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TOPOLOGICAL SEMILOOPS

G. S. McCARTY, Jr.

1. Introduction.

Let X be a locally compact, locally connected Hausdorff space, and
let G be a group of homeomorphisms of X. Arens [1] has shown that
the compact-open topology on @ is the smallest topology with which G
is a topological transformation group on X; that is, the evaluation
GxX — X:(g9,2) > g(x) is continuous and @ is a Hausdorff topological
group. For a fixed member e of X, the projection n: G — X : z(g)=g(e)
is continuous. If X is such a space and e € X, and if there is a group G
of homeomorphisms of X such that the projection = possesses a cross-
section o: X — @ (that is, wo o is the identity on X and o(e)=1) then we
define X to be a topological semiloop with identity e (abbreviated tsl).
In case X is a manifold it has also been called suitable [2], [3]. If X
and X' are tsl’s and u: X — X' is an open map which “‘preserves prod-
ucts”, so

wlo(xs) (xq)) = o'(pu(2y)) (ula)) ,

then u is called a morphism of tsl’s.

Clearly every topological loop [4] (satisfying the local conditions
above) is a tsl; and every tsl is an H-space [6], with the product z,z,=
o(x,)(x,) (which is continuous by the exponential law of mapping spaces
[6, Theorem III 9.9]). An example of a tsl whose product is not that of
a loop is given for the real interval X =(-—1,1) by

o(x)(y) = x+y—=lyl;

there is no z € X such that o(z)(})=0. Few topologically nontrivial
examples are known of loops which are not groups; the 7-sphere §7 is
one, with the Cayley multiplication.

In § 2 a sufficient condition is found that a homeomorphism may be
lifted through a covering map. This is used to establish the following
results.
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THEOREM 1. If X is a locally path-connected tsl with identity e, Y 18
connected and x: Y — X is a covering map, »(f)=e, then there exists a
unique tsl structure on Y with identity f such that x is @ morphism.

CoroLLARY 1. If, in Theorem 1, X 18 a topological loop under the tsl
product, so is Y.

These facts generalize the theorem of Hofmann [4, Satz 6.6] that the
universal covering space of a topological loop is again a topological loop.
If X is a topological group, so is every covering space Y ; this improves
a classical result in the sense that no universal covering space need exist
for X.

In § 3 quotients of tsl structures are constructed. A sub-tsl 4 of a
tsl X is termed normal if it is the kernel of some morphism. Let ¢ denote
the group of homeomorphisms generated by the left multiplications of X,
and if 7: ¥ — X is the evaluation at e, let Z=n"1(¢). We shall write
for o(z) and X for o(X).

THEOREM 2. 4 subset A of a tsl X is a normal sub-tsl of X iff there
exists a closed normal subgroup XA~ of ¥ such that

XXnAP <A and n(HA)=A.

CoroLLARY 2. Let A be a normal sub-tsl of a tsl X. Then X/A is a
topological loop iff for all w, x € X both

Z1XXZN AP <A and wXZInAP+0.

These latter two conditions are satisfied if A is a normal sub-loop of the
loop X.

ExampLEs. The center of the 7-sphere S7 under Cayley multiplication
is A={+1}, and 87/A =P, the projective 7-plane, is a topological loop.
Paige has shown [9] that P7 is simple. Paige defines in [9] the 8-dimen-
sional Cayley algebra which is not a division algebra over the real field.
The multiplicative loop of elements of norm 1 has center {+ 1}, and the
quotient loop is a simple Moufang topological loop which can be shown
to be a manifold homeomorphic to the direct product of the projective
3-space with a 4-plane, P3 x R4; it is not a group. The same construction
over the complex field yields a simple topological loop-manifold of dimen-

sion 14 which is a 7-plane bundle over P? (we have not shown the bundle
to be trivial).

We remark that the corollaries above justify the definition of a tsl;
the fundamental structure seems to be that of one-sided inversion. The
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author hopes to discuss the purely algebraic notion of semiloop in a later
note.

2. Covering spaces of a topological semiloop.

We first list some definitions. Let X be a tsl with identity e. The sub-
group ¥=(X) of G generated by X is called the group associated with
the tsl X ; clearly, no generality is lost if we assume (=% in the definition
of a tsl X. The inner mapping group is the subgroup #=n"1(e) of ¥;
Z is closed, and = is open (since a cross-section exists). Thus X is homeo-
morphic to the quotient space %/# of left cosets of & in ¥, and ¥ is
homeomorphic to the topological product X x . Each element g €
has a unique expression of the form g=Zp for some z € X, pe #. The
product z,x, of two elements of X is just that unique element of X such
that Z, %, = (x,x,)p for some p € #. If z-1 is the unique right inverse of
in X, zz~1=e, then 2-1=n(Z-1) and inversion is continuous. The cross-
gection ¢ is just a continuous choice of left coset representatives of 2
in ¥ (compare Hudson [5]).

We remark that = is an H-map iff & is homotopy-normal in ¥ (see [8]
for definition); if so, then the above right inverse map on X is a left
homotopy inverse as well, and the product in X is homotopy-associative.

We preceed the proof of Theorem 1 by a lemma which offers a suffi-
cient condition that a homeomorphism of a base space may be lifted to

a homeomorphism of its covering space. The reader is referred to Hu [6]
for basic facts about covering maps.

LemmA 1. Let Y be connected space, X be a locally compact, locally
path-connected, Hausdorff space and x: Y — X a regular covering map.
Let »(f)=e, x(y)==x, and let g be a homeomorphism of X with g(e)==.
If g lies in the path-component of 1 in the group of homeomorphisms of X

then there exists a unique homeomorphism h of Y such that xoh=gox
and h(f)=y.

Proor. Since both x and %’ =g-10 x are covering maps, by [6, Theorem
IIT 16.4] there exists a unique covering map h: ¥ — Y such that

xoh=gox and M(f)=1y
iff
%x 0y (Y. f) € gunamy(Y,y) .
But #,7,(Y,y) is the image of x,m,(Y,f) under the translation along a

path in X covered by some path from f to y in Y. Further, the effect
of g,~1 is that of translation, along the image in X of the homeotopy
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of g with the identity map on X [7, Remark 5.21]. (Trivially, Y is locally
compact, locally connected and Hausdorff whenever X is.) The compo-
sition of these two translations sends #x,7,(Y,f) to a conjugate of itself
in 7,(X,e), and » is regular, so

gx Ty (Y, y) = w7y (Y,f) .
Similarly, the interchange of the roles of the covers » and x' yields a
covering map k': ¥ — Y such that
xoh =¢glox and My =f.
Therefore A’k is that unique map, the identity on Y, such that
xoh'h =% and RIAKf)=/Ff,

and % is a homeomorphism.

Proor or THEOREM 1. Let X be an H-space with multiplication
m: X x X - X and identity e, and let x: ¥ — X be a covering map with
%#(f)=e. Then

wxn: YxY—>XxX

is a covering map; we wish to show that there exists a multiplication

n: Y x Y - Y with identity f, such that » is an H-map; i.e., the following
diagram commutes:
n

YxY ———7Y

| |
n><n¢ m *M
XxX —X

But a map n will exist covering m iff

My (X %)y (Y X Y) € 2, 7,(Y) .
And

(e x %)y (Y x ¥) = sy 0y (Y) X g0y (Y)  in 7y(X) x 7y(X);

since products in x,(X) are defined by m, m, carries x,m,(Y) X %y 7,(Y)
onto »,7,(Y).

For each y € Y, define the map §: ¥ — Y by §(2)=n(y,2); if »(y)=x
then 7 clearly lifts the homeomorphism Z of X. Lemma 1 says that §
is a homeomorphism; it applies since z,(X) is abelian and thus x is
regular.

By the exponential law, the function 7z on Y into the group of all
homeomorphisms of Y, 7(y)=4, is continuous; hence Y is a tsl. The
uniqueness of 7 is clear; Theorem 1 is proved.
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Proor oF CorOLLARY 1. Let o and ¢ be the tsl structures for the topo-
logical loop X corresponding to the left and right multiplications of X
with Z=o(x), £=0c(x). Use Theorem 1 to find the tsl structures v and 7
on Y lifting o and &, respectively, and let §=1(y), §=7(y). Now § is
the unique map on Y such that xo§f==Zox and §(f)=y. But define
9:Y - Y:§(2)=%(y); §is clearly continuous; and, if x(y) =2 and x(z) =w,

%0 §lz) = x o Zy) = V@) = &w) = Hx(2)) .

Consequently, xof)==Zox, and also §(e)=¢(y)=y; so §=¢, and Y has
the multiplication of a loop. Since inversion and multiplication in ¥
are continuous (see remarks beginning this section), Y is a topological
loop and % is an open morphism of Y onto X; i.e., a quotient morphism:
Corollary 1 is proved.

3. The Proof of Theorem 2.

If X is a tsl and 4 = X then 4 is a normal sub-tsl of X if A is the kernel
of some morphism defined on X ; that is, if there exists a morphism u:
X —» Y of X into some tsl ¥ with identity f and 4 =p-1(f). It is easy
to show that the image of u is a tsl; therefore we assume y is onto, and
thus Y has the quotient topology. If ¥=(X) and s#=(Y) are the
groups associated with X and Y, then u induces a morphism of groups
0: 9 - S which may be defined by

6(g) pu(x) = p(g(x)) .

To show that 0 is a well-defined function we must prove that if u(x,)=
u(z,) then u(g(z,))=p(g(xy)). But p is a morphism; thus

#(E(x1) = p(@)p(,)
or uoZ=pu(z)ou. Also

p=poZoZl =) opoz?,

or uoZl=p(x)-lou; hence, if = +1 then uoZ*=pu(x) ou. Now g has
an expression of the form

g=2PoZPo...oT",
and

pog@) = poTo ... 0T = @@ o ... o W@ o p(a);

this shows 6 to be well defined. That 6 preserves products is trivial:

6(g) o 6(h) o u(x) = 6(g) o u © h(z)
=puogoh(x)=0(goh)o u).
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And 6 is continuous since the action of ¥ on Y, just as that of % on X,
is admissible. The kernel ¢~ of the morphism 0 is thus a closed normal
subgroup of ¥. If k€ o then pok(x)=u(x); in particular,

uok(e) =ponk)=f so nk)ed.

Conversely, a € A implies 0(@) o u(x) = u(a) u(x) and thus a € 7(¢’); hence
a(X)=A. Now let ge X-1XnH'P, so g has the forms g=z-17" =kp.
Then

pog=uoZ& =gy ou for yyeY,

and
pogle) =pokple) =pokle) =f=ygyple).
Hence
Y =959 =9f) =y
and so

mHog=u and ge&i’.

Furthermore, 0 is continuous onto the Hausdorff space ¢, so 4 = 0-1(1)
is closed.

Conversely, let X be a tsl with associated group ¢, and let " be a
closed normal subgroup of 4. Let 6, n and u be the natural maps defined
by the following commutative diagram

] [
% 4 >
| | |
y V' ¢
X=9|P—>9HP—7Y

We identify X with ¢/2, define Y =%/ P, and let 5 be the group
G|A" of homeomorphisms of Y furnished with the compact-open topology,
so that ¢ is the identity function on the set ¢¥/#". Now notice that X
is closed in =X x 2, and hence

A=AanX, A=ocY4d), HAP=a'Y4)

are all closed. Thus Y=%/X"% is Hausdorff (the relation on ¢ of
belonging to the same coset of #"Z is closed in ¥ x %). The map u=
nobon-t is open; therefore Y is locally compact and locally connected,
being the continuous open image of a space X having these properties.
Since ¢ is a topological transformation group on Y, and 2 is in the kernel
of this action, ¥/ also acts admissibly on Y. But the compact-open
topology is the smallest on %/ for which this is true; thus ¢ is continu-
ous, and so is p.
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Now the cross-section ¢ of X in ¢ induces the cross-section 7: ¥ — ¢ :
T=@polocou?! and TEAP)=zHecH.

Since ¥=X2, each y € Y has the form y=z4"Z for some Ze X; if
also y=2'H4'P then 217’ € P and the condition on ¢ that X-1Xn
AP <A implies ' € X : consequently t is well defined. The continu-
ity of 7 is obvious, as are the facts that por=1¢€ 5 and 7(14° P)=A",
the identity in #. Thus Theorem 2 is proved.

Proor or CoroLLARY 2. Since X/4 is a tsl, and thus 7', locally com-
pact and locally connected, the right inversion function will be continu-
ous if it is defined at all. But right multiplication by 4% is onto iff
for all w there is a v with

A TH < WA P

iff
VL € WH P
iff
v e wA Pr-1
iff

XnwAPz1+0.
Similarly, right multiplication by ZX & is one to one iff, for all w in X,
VHAIAH < WA P and UHATAHA < WA P
implies % € v¢". That is,
iff z-Wg-Wwre AP implies T Weld,

equivalently,

iff Z7 X XgnAP <z AT =H.
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