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BOUNDED RADIAL VARIATION AND DIVERGENCE
OF POWER SERIES

GEORGE PIRANIAN

It has long been known that continuity of the function

(1) f@) = Zazz»

on the closure of the unit disk D does not imply convergence of the
series Ya,. (The earliest counterexample was constructed by L. Fejér
[1]; see also Landau [6, Section 3].) On the other hand, if 3n|a,|? < oo,
then the power series in (1) converges at each point of the unit circle C
at which f has a radial limit (see [2], [3], [6, Section 13]).

In a private conversation, P. and V. Turén raised the question whether
convergence on C of the power series is still assured if we replace the
hypothesis of a finite Dirichlet integral with the assumption that f maps
the radii of D onto curves of bounded length. The theorem in the present
note shows that the answer is negative; but it leaves open the question
whether the series in (1) converges everywhere on C if a, -~ 0 and f is
univalent and maps each radius of D onto a curve of finite length.

H. S. Shapiro [7] recently showed that the assumption of bounded
variation of f on [0, 1] permits no substantial relaxation of the restriction
on {a,} in the classical Tauberian theorem. Corresponding to each posi-
tive ¢ he exhibited a divergent series 3 a,, such that a, =0(n*") and such
that the function (1) has finite variation on the segment [0,1]. P.B.
Kennedy and P. Sziisz [5] have extended Shapiro’s result by showing
that if @(n) - oo, then there exists a divergent series Ya, such that
nla,| <@(n) for all n and such that the function (1) is bounded and
monotonic on the segment [0,1]. Our theorem strengthens Shapiro’s
result in almost exactly the same way ; but unlike the example of Kennedy
and Sziisz, our function is not monotonic on [0,1]; on the other hand,
it is continuous in DUC and has uniformly bounded radial variation in D.

THEOREM. If ¢(n)>0 and g(n) — oo, then there exists a divergent series
2a, such that
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(2) nla,| < p(n), n=01,...,

and such that the function (1) is continuous in DUC and has uniformly
bounded variation on the radii of D.

The building block in our construction is the modified Fejér poly-
nomial F(z,n,p), obtained by deletion of 2p terms from the middle of the
polynomial

1 z
F(z,n) ="—z+n—_“i+...+*"l———f—...'— n

Since F(z,n,p)=F(z,n) —2" P F(z,p) and
n "
\F(z,n)| < 2]8-‘“—(% -M
)t

on C (see [4, Section 3]), we see at once that |F(z,n,p)| <2M on C.
Without loss of generality, we may assume that ¢ is increasing. We
choose a sequence {n;} such that n,,,>3n; and

(3) > (logg(ny))t < oo

(in the final stage of the proof, we shall replace {rn;} with a sufficiently
thin subsequence). We define the integers p; by the formula

(4) p; = [nsle(ny)]

and we construct the function

<]

(6) 16 = jgl log p(n;)

Let f(z)=3a,2" and 8,=3ga;. Since

2" F(2,n5,p5)

83, =0, j=12..., and lim; 8, =1,

the series Y a,; diverges. Because the polynomials F(z,n,p) are uniformly
bounded on C, condition (3) implies that f is continuous on DuUC.

Concerning condition (2), we observe that for coefficients a, arising
from the jth term in (5), the quantity n|a,| has its maximum at the
beginning of the block of negative coefficients, and that this maximum
therefore has the value

2’"4] + y 2 +1
(p;+1) loggp(ny)

By (4), the numerator is less than 3n;, and if we impose the additional
condition ¢(n,)> €3, it follows from (4) that (2) is satisfied for all =.
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It remains to show that we can choose the sequence {n;} so that f
has uniformly bounded radial variation. To this end, we observe first
that the radial variation in D of any polynomial 3b, 2" does not exceed
3 |b,|. This implies that the maximum radial variation of the jth poly-
nomial in (5) is less than 3.

Next we remark that by the rule of Descartes, the derivative of
2"F(z,n,p) has only one zero on the segment [0,1], so that the total
variation of the jth term on [0,1] is at most 4M/logg(n;). This implies
not only—by virtue of (3)—that f has finite variation on the segment
[0,1], but also that for each n; we can find some sector A4; of D, bisected
by the segment [0, 1], in which the radial variation of the jth term of (5)
is less than 5M[logg(n;) (hence less than 57 (logp(n,))-*; the use of the
larger bound will be more convenient, later).

To complete the discussion of the radial variation, we need a careful
estimate of the integral (along the radius of ¢, for 0< |0 <x) of the
absolute value of [2"F(z,n,p)]’. The derivative has the value

nz"1  (n+1)2" 4 (2n—p — 1)z2n-p-2
n n—1 p+1
2n + p)z2n+p-1 3n —1)z3n-2
_ [(___.?i)____ - (___)_J ,
p+1 n

Since the negative coefficients form a numerically decreasing sequence,
the absolute value at z=re® of the terms in brackets is by Abel’s summa-
tion formula less than

(6) (20 +p)r2+e-1f|6] .

The absolute values of the terms in the first half of the polynomial (z"F)’

do not necessarily form a monotonic sequence. However, for each value r,
the difference

(n+k)yrntk-1  (n+k+ 1)rntk

n—k n—k—1
et Wk k k
o=y [+ BB 1) =t ket ) )
changes sign at most once as k runs through the values 0,1,...,n—p—2.

Therefore the corresponding polynomial consists of one or two sections
in each of which the absolute values of the terms form a monotonic
sequence, and consequently its absolute value is less than 2n2N/|0|, where
N denotes the modulus of the greatest term in the polynomial. Clearly,
N <2nr"-1, and taking account of the quantity (6), we see that
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< Z[(2n + pyrtn+e-1 4 dmpn-1]

d
—[F
el <

at z=re”, 0<|0|<m. Integrating the right member over the range
0=<7r=<1, we deduce that the radial variation of the jth term in (5) is
less than
%4
|0] log () -

In particular, when (logep(n,))~*<|0| <7, then the variation of the jth
term on the corresponding radius is less than 5z (logg(n;))-.

We have shown that the radial variation of the jth term in (5) is
bounded by 3, and that it is bounded by 5z (logg(n;))-* inside of the
sector A; and outside of the sector B; defined by the inequality |argz| <
(logp(n;))~*. We now suppose that the sequence {n;} increases so rapidly
that the sectors B,,4,,B,,4,,... form a nested sequence, and we con-
sider any radius R of D on which, for some index %, the kth term of (5)
has variation greater than 5z (logg(n;))-*. Since R must lie inside of B,
and outside of A4,, it lies inside of 4,,4,,...,4,_, and outside of B, ,,
By, .s,... . This implies that the variation of f on R is less than

3 + b7 3 (logg(ny))t,
J*k

and the proof of the theorem is complete.
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