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ON THE DIOPHANTINE EQUATION Cz*+D = 2y

W. LIUNGGREN
Dedicated to professor T. Nagell on his 70th birthday

Introduction.

Let @ denote the field of rational numbers and let further integers
in @ be denoted by Roman letters denote. The diophantine equation

(1) ax’+bxr+c = dy”,

where a, b, ¢ and d are integers, a0, b2—4ac+0, d+0, has only a finite
number of solutions in integers « and y when n > 3. This was first shown
by A. Thue and later on by Landau and Ostrowski. See for instance [15].
However, no general method is known for determining all integral solu-
tions « and y for a given equation of the form (1).

In this paper we confine ourselves to the study of such equations of
the form (1) where it is possible to derive criteria for solubility which
are valid for comprehensive classes of odd exponents .

A complete solution of the equation x2+ 1=y?"+1 was already given
by V. A. Lebesgue [3] in 1850. In 1895 C. Stérmer showed that the
equation 22+ 1=2y?>m+1 has no solutions with y>1. The first more
general results of the type mentioned above, were obtained by T. Nagell
in papers from 1921 [12] and 1923 [14]. As an example we quote the
following theorem: Let D denote a positive integer without any squared
factor >1. Assume that the number of classes of ideals of Q((— D)) is
not divisible by the odd positive integer n. Then the diophantine equa-
tion
(2) 14+ Da? = y»

has no solutions in integers # and y if ¥y >1 and odd, with the exception
of the solution 1+2-112=35,

It is well known that the solution of (1) can be brought back to the
solution in rational integers of a finite number of equations of the form
f(u,v)=g, where f(u,v) is a binary form of degree n with integral coeffi-
cients and g an integer taken from a finite set. Under the given conditions
concerning the equation (2) the binary forms in question are reducible,
giving only a finite number of possibilities for » or ». The proof is ac-
complished by means of congruence considerations.
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Nagell has continued his investigations in a series of papers [16]-[19].
Other contributions to the theory are due to W.Ljunggren [5]-[11],
B. Stolt [22], [23], B. Persson [21] and D. J. Lewis [4].

Let C and D, D> 1, denote odd positive integers, CD=1 (mod4) and
CD without any squared. factor >1. Let further 4 denote the number
of classes of ideals in Q((—CD)}), and suppose k=0 (modn). In this
paper we shall prove the following three theorems concerning the di-
ophantine equation
(3) Cx2+D = 2y~.

THEOREM 1. Let n be the power of a prime g¢=1 (mod4). Then the
diophantine equation (3) has no solution tn integers x,y if either

D21 = 221D, (Dy,2) = 1
D2—-1 = 22mD,, (Dg,2) = 1 and q = D, (mod8).

THEOREM 2. Let n be the power of a prime ¢= +3 (mod8) and C=1 if
g=3 (mod8). Then the diophantine equation (3) has only a finite number
of solutions in natural numbers x, y and q, which can always be obtained
in a finite number of steps.

THEOREM 3. Let n be the power of a prime ¢=17 (mod8) and let C=1
Then (3) has no solutions in integers x, y in the following cases:

1° D=5 (mod 24),

2° D=13 (mod24) and D+2=3*"+1D' (D',3)=1,

3° D=9 or 21 (mod40),

4° D=15+2v (mod40) and D—2y=52"+1D' (D' 5)=1, y= +1.

In proving the first theorem, the formula (18) in section 2 plays an
important role. In the proof of the second theorem we make use of the
following lemma due to J. W. S. Cassels [1]:

Let IT be a finite set of rational primes and let P be the set of positive
integers all of whose prime factors are in II. Let D>0 and E <0 be
rational integers and suppose that no prime factors of & is in /7. Then
there are only a finite number of solutions Z,Y of the equation

Z:-DY?=FE,

where Z is a rational integer and Y € P. These can all be obtained in a
finite number of steps.

1. Proof of some lemmas.

At first we show that (3), in case n is the power of any odd prime g,
CD=1 (mod4) and k=0 (modn), implies
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2C* + (— D)} (aC*+b(—D)*)q

(4) of = o

a,b denoting odd rational integers.
The principal ideals

[Cx+(—CD) and [Cx—(—CD)
have the greatest common ideal divisor [2C,C + (— CD)t], because
[2C] = [2C,C+(—CD)¥? and (x,y)=1.
From (3) it then follows that
[Cx+(—CD)] = [2C,C +(—CD)ie*,
where i denotes an ideal of the field @((—CD)). Further we get
(5) [Cx+(—CD) = [20]i,2%, iy = i2.

If the class number 4 is divisible by ¢f, 0 <8 <«, and not by gf+., there
exist two rational integers f and g such that

fe—gh =¢.
Then by (5) we get the following equivalence
it ~ {1 ~ 1.
Hence we obtain the ideal equation
(6) [Cx+ (—CD)i2 = [20][u+v(—CD)je**,

where u and v are rational integers. Since CD+1, +3, all units in the
field Q((— CD)t) are gth powers. Then it follows from (6) that

(7 (Cx+(—CD)})? = 2C(uy +v,(—CD)})e.
By means of (7) we derive

(8) 20(uy +v,(— CD)}) = (Cx+ (—CD)})¥(uy +v,(—CD))—2
= (uz'*'vz("“CD)})a .
Since the last number on the right-hand side of (8) is an integer in

Q((— CD)}), u, and v, must be rational integers. It is further easy to see
that u, =0 (modC), such that we can rewrite (8) in the form

2C(uy +vy(—CD)) = (Ca+b(—CD)i)?.

Inserting this expression in (7) we get equation (4).
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Now we make use of the well-known formula [20, p. 154]:

9)

am_ym KD gy (m——r
r

—ay\m-2r-1 f, = 1’3,5,7,. .
r—Yy =g M—T ) (x y) (xy) "

Putting here
_aCt+b(—-D) aCt—b(— D)}
B S T S

and m=q we get from (4)

oy o 1 (q"r) (— 2Db2)Ha-D-r (M)r
r 2 ’

1
b x-y 5 q-r

(10)

whence b= +1.
Mod ¢ we find b=(—2D)}-D (modg), that is,

(1) b= (:_ZB)

where (10) is impossible if ¢ divides D.
Treating (10) as a congruence mod4, we obtain in case ¢=1 (mod4)

b=qg—%9(¢*-1) (mod4),
whence

b = (—-1)ie-D,
In case ¢=3 (mod4) we find

b =3(Ca*+D)+49(¢*—1)2 (mod4),
or
(12) = —}C+D)+&q9(@*—1)2 (mod4).

Ne distinguish between two cases:
1° If ¢= —1 (mod 8) we get from (12) that
b= —§C+D) (mod4),

o b= —-D (mod4) if CD =1 (mod8),
b= D (mod4) if CD =5 (mod8).

This can also be written
b= —(-1¥CD f (C=D=1 (mod4),
b= (-1)CD jf C=D=-1 (mod4)
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2° If ¢=3 (mod8) it is easily seen that we obtain the same result as in
case 1°.
Then we prove the following lemma:

LeMMA 1. A necessary condition that the equation (4) be satisfied in in-
tegers x,y is that

b = (—1)ie-D if ¢g=1 (mod4),
b= —g(—1){a+CD)  4f ¢ =3 (mod4) and C = D = ¢ (mod4),

where ¢= + 1.

To prove theorem 3, we have to establish some simple lemmas concern-
ing the solubility of the equation (4).

LemmMma 2. If the equation (4) is satisfied with ¢>3, a=0 (mod3) and
(C,3)=1, then either

g=1 (mod8) and D?—4 = 32D, (D,3) =1,

or

i

g=3 (mod4) and D—2(—1)}a+CD) = g2mp (D, 3) =1,

where C=D=¢ (mod4), e= + 1.
If a=0 (mod3) and (C,3)=3, then all even exponents are to be changed
into odd ones.

Proor. Equation (4) implies
D¥a-D sy = " E0 1y (€ 2yi Pi@-D-i
q-1) _p( — q-1) — —1)i- i q-1)—1i
(13) b(—2) 2> (=1 (%) (Ca?)*D ;

=1

b given in lemma 1. Putting a =3%,, (a,,3)=1, s=1 we observe that the
first term on the right-hand side of (13) is exactly divisible by 3%+2s+x,
where u=1 or 0, according as C=0 (mod3) or not, and ¢g—1=2¢,-3%,
(91,3)=1, 2 0. The general term in the sum in (13) may be written in

the form
_ 2i-2
Q) () g
2 20—2/ §(2¢—-1)

Here we have 3%-2>4(2t—1) for =2, and consequently, this term is
divisible by a power of 3 with exponent greater than 0+ 2s+u. Hence
the right-hand side of (13) is exactly divisible by 3%+2s+#, In case ¢=1
(mod 4) the left-hand side of (13) can be written D¥e-D — (—1)i@-D 24@-D,
and it is easily seen that aC'=0 (mod3) implies g=1 (mod8). Putting
further D2—4=3mD’, (D',3)=1, m2 1, we find that the quantity on the
left-hand side of (13) is exactly divisible by 3%+™. Hence m=2s+ u, and
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our lemma is proved for g=1 (mod4). In case ¢=3 (mod4) the left-hand
side of (13) may be written

DHa-D 4 (2p)ka-D
D+2b ’

where the second factor is exactly divisible by 3° and therefore D 4 2b
exactly divisible by 32s+#, This completes the proof of lemma 2.

(D +2b)

Lrmma 3. The equation (4) is impossible tn integers x,y with g=3 (mod 4)
if a2 =1 (mod3),
C =D =¢ (mod4), C=D=¢ (modl),
CD = 3+2g, (mod8),
where e=+1, g;=+1.,
Proor. From (4) it follows, ¢=3 (mod4)
(14)

b-24e-D) = Die 1)“21_1) 9 —1y Keh q 1 d
. ~1) — — = — 1)V
- j=0 (2j+1)( y=ea (2j+1)( y (mod3).

7=0

Expanding (1 +9), ¢=(— 1)}, by the binomial theorem it is easily shown
that the sum in (14) has the value (— 1)¥¢-® 2i@-D, Hence,

b = g(—-1)10-9 (mod3).
By means of lemma 1 this congruence can be written
(= 130+ = ge (mod3),
which is clearly impossible.
Lrmma 4. A necessary condition that equation (4) be satisfied with
a2=1 (mod3), C=D=¢ (mod4), C=—-D =¢g (mod3),
where e= + 1, ;= 1, i8 that, either

g=1 (mod8) or g¢q=2(1—e)—CD (mod8).
Proor. From (4) it now follows that

Hg-1) q
b2ie-) = Cie-D ¥ (2j+1) = C¥e-D 2¢-1 (mod3).
J=0
Hence

(15) b = (20)4e-D = D¥a-D (mod3).

In case g=1 (mod4) we get
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(=1)#e-D =1 (mod3), thatis, =1 (mod8).
When ¢=3 (mod4), we can write (15) in the following form:
(—1)He+CD) = g, (mod3)

or (= 1)Ha+CD) = (— l)i(l—sex) (mod 3) ,

that is,
$q+CD) = }(1—¢e) (mod2).

Our lemma is proved.

Lemma 5. The equation (4) ©s tmpossible in integers x,y with ¢ =3 (mod 4)

if
C=D=¢ (modd),
C = gD = ¢ (mod5),
CD = 1+2(1—¢¢&¢,) (mod8), e=+1,¢= 11,
1=1,2.

Proor. If a?=¢, (mod5) it follows from (4), using that ¢=3 (mod 4),

B2MeD = (Ce,)ia-D ((91’) ~(D)+ (g) — .. )

= (Ce 2)i(q—l) 9¥g-1) (- 1)¥#e-3 (mod5).
This congruence can be written

b = Cey(—1)¥@-3 (mod5)
or
—¢g(—1)¥@+CD) = g g(—1)¥@-3 (mod5)
or
(—1)¥CD-D) = ggre, (mod5),

which implies CD =1+ 2(1 —ee¢, &,) (mod8), a contradiction. If a?= —¢,
(mod 5) we conclude that

b2 = (= Cey)ia-b ((f) +(O+(D+-. )

= (—Cey)¥a-D 2¢-1 (mod5) .
Hence
b = (—Ce,)@-D 24@-D £ +1 (mod5),

because 2#@-Vz= +1 (mod5) in case ¢=3 (mod4).

It is impossible that a=0 (mod5). This follows from (13) since
D + 220 (mod5).

Our lemma is proved.
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LemMma 6. The equation (4) is tmpossible in integers xz,y with q=3
(mod 4) if
C =D =¢ (modd),
C = 2,D = ¢ (modb),
D+2¢e, = 521D, (D',5) =1,
q % 2(1 —ce,8,)~CD (mod8), e = +1,

and g;=+1, t=1,2.

Proor. At first we need a proof of the following two formulas

LUl .
'zo (2j+ 1) 2 = (—1)¥e" (mod5),
J=
i(q_l) . q .
> (—1)y (2j+ 1) 2 = (—2)¥e+3-% (mod5) ,
j=0

where ¢=v» (mod6), »= + 1. The first one is easily deduced, expanding
(1+(2)%)2 by the binomial formula, and observing that (1+(2)})°= —1
(mod 5). The second formula can be obtained in the same way, using
1+¢(2)! instead of 1+ (2)* and the fact that (1+14(2)})¢= —2 (mod5).

If a®?=¢, (mod5) it follows from (4), ¢=3 (mod4)

b24a-D = (Ce,)ia-D) (((i’) +2 (g) + 4(?) +.. )
Cey(—1)¥a-" (mod5) .

However, this is impossible, since 28@-D=%= +1 (mod5).
If a®= —¢, (mod5) we obtain from (4), =3 (mod4)

(16) b2Ha-D = (— Ce,)ite-D ((91’) -2 (g) +4 (g) — k... )

= (—Cep)(—2)¥a-#+3 (mod5) .
Since ¢ =4+ 2(1 — eg,6,) — CD (mod 8), we have

HCD+q) =1 + ¥l —eg¢) (mod2),
that is,
(17) b =¢e(—1)08) = g, .

Inserting this in (16) we obtain
£,8280°D = —g gy(—2)¥e-4+3) (mod5) .

Since 4(¢—1)—3}(¢g—4r+3)=2 (mod4) and 2¢=1 (mod5) we conclude
22=1 (mod5), which is impossible.
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A necessary condition that (4) be satisfied in integers z,y with ¢=3
(mod4) and a=0 (mod5) is D+2b=5*"D’, (5,D')=1. This is easily
verified applying the same method as in the proof of lemma 2, replacing
the prime 3 by 5. Now, b is given by (17), and our lemma is proved.

2. Proof of a basic formula.
In this section we prove the following formula:

2" —1 2y (= 1\
(18) Fow) = 220 — (- 1pen (20)

x—1

(n—-1) (x -1 )’n—2k—1 x2 +1
k (

k
r ),nodd,

k=1
where the coefficients A4, are rational integers. The two first coefficents
are '

n=1 (mod4), 4,=0 and A4, = (—-1)ie¥ipn-1),

3 (mod4), A,=(-1)3y and A4,=(-1)iDVipn-3).

n

Proor. In (9) we put y=1 and m=mn, then getting

n_ n—-1) — —1\n-2r-1
ap TS () (5R)T penran
x—1 5 n—r\ r 2t

241 (x—-l)2
x = -

Since

2 2%
we rewrite (19) in the form

" —1 '}("2—1) n (n_r> (x_l>n—2r—l
-1 5 n-r\ r 2t

r _ r— k
S EHICORC DI
Py k 2% 2

or

n—1 D x—1\n-2k-1 ;22 L 1\ K
" SE ()
(20) - 3 Ay .
where

-y g iy r

21 4, = .__( >2i(n—1)—r ~1 r—k( )
e k Ek n—r\ r (=1 k

Putting =14 in (20) and using the fact that (i —1)/2} is a primitive
eighth root of unity, it is easily found that
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Hn-1) -

r
Differentiating both sides of (20) with respect to x, then putting =1 we
find the values of 4,. Repeating this operation we obtain the values of 4,,
and our formula (18) is proved.

In proving theorem 1 we shall make use of formula (18). However,
it is necessary to establish a lemma concerning the coefficients A,, &> 2,
by reason of the quite complicated expression (21).

Lemma 7. Let d denote any positive integer and put n—1=2%-n,,
(ny,2)=1, 62 2. In the sequence {A,2%}, k=2,3,4,..., the first term 1is
exactly divisible by 2°-2+24_ while the following ones are divisible by a power
of 2 with exponent greater than 0— 2+ 2d.

Proor. In the expression (21) for 4, we put r+s=4%(n-—1), and
summing with respect to s, we find

4, =§<n-1>—k_n_ (%(n+ 1)+s> (— 1)HnDsk 26 (%(n-— 1) _.g) ,

om0 ¥n+1)+8\}n—-1)—s k
or
3(m—3)\ (—1)¥n-D-k
(22) A, = %n(n—l)( - )_____k____+
g ¥m—1)+s\(k+s—1)! (—1)in-D-s-k
2 inin=( Ve e !

Obviously each term in the sum (s>1) is divisible by 2%-1. If k is an
odd number, then it easily follows that A4,2%? is at least divisible by
20-1+dk, The term 4,22 is exactly divisible by 22-2+2¢, In case k> 2 and
even, then A, 2% is at least divisible by 2¥, where

N 26-1-3k+dk = 6—3+4d > 6—-2+2d,

because k~12# > 1 for k= 4. The lemma is proved.

3. Proof of theorem 1.
Putting x=21/A', where

) — D) t _(— D}
J o WCHEDY a0 (=D}
2t 2t

we get from (18), when n=gq
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A2 Qe A—Ane-1 D A—A\2-2-1 /22 1 22k
e () (S,
@3) 7~ (=1 2t ,EI F\ ot 2
The equation (4) implies

AM—1e b
24 —_—=
( ) l _ AI
We distinguish between two cases:

1° ¢=1 (mod4). According to lemma 1 we have b=(—1)¥e-D, Using
(24) we then obtain from (23), remembering that 4,=0
gD
(25)  (-~Dies9(DIaD_1) = 3 A~ D)Ha-D-k(}(Ca~ D).
k=2
2° ¢=3 (mod4). According to lemma 1 we have b= —¢g(—1)¥CD+0,
From (23) we now obtain

(26) (—1)Ha+D)( D@D 4 g(—1)HCD+3) =*(qz_l) Ay (— D)¥a-0-k(}(Ca?— D))* .
k=1

Our starting point is the equation (25). Putting 3(Ca2—D)=244,
(4,2)=1, d=1, we find, using lemma 7 with n=g, 0> 2, that the right-
hand side of (25) is exactly divisible by 29-2+2¢_ while the left-hand side,
written in the form

D¥ e —1 D¥1_1

D¥1-1 D2-1

(27) (=¥ (D2—1)

is easily seen to be divisible exactly by 29-2+2m+1=26-1+3m_ that ig,
2m+1=2d, a contradiction.

As to the second part of the theorem, where D2 —1=2?"D,, (D,,2)=1,
and consequently m, = 2, we note that the second factor in the product

(27) is congruent to ¢, (mod8), while the third factor can be written
20-%(87" + 1), since

D%4+1 =2 (modl6) for ¢=1,2,3,....
Dividing both sides of the equation (25) by 2-2+2¢, we obtain
(~1)ie9D,g, = (~1)ket9 gq, (mod$),
g =D, (mod8).

or

Here we have used lemma 7, noticing that
0—3+4d =2 6—1+3d
(6—1+3d)—(6—2+2d) 23 for d=m;22.

Our theorem is proved.

and
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4. Proof of theorem 2.
The following formulas are easily verified

Ada+D) _ 7/Hg+Dy 2 1 A¥a-D _ 2¥e-Dy2 e __ 2'e
28 ——— e — ’ =
(28) ( A= ) ( A= ) A=A
AMa+D) _ Jr¥@+D J4e-1 4 1Ka-D a_}'e D
2 PRNES————  § 1 o 'Ha-1) = "ie-1)
(29) Ty M) = S 4 ()
Ad@-D __ )'¥@-D pr ]
30 e (AMetD L eHD)) = L (AA))He-D
(30) T e L) = = — (A7)

1° ¢=8t+5. By means of (28) we get

2443 _ )443y 2 JA4+2 _ jrate2y 2
31 ) - N =b=—1.
31 ( Py ) ( o) BHRE =0
This implies
M@A+A)2 = (Ca2+D)Ca2 = 1+CD = 2 (mod8),
that is
(32) CD =1 (mod8).

From (31) we also conclude that C'=3 (mod4) is impossible, since —1 is
not a quadratic residue modulo a prime of the form 4k+3. Making use
of (30) we obtain

4042 _ J/4142 J4043 4 274043
A APA+E Qa3

Ar-A2 A+ A

(33) 2Ca® = —(1+ (A4)%+2),
Since ¢ is a prime we have ¢==2 (mod3). If =0 or 1 (mod3) we observe
that
AB+A8
—0 = }Ca®-3D
is a divisor of the left-hand side of (33). Let p be an odd prime dividing
$(Ca?—3D); then p divides 1+ (A4')%¥+2, that is, p=1 (mod4). Assuming
3(Ca®—-3D)>1, this implies 3}(Ca?—3D)=4N+1 and consequently
CD=5 (mod8), which contradicts (32). Now }(Ca?—3D)= +1 is im-
possible mod 8, and therefore }(Ca?—3D)< —1. Then we have proved:
Necessary conditions for the solubility of (31) are that

CD =1 (mod8) and a* = (3D-2)/C.

2° ¢=8t+3, ¢>3 and C=1. We distinguish between two cases.
A. CD=1 (mod8). Here is b=1, and according to (28)
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J4042 _ jrate2y 2 24041 _ jrati1y 2
4 22 (——mMM ) - V| —— ) =1
(34) “ ( prmy ) A ( - ) ’
from which it follows that
(35) A = $a*+D) =1 (mod8).
By means of (29) we get

A2 _ )rai+2 l4t+1 + I Eat
2

AR A+ A

(36) 2 = 14 (AX)4+1

Suppose a?=1 (mod3). Since t=0 (mod3) is excluded, we must have
t=1 or 2 (mod3). In both cases
B+As

A+A

is a divisor of the left-hand side of (36). If p is a prime dividing }(a?— 3D),
we deduce that

— a2+ D
p > 3, (%):1 and (—gw—-*:——z)=l.
p

= }a2-3D)

This gives (—2D/p)=1 and furthermore

-6
(37) (—) —1.

p
The Legendre symbol (—6/p) has the value 1 for the primes p=1, 5, 7
or 11 (mod24). On account of (35) and the assumption a?=1 (mod3)
we conclude that 3(a®—3D)= —1 (mod24). If }(a?—3D)=1 this gives a
contradiction, and we therefore must have a2<3D -2,

Suppose then a=0 (mod3). From (34) it follows that D=1 (mod3).
Putting a=3a, and observing that }(3a,2—D)=13 (mod24) we obtain,
reasoning as above, that the solubility of (36) implies 3a2<D+2.
Using lemma 2 with (C,3)=1 it is easily seen that the sign of equality
must be excluded. A necessary condition for the solubility of (36) is
then }(3a,2—D)< -1, or

3a,2 < D—2 where a = 3a,.

B. CD=5 (mod8). By means of (28) we get, using that b= —1

l4t+2 — 2’4‘-{-2 2 l4t+l —_ 1’4”‘1 2
38 2 - -_ A ! _'_"‘_‘——) = - 1 ’
(38) “ ( preT ) A( A—7

from which it follows 3(a%+ D)=3 (mod8). On account of (30) we obtain
Math. Scand. 18 — 6
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44+2 P48+2 24t+1 _ 2’48+1
+

BEAT AN

(a®*-D = —(1+(A1")4+1).
Let p denote an odd prime dividing }(a®—D)= —1 (mod4) and suppose
that }(a2—D)=3. Since p divides 1+ (11')%+! we conclude that

( —‘}(a2+D)) (——az) ]
P P ’

that is, p=1 (mod4), which is impossible. Consequently, }(a?2— D)< —1,
and a necessary condition for the solubility of (38) is that a2< D —4.

Hitherto it is proved that the values of a belong to a finite set, which
can be found in a finite number of steps. Now we make use of the result
of Cassels mentioned in the introduction. Writing (3) in the form
22— (a®+ D)N%= — D, where N =(}(a®+ D))}¢-D it is seen that there are
only a finite number of possibilities for the values of ¢ and that these
can be determined in a finite number of steps. Then we have proved
theorem 2.

5. Proof of theorem 3.

In this section C=¢=1 and ¢=8t+7.

1° D=5 (mod24). The impossibility of (4) and then of (3) is a con-
sequence of lemma 2 in case a=0 (mod3) and of lemma 4 when
a’?=1 (mod3).

2° D=13 (mod24), D+2=3*m+1D' (D',3)=1. The theorem follows
from lemmas 2 and 3.

3° D=9 or 21 (mod40). This is an immediate consequence of lemma 5.

4° D=1542y (mod40), D—2y=5m+]D' (D',5)=1, v= +1. This is
proved by means of lemma 6, putting e,= —ve,.

6. Numerical applications.
It turns out that the following lemma is useful:

LeMMA 8. A mecessary condition that the equation (4) be satisfied with
C=1, D=9 (mod24) and ¢g= + 1 (mod8), is that D=3 (mod9).

Proor. From (4) it follows that

b- 24a@-1) 2)ke-1) v g D) qa-2%-1
. - = — q- = — —a&l—.
(=2 .-_Zo (2i+1)( ya ’

This may be written
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(39) (—2)¥e-D — 1 —g(a?1-1) = ¢g—1 — (g) a?-3D +

O Dy ga-tiot
— i yq-2i—
+ 2 (27:+1)( yraame
We put ¢g—1=2-3%¢,, (¢,,3)=1, 6=1. Then it is easily shown that
(k¥@-D—1)/(k—1) is divisible by 3% if k=1 (mod3). Using this fact with
k= —2 and k=a? we find that the left-hand side of (39) is divisible by
3%+, Writing the general term in the sum in the right-hand side in (39)
in the form

q(g—1) (q—

2
— ) (_D)i aq——zi—l
2i(2+ 1) 2

26—
it is seen that this term is at least divisible by 3%+, since 3{/(2¢+1)>1
for 4= 2. A necessary condition for the solubility of (4) is then that

g—1= (g) a?-3D = (g)aq"3 3D; (mod 3%+!)

or 2 = (¢2—2¢)D, = 2D, (mod3),

that is, D;=1 (mod3). Our lemma is proved.
We restrict ourselves to the equation 22+ D =2yn,

ExampLE 1. D=5, 13, 17 and 21.

According to theorem 1 we must have ¢=3 (mod4). Further it follows
from theorem 3 that ¢=7 (mod8) must be excluded. It remains to deal
with ¢=3 (mod8), where (section 4,2°)

a®? < D—-4 i D=5 (mod8)

and a?<3D-2 if D=1 (mods).

The value a=3 is impossible. This is obvious if D=21 and follows as a
consequence of lemma 2 for D=5, 13 and 17. If D=17, equation (13)
also rules out the possibilities a=5 and a=7. It then only remains the
case a=1.

In order to determine the possible values of ¢ it is often convenient
to tackle the problem by a simple method introduced in [10]. We make
use of the following formula [2, p. 748]:

(40) (@ +y)—2?—y? = gay(x+y)(@*+xy+y7) Qu,v),
where ¢>3 and

u = (22 +zy+y?)>, v
r=2for ¢g =1 (mod3), r

I

(zy(=+y)?,
1 for ¢ = 2 (mod3),

If
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and Q(u,v) is a polynomial in » and v with integral coefficients. Putting
x=4, y=—1', we obtain

(l—l’)"“—l;:i:q = — A (R =2+ 1% Qu,v)
or
(41) (—2D)¥e-D = b (mod §(a®+ D) }(a®—3D)).

D=5, a=1 gives
10¥¢-D =1 (mod7) or 2?2141 =0 (mod7),

which is clearly impossible. In a similar way D =13, 17 and 21 can be
excluded modulo 7, 3 and 31 respectively. For ¢=3 there is a solution
if D=5, otherwise not. Then we have proved:

The equation x®2+D=2y", n>1 and odd, has no solutions in positive
integers x,y if D=13, 17 or 21, and only one solution given by 72+5=2-33
if D=5.

ExampLE 2. D=29, 53, 61 and 89.

The classnumbers & are 6, 6, 6 and 12 respectively, and we must assume
¢ > 3. By means of theorems 1 and 3 we conclude that it is only necessary
to deal with the case ¢g=3 (mod8). As in the preceding example there
are no solutions if ¢>3. In case D=29, we find a solution of (4), viz.
11724+ 29=2-19%. However, there may be other solutions if ¢=3, such
as 52+4+29=2-33% 124 53=2-33, 252+61=2-73 and 512+61=2-113,

ExamrLE 3. D=33.

By means of theorem 1 and lemma 8 it follows that ¢=3 (mod8).
Since ¢ =0 (mod 3) is excluded, we have only to deal with a=1, 5 or 7.
It turns out that there are no solutions.

ExampLE 4. D=41 and 73.

These are the only values of D < 100, where the exponents g=1 (mod 4)
are not excluded by theorem 1. For D =41 we obtain ¢=1 (mod8) and
for D=173 we must have ¢=5 (mod8). D=73 is then ruled out by
theorem 2. Treating the equation (25) as a congruence mod 25 for D =41,
it results that (25) is impossible if g=1 (mod5). It remains to discuss
the case ¢g=1 (mod40). Putting D=41 in (39) and observing that
2¥@-D _1=g91-1=0 (mod4l) we get ¢g=1 (mod41). Inserting ¢—1=
41%-2q,, (41,9,)=1, 621 in (39), we obtain that this equation is impos-
sible mod 41%+1, This is easily shown by a reasoning similar to that used
in the proof of lemma 8. The case ¢="7 (mod8) is excluded treating (13)
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as a congruence mod7 and using that 41= —1 (mod7) and 73=—4
(mod 7). This give the congruences

‘42) b-2¥et) = (a+1)0—(a~1)2 (mod7) for D = 41
and
(43) b-24e+d = (@ +2)7—(a—2)2 (mod7) for D = 73.

Now a?=1,a%’=4 or a®?=9 (mod7), since a =0 (mod 7) is excluded by (13).
Inserting a=1, 2 and 3 in (42) and (43), it is found that none of these
congruences are satisfied. Then we have proved that equation (4) has
no solutions in integers x,y if D=41 and D="73.

The only case left is D =65, where theorem 1 shows that ¢=3 (mod4).
Considering (13) as a congruence mod 11 and using that 65= —1 (11) we
again get the congruence (42), but now mod11. After some calculations
we find that this congruence is satisfied only if ¢g=1 (mod5). However,
inspecting (13) as a congruence mod5 we find ¢g= + 2 (mod5). Conse-
quently, (13) is impossible in case D=65. Then we have proved:

The equation -

2+ D = 2y, n>3,

18 1mpossible in integers x and y if D=1 (mod4) square-free and D <100.
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