TOPOLOGICAL SEMILOOPS

G. S. McCARTY, Jr.

1. Introduction.

Let X be a locally compact, locally connected Hausdorff space, and let G be a group of homeomorphisms of X. Arens [1] has shown that the compact-open topology on G is the smallest topology with which G is a topological transformation group on X; that is, the evaluation $G \times X \to X$: $(g,x) \to g(x)$ is continuous and G is a Hausdorff topological group. For a fixed member e of X, the projection $\pi: G \to X: \pi(g) = g(e)$ is continuous. If X is such a space and $e \in X$, and if there is a group G of homeomorphisms of X such that the projection π possesses a crosssection $\sigma: X \to G$ (that is, $\pi \circ \sigma$ is the identity on X and $\sigma(e) = 1$) then we define X to be a topological semiloop with identity e (abbreviated tsl). In case X is a manifold it has also been called suitable [2], [3]. If X and X' are tsl's and $\mu: X \to X'$ is an open map which "preserves products", so

$$\mu\big(\sigma(x_1)(x_2)\big) \,=\, \sigma'\big(\mu(x_1)\big)\big(\mu(x_2)\big)\;,$$

then μ is called a morphism of tsl's.

Clearly every topological loop [4] (satisfying the local conditions above) is a tsl; and every tsl is an H-space [6], with the product $x_1x_2 = \sigma(x_1)(x_2)$ (which is continuous by the exponential law of mapping spaces [6, Theorem III 9.9]). An example of a tsl whose product is not that of a loop is given for the real interval X = (-1,1) by

$$\sigma(x)(y) = x + y - x|y|;$$

there is no $x \in X$ such that $\sigma(x)(\frac{1}{2}) = 0$. Few topologically nontrivial examples are known of loops which are not groups; the 7-sphere S^7 is one, with the Cayley multiplication.

In § 2 a sufficient condition is found that a homeomorphism may be lifted through a covering map. This is used to establish the following results.

Received May 26, 1965.

This research was supported by the U.S. National Science Foundation.

THEOREM 1. If X is a locally path-connected tsl with identity e, Y is connected and $\kappa\colon Y\to X$ is a covering map, $\kappa(f)=e$, then there exists a unique tsl structure on Y with identity f such that κ is a morphism.

COROLLARY 1. If, in Theorem 1, X is a topological loop under the tsl product, so is Y.

These facts generalize the theorem of Hofmann [4, Satz 6.6] that the universal covering space of a topological loop is again a topological loop. If X is a topological group, so is every covering space Y; this improves a classical result in the sense that no universal covering space need exist for X.

In § 3 quotients of tsl structures are constructed. A sub-tsl A of a tsl X is termed *normal* if it is the kernel of some morphism. Let $\mathscr G$ denote the group of homeomorphisms generated by the left multiplications of X, and if $\pi: \mathscr G \to X$ is the evaluation at e, let $\mathscr P = \pi^{-1}(e)$. We shall write \overline{x} for $\sigma(x)$ and \overline{X} for $\sigma(X)$.

Theorem 2. A subset A of a tsl X is a normal sub-tsl of X iff there exists a closed normal subgroup \mathcal{K} of \mathcal{G} such that

$$\overline{X}^{-1}\overline{X} \cap \mathscr{KP} \subseteq \mathscr{K} \quad and \quad \pi(\mathscr{K}) = A$$
.

COROLLARY 2. Let A be a normal sub-tsl of a tsl X. Then X/A is a topological loop iff for all $w, x \in X$ both

$$\overline{x}^{-1}\overline{X}^{-1}\overline{X}\,\overline{x}\cap \mathscr{K}\mathscr{P} \subseteq \mathscr{K} \quad and \quad \overline{w}^{-1}\overline{X}\,\overline{x}^{-1}\cap \mathscr{K}\mathscr{P} \, \neq \, \emptyset \; .$$

These latter two conditions are satisfied if A is a normal sub-loop of the loop X.

Examples. The center of the 7-sphere S^7 under Cayley multiplication is $A = \{\pm 1\}$, and $S^7/A = P^7$, the projective 7-plane, is a topological loop. Paige has shown [9] that P^7 is simple. Paige defines in [9] the 8-dimensional Cayley algebra which is not a division algebra over the real field. The multiplicative loop of elements of norm 1 has center $\{\pm 1\}$, and the quotient loop is a simple Moufang topological loop which can be shown to be a manifold homeomorphic to the direct product of the projective 3-space with a 4-plane, $P^3 \times R^4$; it is not a group. The same construction over the complex field yields a simple topological loop-manifold of dimension 14 which is a 7-plane bundle over P^7 (we have not shown the bundle to be trivial).

We remark that the corollaries above justify the definition of a tsl; the fundamental structure seems to be that of one-sided inversion. The author hopes to discuss the purely algebraic notion of semiloop in a later note.

2. Covering spaces of a topological semiloop.

We first list some definitions. Let X be a tsl with identity e. The subgroup $\mathscr{G} = \langle \overline{X} \rangle$ of G generated by \overline{X} is called the group associated with the tsl X; clearly, no generality is lost if we assume $G = \mathscr{G}$ in the definition of a tsl X. The inner mapping group is the subgroup $\mathscr{P} = \pi^{-1}(e)$ of \mathscr{G} ; \mathscr{P} is closed, and π is open (since a cross-section exists). Thus X is homeomorphic to the quotient space \mathscr{G}/\mathscr{P} of left cosets of \mathscr{P} in \mathscr{G} , and \mathscr{G} is homeomorphic to the topological product $\overline{X} \times \mathscr{P}$. Each element $g \in \mathscr{G}$ has a unique expression of the form $g = \overline{x}p$ for some $x \in X$, $p \in \mathscr{P}$. The product x_1x_2 of two elements of X is just that unique element of X such that $\overline{x}_1\overline{x}_2 = \overline{(x_1x_2)}p$ for some $p \in \mathscr{P}$. If x^{-1} is the unique right inverse of x in x, $xx^{-1} = e$, then $x^{-1} = \pi(\overline{x}^{-1})$ and inversion is continuous. The cross-section σ is just a continuous choice of left coset representatives of \mathscr{P} in \mathscr{G} (compare Hudson [5]).

We remark that π is an H-map iff \mathscr{P} is homotopy-normal in \mathscr{G} (see [8] for definition); if so, then the above right inverse map on X is a left homotopy inverse as well, and the product in X is homotopy-associative.

We preced the proof of Theorem 1 by a lemma which offers a sufficient condition that a homeomorphism of a base space may be lifted to a homeomorphism of its covering space. The reader is referred to Hu [6] for basic facts about covering maps.

LEMMA 1. Let Y be connected space, X be a locally compact, locally path-connected, Hausdorff space and $\kappa\colon Y\to X$ a regular covering map. Let $\kappa(f)=e$, $\kappa(y)=x$, and let g be a homeomorphism of X with g(e)=x. If g lies in the path-component of 1 in the group of homeomorphisms of X then there exists a unique homeomorphism h of Y such that $\kappa\circ h=g\circ\kappa$ and h(f)=y.

PROOF. Since both κ and $\kappa' = g^{-1} \circ \kappa$ are covering maps, by [6, Theorem III 16.4] there exists a unique covering map $h: Y \to Y$ such that

$$\kappa \circ h = g \circ \kappa$$
 and $h(f) = y$

iff

$$\kappa_* \pi_1(Y,f) \subset g_*^{-1} \kappa_* \pi_1(Y,y).$$

But $\kappa_*\pi_1(Y,y)$ is the image of $\kappa_*\pi_1(Y,f)$ under the translation along a path in X covered by some path from f to y in Y. Further, the effect of g_*^{-1} is that of translation, along the image in X of the homeotopy

of g with the identity map on X [7, Remark 5.21]. (Trivially, Y is locally compact, locally connected and Hausdorff whenever X is.) The composition of these two translations sends $\kappa_*\pi_1(Y,f)$ to a conjugate of itself in $\pi_1(X,e)$, and κ is regular, so

$$g_*^{-1} \kappa_* \pi_1(Y,y) = \kappa_* \pi_1(Y,f)$$
.

Similarly, the interchange of the roles of the covers \varkappa and \varkappa' yields a covering map $h'\colon Y\to Y$ such that

$$\varkappa \circ h' = g^{-1} \circ \varkappa$$
 and $h'(y) = f$.

Therefore h'h is that unique map, the identity on Y, such that

$$\varkappa \circ h'h = \varkappa$$
 and $h'h(f) = f$,

and h is a homeomorphism.

PROOF OF THEOREM 1. Let X be an H-space with multiplication $m: X \times X \to X$ and identity e, and let $\kappa: Y \to X$ be a covering map with $\kappa(f) = e$. Then

$$\varkappa \times \varkappa$$
: $Y \times Y \to X \times X$

is a covering map; we wish to show that there exists a multiplication $n: Y \times Y \to Y$ with identity f, such that κ is an H-map; i.e., the following diagram commutes:

But a map n will exist covering m iff

$$m_*(\varkappa \times \varkappa)_* \pi_1(Y \times Y) \subset \varkappa_* \pi_1(Y)$$
.

And

$$(\varkappa \times \varkappa)_* \pi_1(Y \times Y) = \varkappa_* \pi_1(Y) \times \varkappa_* \pi_1(Y) \quad \text{in} \quad \pi_1(X) \times \pi_1(X);$$

since products in $\pi_1(X)$ are defined by m, m_* carries $\varkappa_*\pi_1(Y) \times \varkappa_*\pi_1(Y)$ onto $\varkappa_*\pi_1(Y)$.

For each $y \in Y$, define the map $\bar{y}: Y \to Y$ by $\bar{y}(z) = n(y,z)$; if $\varkappa(y) = x$ then \bar{y} elearly lifts the homeomorphism \bar{x} of X. Lemma 1 says that \bar{y} is a homeomorphism; it applies since $\pi_1(X)$ is abelian and thus \varkappa is regular.

By the exponential law, the function τ on Y into the group of all homeomorphisms of Y, $\tau(y) = \bar{y}$, is continuous; hence Y is a tsl. The uniqueness of τ is clear; Theorem 1 is proved.

PROOF OF COROLLARY 1. Let σ and $\tilde{\sigma}$ be the tsl structures for the topological loop X corresponding to the left and right multiplications of X with $\bar{x} = \sigma(x)$, $\tilde{x} = \tilde{\sigma}(x)$. Use Theorem 1 to find the tsl structures τ and $\tilde{\tau}$ on Y lifting σ and $\tilde{\sigma}$, respectively, and let $\bar{y} = \tau(y)$, $\tilde{y} = \tilde{\tau}(y)$. Now \tilde{y} is the unique map on Y such that $\kappa \circ \tilde{y} = \tilde{x} \circ \kappa$ and $\tilde{y}(f) = y$. But define $\hat{y}: Y \to Y: \hat{y}(z) = \bar{z}(y)$; \hat{y} is clearly continuous; and, if $\kappa(y) = x$ and $\kappa(z) = w$,

$$\varkappa \circ \hat{y}(z) = \varkappa \circ \bar{z}(y) = \overline{w}(x) = \tilde{x}(w) = \tilde{x}(\varkappa(z))$$
.

Consequently, $\varkappa \circ \hat{y} = \tilde{x} \circ \varkappa$, and also $\hat{y}(e) = \bar{e}(y) = y$; so $\hat{y} = \tilde{y}$, and Y has the multiplication of a loop. Since inversion and multiplication in Y are continuous (see remarks beginning this section), Y is a topological loop and \varkappa is an open morphism of Y onto X; i.e., a quotient morphism: Corollary 1 is proved.

3. The Proof of Theorem 2.

If X is a tsl and $A \subseteq X$ then A is a normal sub-tsl of X if A is the kernel of some morphism defined on X; that is, if there exists a morphism μ : $X \to Y$ of X into some tsl Y with identity f and $A = \mu^{-1}(f)$. It is easy to show that the image of μ is a tsl; therefore we assume μ is onto, and thus Y has the quotient topology. If $\mathscr{G} = \langle \overline{X} \rangle$ and $\mathscr{H} = \langle \overline{Y} \rangle$ are the groups associated with X and Y, then μ induces a morphism of groups $\theta \colon \mathscr{G} \to \mathscr{H}$ which may be defined by

$$\theta(g)\mu(x) = \mu(g(x))$$
.

To show that θ is a well-defined function we must prove that if $\mu(x_1) = \mu(x_2)$ then $\mu(g(x_1)) = \mu(g(x_2))$. But μ is a morphism; thus

$$\mu(\overline{x}(x_1)) = \overline{\mu(x)}\mu(x_1) ,$$

or $\mu \circ \overline{x} = \overline{\mu(x)} \circ \mu$. Also

$$\mu \,=\, \mu \,\circ\, \overline{x} \,\circ\, \overline{x}^{-1} \,=\, \overline{\mu(x)} \,\circ\, \mu \,\circ\, \overline{x}^{-1} \;,$$

or $\mu \circ \overline{x}^{-1} = \overline{\mu(x)}^{-1} \circ \mu$; hence, if $\varepsilon = \pm 1$ then $\mu \circ \overline{x}^{\varepsilon} = \overline{\mu(x)}^{\varepsilon} \circ \mu$. Now g has an expression of the form

$$g = \overline{x}_1^{s_1} \circ \overline{x}_2^{s_2} \circ \ldots \circ \overline{x}_n^{s_n},$$

and

$$\mu \circ g(x) = \mu \circ \overline{x}_1^{e_1} \circ \ldots \circ \overline{x}_n^{e_n} = \overline{\mu(x_1)}^{e_1} \circ \ldots \circ \overline{\mu(x_n)}^{e_n} \circ \mu(x);$$

this shows θ to be well defined. That θ preserves products is trivial:

$$\theta(g) \circ \theta(h) \circ \mu(x) = \theta(g) \circ \mu \circ h(x)$$

= $\mu \circ g \circ h(x) = \theta(g \circ h) \circ \mu(x)$.

And θ is continuous since the action of $\mathscr G$ on Y, just as that of $\mathscr G$ on X, is admissible. The kernel $\mathscr K$ of the morphism θ is thus a closed normal subgroup of $\mathscr G$. If $k \in \mathscr K$ then $\mu \circ k(x) = \mu(x)$; in particular,

$$\mu \circ k(e) = \mu \circ \pi(k) = f$$
 so $\pi(k) \in A$.

Conversely, $a \in A$ implies $\theta(\overline{a}) \circ \mu(x) = \overline{\mu(a)} \mu(x)$ and thus $a \in \pi(\mathscr{K})$; hence $\pi(\mathscr{K}) = A$. Now let $g \in \overline{X}^{-1} \overline{X} \cap \mathscr{K} \mathscr{P}$, so g has the forms $g = \overline{x}^{-1} \overline{x}' = kp$. Then

$$\mu \circ g = \mu \circ \bar{x}^{-1}\bar{x}' = \bar{y}^{-1}\bar{y}' \circ \mu \quad \text{for} \quad y,y' \in Y \; ,$$

and

$$\mu \, \circ \, g(e) \, = \, \mu \, \circ \, k p(e) \, = \, \mu \, \circ \, k(e) \, = f \, = \, \bar{y}^{-1} \bar{y}' \, \mu(e) \; .$$

Hence

$$y' = \bar{y}\bar{y}^{-1}\bar{y}'(f) = \bar{y}(f) = y$$

and so

$$\mu \circ g = \mu$$
 and $g \in \mathcal{K}$.

Furthermore, θ is continuous onto the Hausdorff space \mathcal{H} , so $\mathcal{H}=\theta^{-1}(1)$ is closed.

Conversely, let X be a tsl with associated group \mathscr{G} , and let \mathscr{K} be a closed normal subgroup of \mathscr{G} . Let θ , η and μ be the natural maps defined by the following commutative diagram

We identify X with \mathscr{G}/\mathscr{P} , define $Y = \mathscr{G}/\mathscr{K}\mathscr{P}$, and let \mathscr{H} be the group \mathscr{G}/\mathscr{K} of homeomorphisms of Y furnished with the compact-open topology, so that φ is the identity function on the set \mathscr{G}/\mathscr{K} . Now notice that \overline{X} is closed in $\mathscr{G} = \overline{X} \times \mathscr{P}$, and hence

$$\overline{A} = \mathscr{K} \cap \overline{X}, \qquad A = \sigma^{-1}(\overline{A}), \qquad \mathscr{K}\mathscr{P} = \pi^{-1}(A)$$

are all closed. Thus $Y = \mathcal{G}/\mathcal{K}\mathcal{P}$ is Hausdorff (the relation on \mathcal{G} of belonging to the same coset of $\mathcal{K}\mathcal{P}$ is closed in $\mathcal{G}\times\mathcal{G}$). The map $\mu = \eta \circ \theta \circ \pi^{-1}$ is open; therefore Y is locally compact and locally connected, being the continuous open image of a space X having these properties. Since \mathcal{G} is a topological transformation group on Y, and \mathcal{K} is in the kernel of this action, \mathcal{G}/\mathcal{K} also acts admissibly on Y. But the compact-open topology is the smallest on \mathcal{G}/\mathcal{K} for which this is true; thus φ is continuous, and so is ϱ .

Now the cross-section σ of X in $\mathscr G$ induces the cross-section $\tau\colon Y\to\mathscr H$:

$$\tau = \varphi \circ \theta \circ \sigma \circ \mu^{-1}$$
 and $\tau(\overline{x}\mathscr{K}\mathscr{P}) = \overline{x}\mathscr{K} \in \mathscr{H}$.

Since $\mathscr{G}=\overline{X}\mathscr{P}$, each $y\in Y$ has the form $y=\overline{x}\mathscr{K}\mathscr{P}$ for some $\overline{x}\in\overline{X}$; if also $y=\overline{x}'\mathscr{K}\mathscr{P}$ then $\overline{x}^{-1}\overline{x}'\in\mathscr{K}\mathscr{P}$ and the condition on \mathscr{K} that $\overline{X}^{-1}\overline{X}\cap\mathscr{K}\mathscr{P}\subset\mathscr{K}$ implies $\overline{x}'\in\overline{x}\mathscr{K}$: consequently τ is well defined. The continuity of τ is obvious, as are the facts that $\varrho\circ\tau=1\in\mathscr{H}$ and $\tau(1\mathscr{K}\mathscr{P})=\mathscr{K}$, the identity in \mathscr{H} . Thus Theorem 2 is proved.

PROOF OF COROLLARY 2. Since X/A is a tsl, and thus T_2 , locally compact and locally connected, the right inversion function will be continuous if it is defined at all. But right multiplication by $\bar{x}\mathcal{K}\mathcal{P}$ is onto iff for all w there is a v with

 $\bar{v}\mathscr{K}\bar{x}\mathscr{K} \subset \bar{w}\mathscr{K}\mathscr{P}$

iff

 $\overline{v}\overline{x} \in \overline{w}\mathscr{K}\mathscr{P}$

iff

 $\overline{v} \in \overline{w} \mathscr{K} \mathscr{P} \overline{x}^{-1}$

iff

$$\overline{X} \cap \overline{w} \mathscr{K} \mathscr{P} \overline{x}^{-1} + \emptyset$$
.

Similarly, right multiplication by $\bar{x} \mathcal{K} \mathcal{P}$ is one to one iff, for all w in X,

$$\overline{v}\mathscr{K}\overline{x}\mathscr{K} \subseteq \overline{w}\mathscr{K}\mathscr{P} \quad \text{and} \quad \overline{u}\mathscr{K}\overline{x}\mathscr{K} \subseteq \overline{w}\mathscr{K}\mathscr{P}$$

implies $\bar{u} \in \bar{v} \mathcal{K}$. That is,

iff $\overline{x}^{-1}\overline{u}^{-1}\overline{v}\overline{x} \in \mathscr{KP}$ implies $\overline{u}^{-1}\overline{v} \in \mathscr{K}$;

equivalently,

$$\text{iff } \overline{x}^{-1}\overline{X}^{-1}\overline{X}\overline{x} \cap \mathscr{K}\mathscr{P} \subset \overline{x}^{-1}\mathscr{K}\overline{x} = \mathscr{K} .$$

REFERENCES

- 1. R. F. Arens, Topologies for homeomorphism groups, Amer. J. Math. 68 (1946), 593-610.
- 2. Robert F. Brown, On suitable manifolds, Math. Scand. 14 (1964), 174-178.
- 3. E. Fadell and L. Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111-118.
- 4. K. H. Hofmann, Topologische loops, Math. Z. 70 (1958), 13-37.
- S. N. Hudson, Transformation groups in the theory of topological loops, Proc. Amer. Math. Soc. 15 (1964), 872–877.
- 6. S. T. Hu, Homotopy theory, New York · London, 1959.
- 7. G. S. McCarty, Jr., Homeotopy groups, Trans. Amer. Math. Soc. 106 (1963), 293-304.
- G. S. McCarty, Jr., Products between homotopy groups and the J-morphism, Quart. J. Math. Oxford (2) 15 (1964), 362-370.
- 9. L. J. Paige, A class of simple Moufang loops, Proc. Amer. Math. Soc. 7 (1956), 471-482.