", H=m3YH,.

1

From the orthogonality of the L,, it follows as usual that

(84) H, I +I*H,6 =2H,.
Obviously for n20
(85) (@G~ L)%, - L)(G)" 2 0

or in other words,
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(86) (G X)"(G)™+(GX)(G)™ £ (GG + (G (G,)

where (G,)° and (G,*)° are to be interpreted as I, and I *. Summing
(86) from 0 to oo,

(87) H,G,+G*H, < 2H
From (82) we have

(88) Pa = )'aI:x—' %Re}'u Ga »

so that (84) and (87) yield
(89) H, P, +P*H, < RerA,H, = ©(P)H, .

P

Summing on « and using orthogonality,
(90) HP+P*H £ «(P)H .

The inequality H =1 is (53), and we have now to estimate (Hv,v).
This time there are three possibilities. The first two—to expand I, and
G,™ as sums of resolvents, or to repeat the argument of Theorem I with
appropriate changes—would be safe but tedious. Therefore we shall try
to derive the estimate from Theorem I itself, using only some essential
remarks about its proof. In fact, we now give a complete proof of the
last step in Theorem III without using the H defined explicitly in (83),
and then identify the new H with that H.

For a given positive integer k, let w=e**, so that Rez>0 <> |w|> 1.
Then as in (73)

(01) |l —eP¥) Y| = k|2 — P+ Fy, )|

k|(zI — P)|
T 1= |=I-P)7|F} |
< C(v) 1
~ Rez[k 1-C|F, ,|[Rez

< 1 C(v)
= |w|—1 1-C|F} |[Rez’

where we used Rew < |e%|—1. Estimating the perturbation Fy ,,
(92) \Fial = kl(e% — 1 —2[k)I - (% — I — P[k)| = O(1]k)
as k - oo, uniformly for z in a compact set Z. If Rez>0 in Z, we have

C(v)
1 - O|F, ,|[Rez

We want to deduce from (91) that Morton’s result (55) holds for
Math. Scand. 18 — 9

- CO(w) as k- oo,

(93) Ci(v) = sup,
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A =eP’% in the strong form
(94) |ePn/ky| < K, (m) Cy(v) for nz0, lo]=1.

Then because (iii) implies (v), Theorem I will provide an explicit H, =1
such that
(95) (Hyw,v)t = K(m) Ky(m) Cy(v)
(96) eP*'kH eP/k < Y1+ 0(eP/*))2H,, = }(1+e"PVk)2H, .
As k — oo, some subsequence H x; converges to a limit H = I, with
(97) (Hv,v)} < K(m) K,(m) C(v) = K'(m) O(v) .
Expanding (96) in powers of k, subtracting H,, multiplying by k, and
taking the limit as k; — oo, we get
(98) HP+P*H < «(P)H .

All this is justified if, in proving (94) by applying Morton’s argument
to eP/k  we actually need the estimate (91) only for z in a compact set Z
(independent of k) in the right half-plane. It turns out that this is

indeed the case. Morton uses the resolvent condition only in the con-
tour integrations (14*), where w=e** lies on one of the circles with

(99) radius = §, = 1—e®%* < _Relfk,
' center = (1+ 20,)emialk

On this circle it is easy to bound 2z, independently of k, in terms of
Rel, and Im4,.

To make the identification H=H, we want to match the clusters C,’
derived from P with the clusters C, derived from eF/¥, k large. Clearly
1, of maximum real part corresponds to ¢’*’* of maximum modulus, and
also the ratios which arise in forming clusters satisfy

1 — |e*l®| Re4,

- - as k — oo .
dm |ehil* — ilk| am |A;— A

(100)

Therefore 4, € C,’ if and only if ¢%* € C,, k large, if we exclude eigen-

values of equal real part (which may make the choice of A, ambiguous)

and also exclude the possibility that the limiting ratio in (100) is one.
With these exceptions,

ek _ ghalk| 2(A,—Ay)
101 B =5S—"—_ . - @ =SN22_"%1
( ) « z 1 |e/1a/k| i « z Re}.a i

and H=limH,=H. In the excluded cases, as in the case when (81)
fails, the proper estimate for (Hv,v) follows by a continuity argument.
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Repeating the proof in Section 5, we can describe a further property
of H:

For some S with S*S=H, P'=8PS8-! is upper triangular, with
P;;=0 unless 4; and 4; are in the same cluster C,', and |Pj|<
3min (—Rel;, —ReA;) whenever ¢ +j.

There is one additional consequence of our method of proof which
is significant in the applications to partial differential equations: T'he
conclusions in (v) and (v') may be changed to

A*HA £ 3(2-0+09p(4))2H and HP+P*H < 0v(P)H,
where 0 <0 <2 and the constants K and K' depend on 0 as well as m.

For the proof, one divides our B, and G, by 2— 0, and alters the clus-
ters so that (66) will hold; then the few remaining changes are straight-
forward. It follows that our space L,(H), over which (1) is to be well-
posed, does not depend on the multiple of the identity which was sub-
tracted in order to make ¢ <0. In other words, the minimal renorming
families H(w) used to achieve (3) are equivalent for any two choices & > o.

7.

We want finally to extend Theorem I to apply to matrices such that
0(4)=1 but A" is unbounded; this occurs if and only if some eigenvalue
of modulus one has a non-simple elementary divisor, and consequently
too few corresponding eigenvectors. The standard example is

11
A1=(01).

It is easy to see that all the conditions (i)—~(v) fail for 4,, no matter how
large C(v) is chosen; in particular, |4, grows like n and the resolvent
has a double pole at z=1. This relationship between the growth of 4"
as n - oo and that of the resolvent as |z| - 1 is made precise by

THEOREM V. There exist constants x(s) and B(s) depending on 8 >0, such
that with A,=¢A and the constant K(m) as in Theorem I, each of the follow-
ing statements implies the next:

(i") For }<e<l, A*H,A,<H, for some H,2I with (Hp,v)}<
C(v)[(1—¢)® for |v|=1.
(ii"”) For }<e<1,|S,4,8,7Y <1 for some S, with |8,7}| <1 and |Sw|=
C(w)[(1—¢)? for |v|=1.
(") |Amv| S«(s)(n+1)*C(v) for n20 and |v|=1.
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«(8) B(s) [2|°C(v)

(iv'") (eI —4)tv| = — for |z|>1 and |v|=1.

(l=1)"#
(v"") For $<e<]1, there exists H, 2 I such that A*H, A, H, and
K(m) O
(Hoo0)h < x(s) B(s) K(m) C(v) . W = 1.
(I-¢)

Proor. The first two conditions are equivalent as before with H,=
S*8,. Given (ii"’), we have for [v|=1

(103) |4.m] £ C(w)[(1—¢)3, i<e<l,
[A™] £ C(v)[em(1—¢)®.

Maximizing the denominator with respect to e,

(104) [A™| < a(s)(n+1)5C(v), n=0.
It follows that (iv’’) holds; for |z|>1,
_ X A™ X (n+1)8
|(zI —A)™| = zo:znT = «(s) C(v) - e
_ «(8) fls) C(e) [2)*
T (=1
In order to apply Theorem I, we compute
(106)  |(zI —A,)0| = l(fI—A)_lv
e\e
. &(5) Bls) O(v) Iz]el*
T ellzfel 1)+
_ a(s) B(s) Co) I2]°
T (el e
_ a(8) Bs) C(o) ( 2| )s< &(5) B(s) C(v)
T a1 el —e/ = (el =1)(1—¢)*

Now the last step in Theorem I yields (v"’).

Without writing down the obvious exponential analogue of Theorem
V, we remark that it would yield an accurate estimate of the growth
in time of eP@¥, Let us refer to the example (6), in which

oP} — (,1 0)
1wt 1

grows linearly (s=1), while the estimate (10) grows exponentially. To
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avoid such an overestimate, one has to study the system in a sequence
of norms

l+pow? 0
Ho(w)=( 09 1)’ 0.

From the inequalities
lu(t)lz, < €% ||fll,

one can in fact recover the linear growth; the analogue of Theorem V
provides a corresponding sequence of norms for an arbitrary system
satisfying the Petrowsky—Garding condition.
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