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SYMMETRY IN REAL BANACH ALGEBRAS

LARS INGELSTAM
1. Introduction.

This paper deals with three, seemingly unrelated, problems of the
theory of normed algebras over the real field: the characterization of
algebras of complex type, the theory of real group algebras and the con-
cept of a Silov boundary. There is a unifying feature, however. It is
well known that the classical representation theory of Gelfand for semi-
simple, commutative complex Banach algebras has straight-forward
generalization to real algebras [9], [6]. In that case, however, the possi-
bility of complex conjugation induces a certain symmetry in the repre-
sentation. It turns out that in the problems dealt with here, the solutions
depend to a large extent on systematic consideration of this symmetry.

Section 2 deals with the characterization of algebras of complex type.
Conditions, under which a complex multiplication will have to be con-
tinuous, are given. It is shown that even if an algebra has only complex
homomorphisms it need not be of complex type; a necessary condition
is that its Gelfand space consists of two disjoint symmetric parts (Theo-
rem 2.6). Section 4, which deals with some problems of group algebras
directly suggested by this result, contains an example (4.1) that shows
that not even this stronger condition is sufficient. But we also give an
affirmative result on algebras of complex type: an abstract characteriza-
tion of the full complex-function algebra Cy(£2) as a real Banach algebra
(Theorem 2.7).

Section 3 deals mainly with real L!-algebras over locally compact
abelian groups. If they are regarded as real Banach algebras, we can
identify the Gelfand space with the character group; the conjugation
map then becomes the forming of inverse. Then the idea of reality condi-
tions [6, Section 6] is applied to this situation. Using a result by Beurling
and Helson [2] we can characterize a class of groups whose real group
algebras are R;. Finally we get a complete description of those groups
that have strictly real (R,) group algebras.

It is a somewhat distressing fact that the Silov boundary fails to exist
even for very well-behaved real algebras of functions, including most of
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those arising from the Gelfand representation of a commutative real
Banach algebra. In sections 5 and 6 a more suitable concept of boundary
is introduced, based on a certain ‘“‘symmetrization” of the given set of
functions. We can prove that this boundary exists for all real algebras
of functions that separate points (Theorem 6.1), that it exists as soon as
the Silov boundary exists and can be only slightly bigger (Theorem 6.2),
and that it agrees with the Silov boundary for complex algebras.

For the reader’s convenience we recall the reality conditions, intro-
duced in [6, Ch. IT]. A Banach algebra 4 is said to be
of complex type if scalar multiplication can be extended from the real
to the complex field (or rather from R x 4 to C'x A), making 4 a com-
plex Banach algebra,

R,, of real type, if A is not of complex type;

R, if A does not contain any subalgebra of complex type with identity;
R, if ixpax (=1—expax) is an unbounded function on the real line
for every x € 4, x+0;

R, if —2? has quasi-inverse in 4 for every z € 4.

2. Algebras of complex type and the Gelfand space.

In this section, 4 will denote a real, commutative, semi-simple Banach
algebra. The set of non-zero continuous homomorphisms of 4 into C
(the complex numbers) is called the Gelfand space and is denoted D ,.
On @, is defined an involutoric homeomorphism 7, the conjugate mapping,
through z@(x)=¢(x). Further @ * denotes the ‘“real” part of @, i.e.
those @ € @, so that ¢(4)=R (the real numbers), and @ ,° the comple-
ment of @,F [6, Section 3]. There exists a continuous isomorphism,
z — 2, of A onto a subalgebra of C(®D,), the algebra of all complex con-
tinuous functions on the locally compact space @, that tend to 0 at
infinity [6, Section 4].

A real Banach algebra can be made into a complex Banach algebra
(is of complex type) if and only if there exists a continuous linear operator
J on A4, satisfying —J2=identity and J(xy)=Jz-y=x-Jy for all
z,y € A [6, Section 6].

It is easy to see that, for a normed algebra with identity, a complex
multiplication must necessarily be continuous [5, p. 249]. We make two
observations, generalizing this in slightly different directions. It should
be noted that without any assumption on the “non-degeneration’” of
multiplication the result is no longer true. In 2.1 and 2.2 4 is not required
to be commutative.



SYMMETRY IN REAL BANACH ALGEBRAS 55

ProrosiTiON 2.1. Let A be a real Banach algebra with an approximate
identity. Then any complex multiplication on A is continuous.

Proor. Such a multiplication is given by a linear operator J, as
above. We show that J is closed. Assume z, -z, Jz, >y and let
{e;}1c1 be the approximate identity. Then Jx,-e;,=x, Je; as n - oo gives
ye,=x-Je,=Jx-e,.

Since {e,} is approximate identity we have Jx=y, J is closed and the
closed-graph theorem shows that J is continuous.

ProrosiTioN 2.2. Let A be a normed algebra with the property that the
set of (left or right) topological divisors of 0 is not all of A. Then any com-
plex multiplication on A is continuous.

Proor. Let a be an element which is not a left topological divisor of 0.

For a sequence {x,};_, with lim, ,_x,=0 we have

lim Jz,-a = limx,-Ja = 0

n—»00 n—>o0
and limJz,=0; otherwise a would be a left topological zero devisor.

For a Banach algebra of complex type it is clear that @,=® C or,

equivalently, = has no fixed points. One can naturally ask whether the
converse is true and the following example shows it is not; an algebra
may fail to be of complex type even if all of its canonical homomorphisms
are complex.

ExampLE 2.3. Let 2 be a connected compact Hausdorff space and ¢ a
fixed-point free involution on 2 (a particular example is then the n-sphere
8", with o =reflexion in the origin). Let A4 be the algebra of all complex-
valued functions that are continuous on £ and satisfy f(ow)=f(w) for
all we Q. Then clearly @ ,=®,°. But 4 does not contain a square root
of minus the identity; such a function would have to be constant, +¢
or —i, since 2 is connected, but this conflicts with the conjugation re-
quirement. (The space of maximal ideals in 4 is 2, identified by o; in
particular for Q=8" and o=reflection in 0 it is projective space P"
[6, p. 246].)

We now proceed to show that, for an algebra of complex type, the
Gelfand space consists of two disjoint homeomorphic subsets. An
auxiliary result, although completely elementary, is stated separately.

ProrosiTioN 2.4. Let V be a topological vector space over the real num-
bers and V' a closed subspace of codimension 2 2. Then the complement of
V' is connected.
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Since a vector space over the complex numbers can be regarded as a
real space of twice the dimension we have

COROLLARY 2.5. Let V be a topological vector space over the complex
numbers and V' a proper closed subspace. Then the complement of V' is
connected.

THEOREM 2.6. Let A be a real Banach algebra of complex type. Then
D,=D,/UD," where D, and D" are disjoint and homeomorphic by .

Proor. We can take @’ to be the canonical homomorphisms of 4 as
a complex algebra

D) ={p; pe D, ¢(ix)=1ip(x) for all xc 4}
and
D) =10, = {p; pe Dy, p(ix)= —ip(x) for all xze 4}.

Hence @’ and @," are disjoint. Now take an arbitrary ¢ € @,. For
every xe A ,
Y pliz)? = g(—a?) = —p()?,
hence ¢(ix)= +ip(x). But ¢+0 on the complement of a closed subspace
(ideal) of codimension 2, hence on a connected open set (Proposition 2.4).
The function ,
z > g(iz)/p)

is continuous on this set and then must be a constant. Thusp e @ ,'u® "’
and the proof is complete.

Granted the result of Theorem 2.6, one could further ask whether the
converse is true. More precisely, if & ,=®,ud,”’, two disjoint parts
with v®,'=® ", can then a complex multiplication be introduced via
J, so that

Ji(g) = i2(g), @e®,, and JR(p) = —ik(p), @ecd,’?

The examples given in section 4 show that this is not possible in general
and the question whether J2 belongs to A for all  can be a very delicate
question in analysis.

We conclude this section with an affirmative result where the intrinsic
symmetry of @ ,, together with an involution, yields an abstract charac-
terization of algebras consisting of all continuous complex functions on
some locally compact space that tend to 0 at infinity, regarded as real
Banach algebras. Hence it falls in line with [3], [9, Theorem 4.2.]: alge-
bras of all complex functions, regarded as complex Banach algebras,
and [1], [6, Section 15]: algebras of all real functions, regarded as real
Banach algebras.
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THEOREM 2.7. Let A be a real commutative Banach algebra with an
involution so that

(1) [lx)? = «fje*x + y*y||, « constant.
(2) A contains an antihermitian element k which does not belong to any
maximal modular ideal.

Then A is homeomorphically *-isomorphic to Cy(£2), 2 a locally compact
space.

Proor. It is a known result by Arens and Kaplansky [1] that an alge-
bra satisfying (1) is homeomorphically *-isomorphic (under the Gelfand
mapz - 2) to Co(DP4,t) the algebra of all complex-valued continuous
functions on @, that tend to 0 at infinity and satisfy f(r¢)=f(p); involu-
tion is here pointwise complex conjugation. Since k= — k* the function &
takes only imaginary values but it is always =+0. Since k(tp)= —k(p)
the subsets

D, ={p; pedy, iklp)>0}, D, = {p; ped,, ik(p)<0}

form a disjoint partition of @, in two parts, homeomorphic by z. For
arbitrary fe Cy(P4,7) we define Jf by

_| V@), eed,
2 {—if(w), ped,”.

Then Jf € Co(P 4, ) and J is an isometry in the sup norm. Hence J defines
a complex multiplication and since Jf(p)= —Jf(p) involution is conju-
gate linear. The desired function algebra, F, consists of the functions
from Cy(D 4, 7) restricted to @,'. The map Cy(P 4, 7) - F is an isometric
isomorphism and since F' contains all real-valued functions and admits
multiplication by ¢, the conclusion follows.

ReMARK. If A has identity, the argument can be simplified somewhat.
Then (2) implies that ¥ has an inverse &, and since |h| € Co(P,, T) the
element % ]ﬁ] is an imaginary unit for Cy(®,, 7).

3. Real group algebras.

Harmonic analysis on groups is concerned with some locally compact
(mostly abelian) group @, its Haar measure and the complex algebras
LY(@) and M(G), consisting of all complex-valued integrable functions
and all bounded complex measures, respectively, under convolution
multiplication. In this section we will particularly study Lz'(G) and
M 5(G), the set of real integrable functions and real bounded measures,
respectively. They will be regarded as real Banach algebras and will
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particularly be considered from the point of view of the Gelfand represen-
tation and the reality conditions [6, Ch. IT].

The group G is always assumed to be locally compact and abelian, and
its dual group is denoted G. The process of complexification is as defined
in [9, p. 6], [6, p. 243] and the Gelfand space and conjugation mapz as
in [6, p. 245]. We first collect some elementary facts that can be obtained
form known results for LY(@).

Lemma 3.1.

(a) The complexification of L' (G) ts homeomorphically isomorphic to
LYG).

(b) LgYG) is semi-simple.

(c) The Gelfand space of L (G) can be identified with the dual group (e

(d) The Qelfand representation x —~ 2 is given by 2(x)=[x(g9)x(g)dyg,
x € G (dg is normalized Haar measure on Q).

(e) The conjugation map t on G is given by = — 1.

Proor. (a) is verified by direct computation. Since Lpl(G)is a (real)
subalgebra of L(@), (b) follows from the fact that L(GF) is commutative
and semi-simple. Even (c) follows from (a), noting the facts that the
Gelfand space of a real Banach algebra is in one-to-one correspondence
with the maximal ideal space of the complexification [9, Theorem 3.1.4]
and that LY(@) has @ as its maximal ideal space. In the same way, (d)
follows from the theory of L(G). For (e) finally, we note that

2e) = 50) = [1@ml9) dg = [ (- (e) 2(9) dg = 3(~2)
from which follows ty= —y.

REMARK 3.2. From (a) in Lemma 3.1 it follows that if, for two groups
Gy, Gy, Lp(G,) and LgY(G,) are isomorphic (as algebras), this also holds
for L)(@,) and LY(@G,). In the other direction this is not true. If G is a
finite group with n elements, we have LY{(@)~C" but Lp'(G)~R*®C
where k—1=number of elements of order 2 and 2l=n—k. Since there
is already for n=4 one group with k=4 (the Klein group K,=Z,PZ,)
and one with k=2 (the cyclic group Z,) we see that Lp(G) is more
efficient than LY(Q) in distinguishing groups.

We next turn to the reality conditions R, through R,[6, Section 6] and
their relation to properties of @. We immediately notice that 0 € @ maps
onto the reals, hence there is always one “real” element in the Gelfand
space and we have

ProrosiTioN 3.3. LgY(G) is R, for every G.
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Assume that 4 is a semi-simple commutative real Banach algebra such
that

(a) @, is connected,

(b) 4 is R, or A does not have identity.

It is then easy to see that 4 is R,. For real group algebras, with the same
assumptions, we arrive at the stronger conclusion R,, which follows
(Corollaries 3.5, 3.6) from the next theorem.

For the result on R;, we make use of the following theorem by Beurling
and Helson [2]: Let G be such that G is connected. If u e M(G) has the
property that ||u™|| < k,n an arbitrary integer, then u is a point mass and
[leell=1.

We let M ,(G) denote the real subalgebra of M (@) that consists of all g,
so that [du is real.

THEOREM 3.4. Let Q be such that G is connected. Then M (Q) is R,.

Proor. Let u € M, (G) and assume that expau is a bounded function
of «. From the Beurling—Helson theorem it follows that expay is a point
mass for each «, its mass equal to + 1. Since the distance between any
two such elements is equal to 2 and expax is a continuous function of «
it follows that it is a constant. Hence expoax=e for all « and x=0.

Since the R, property is inherited by subalgebras, we immediately get

CoroLLARY 3.5. If G is such that @ is connected, then M r(G) and
LpY(G) are R,.

In view of the fact [5, Corollary 24,35] that @ is connected if and only
if G@=Rr@F with F discrete and torsion-free, n an integer > 0, the results
3.4 and 3.5 are really statements about R and discrete, torsion-free groups.

Tt is clear from 3.4 that M(@), for G connected, is “almost R,” in the
sense that expau bounded implies that u is a scalar multiple of ¢ times
the identity. From this follows directly

CoROLLARY 3.6. If G is non-discrete and @ connected, then LM(G) is Rs.

We next turn to the condition R, (strict reality, the spectrum of every

element is real) and obtain a complete characterization of R, group alge-
bras.

THEOREM 3.7. For the algebra LY (@) to be strictly real it s mecessary
and sufficient that every element +0 in G is of order 2.

Proor. The algebra Lz!(G) is strictly real if and only if the conjuga-
tion map is the identity map on the Gelfand space. According to Lemma
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3.1 (e) this is equivalent to y+y=0 for all 5 in G. But since y(2z)=
(2y)(x) this is again equivalent to every element =0 of G being of order 2.

The group with two elements is denoted Z, and, for any cardinal x,
Z,* stands for the direct product of » copies of Z, with the product

topology.

TueoreM 3.8. If G is a compact group, the algebra Lz (@) is strictly real
if and only if G is homeomorphically isomorphic to Z,* for some cardinal x.

Proor. This follows from Theorem 3.7 and [5, Theorem 25.9].

REMARK 3.9. It is not necessary to assume @ abelian to have the results
3.7 and 3.8. For arbitrary G' we have that Lz!(G) is semi-simple, hence if
it is R, it is also commutative [7, p. 405]. Then G is abelian and @
abelian.

Finally, it can be pointed out that the characterization of Lz1(@) as R,
or R, opens up the prospect of studying the group of quasi-invertible
elements of these algebras, in particular its relation to the set of idem-
potents [6, Sections 9, 10].

4. Complex type and group algebras.

In this section we apply the ideas of section 2 to the particular structure
of a group algebra. It is clear from 3.1 (e) that if a group @G is such that
@ has no elements of order 2, and removal of the point 0 from the Gelfand
space G makes G consist of disjoint symmetric parts, the remaining
algebra is at least a candidate for complex type, by Theorem 2.6. The
results obtained indicate that in most cases rather subtle considerations
still remain before the question of complex type can be resolved.

The following example shows that the converse of Theorem 2.6 is not
true.

ExamrLE 4.1. We let 4 be the subalgebra of Lg(R) (R the group of
real numbers in the natural topology) that consists of all functions with

zero mean value,
o0

fx(t)dt = 0.

—00

From Lemma 3.1 it follows that @, can be identified with R except 0
and that the Gelfand map = - 2 is given by

B(w) = fezm'w' 2(t) dt .
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Since 0 is excluded it follows from Lemma 3.1 (e) that the positive and
negative half-axis form a partition of @, as in Theorem 2.6 and also the
only one possible. To a complex multiplication on A would then cor-

respond a mapping J on 4, satisfying
J2(w) = i sign (w)2(w) .

We show by a concrete example that for x € 4, J# need not belong to 4,
and hence 4 is not of complex type. Let o=, —«, where

oy(w) = [log(e+[o])]  and  ay(w) = exp(—nw?).

Since «, is monotonous and convex for o = 0, «, is the Fourier transform
of a summable function [10, Theorems 124 and 10}, hence x € A. Then
Ju is purely imaginary and, if it belongs to 4, the transform of an (a.e.)
odd, summable function. It is easy to see, however, that for any g € L(R)

N o0
fw'l ( g(t) sin 2mwt dt) dw

1

< 272 |jgl

—00

for all N>1. Since

N
f [ log (e + »)]- dw
1

increases without bound with N, while
N
f o1 exp(—nw?) do
1

stays bounded, it follows that & is not the transform of a summable
function.

We now turn to the circle group 7' and let 4,'(7") denote the subalgebra
of LY(T) which consists of all functions with mean value zero. The
Gelfand space of A4,(7T') can be identified with the integers, Z, except 0,
and, in contrast to Example 4.1, we have many different possibilities for
the partition of Theorem 2.6. In spite of this we can prove the following
result.

THEOREM 4.2. A NT) 8 not of complex type.

Proor. Assume that 4,1(7') is of complex type. Its Gelfand space
Z —{0} is denoted Z’. From Theorem 2.3 it follows that there exists a
set @' <Z’' such that ¢'U(—P')=Z' and @', — D' are disjoint. The
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complex multiplication gives rise to a mapping J on A. If we define a
function 1 on Z’' by

Mn) =1, ned, An)=—i, ne—-&,

J can be described by
Ji =12

The question whether A2 € At for all z € A4l is of course equivalent to the
same question for L! and it is known [12, p. 176] that this is the case
if and only if A is the Fourier—Stieltjes transform of a measure on 7'.
Let g=14(1+4¢2). Then B is a function on Z with the values 0 and 1,
moreover f(n)=1—pg(—n) for n+0, we can take §(0)=0. But if such a
sequence were the transform of a measure, it would be equal to a periodic
sequence except at finitely many places [4]. For n a sufficiently large
multiple of the period we would then have

B(n) = B(—n),

which implies 28(») =1, a contradiction. Hence 4,'(7T") is not of complex
type.

In contrast to the negative results 4.1 and 4.2, we can turn to the L2
theory of compact groups and get affirmative results.

For a compact abelian group G we know that L% &)< LY(G) but also
that the maximal modular ideals are obtained by restriction [8, p. 161].
Hence we have all the facts of Lemma 3.1 for the real algebra Lz*@G).
Further, let 4,%(G) denote the subalgebra of Lz%@) that consists of all
functions with mean value zero, [z(g)dg=0.

THEOREM 4.3. Let G be an infinite compact group such that G has no
element of order 2. Then A *(G) is of complex type and there are 27 different
ways of introducing complex scalars, y = card Q.

Proor. It is a standard result for L2-algebras that L% @) is homeo-
morphically isomorphic to I3@), the set of all complex functions on the
(discrete) space @ such that

ol = 3 Ja(x)]* < oo
xeé‘

The Gelfand space of A,%(@Q) is @o=@—{0}, and since it is also a (real)
subalgebra of L¥@), it follows that A2<I*G,). For 2 A, moreover

2(X) = #(—y) for all ye @,
holds. The assumption that no y € @ is of order 2 guarantees that for
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each y there is an x € 4,2 so that y(z) is non-real. Hence, since 4,2 is a
closed real subalgebra of I2(@) it must consist of all those complex func-
tions in 13(@,) that satisfy the conjugation condition.

To each unordered pair (x, — x), x € Gy, assign arbitrarily a first mem-
ber, and let @’ be the set of all first members. The mapping & — &, where

_ i), 2€P,
"‘c(l)—{_,’:[x(x), xe_@l,

is an isometry and preserves conjugation, hence &« — «, defines a complex
multiplication on 4 %(G). It is also clear that the choice of first members
in the pairs can be done in 2" different ways, all giving rise to different
maps & — «,. (For G finite it is easy to check that there are 2}*~1 different
possibilities.)

By applying the result just given to G=T and comparing with Theo-
rem 4.2, we see that the question of introducing complex scalars can be
a delicate problem in analysis. There is also reason to regard this ques-
tion in general as an abstract counterpart of problems on conjugate
Fourier series and related topics.

We finally turn to the integer group, Z, where the situation is some-
what different. The Gelfand representation of Lz'(Z) leads to a subalge-
bra W g(T) of the Wiener algebra W(T'). Wg(T) consists of all functions
on 7T that have real Fourier coefficients forming absolutely convergent
series. Here two points have to be removed from the Gelfand space to
make it eligible under 2.6. Let Wg(T') be the subalgebra of W(T') con-
sisting of those functions on [—ax,n] that satisfy f(0)=f(+x)=0. The
elements of Wg(T) are of the form f, +if, where f, is even and f, odd.
If this algebra is of complex type Jf, is a function equal to ¢f; on [0,7]
and equal to —if; on [—x,0]. But it is a consequence of general results
by Wik [11, p. 96], that Jf; does not in general belong to Wg(T').

5. A modified Silov boundary, symmetric case.

Throughout this section 2 will denote a locally compact Hausdorff
space and C,(2) the class of functions on £ that are complex-valued,
continuous and tend to 0 at infinity.

Let D be a subset of Cy(2). A set <12 is called maximizing (for D)
if it is closed and

max,z|f(0)] = max,.q|f(o)|

for all fe D. The intersection of all maximizing sets we call the Silov
sub-boundary and denote it 85Q. If 052 is maximizing, the Silov boundary
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is said to exist and it is denoted #5Q. It is a known result that if D is the
image under the Gelfand representation of a complex Banach algebra
or, more generally, is an arbitrary complex algebra that separates points,
5Q exists [9, p. 133].

The corresponding is not true, however, for the more general case of a
real algebra, as a simple example shows [9, p. 311]. For every algebra of
the class defined in our Example 2.3 the sub-boundary 252 is in fact
empty.

In generalizing the notion of Silov boundary we will use a special class
of function sets D, whose chief representative is the image under the
Gelfand representation of a real Banach algebra [6, Section 4]. For given
2 let v be an involutoric (7o 7=identity) homeomorphism on 2. By a
7-conjugate function f we mean one that satisfies f(tw)=f(w) for all
w e Q. For a set D<=Cy(2) consisting only of z-conjugate functions we
define 922 as the intersection of all v-invariant maximizing sets. If 2 is
maximizing we say that the boundary exists and denote it 0£2.

For any subset D =(Cy(£2) the weakest topology on 2 making all fe D
continuous is called the D-topology. D is said to separate points if for given
w, 6 €R, w+o, there exist f,f, e D, so that f(w)=+f(c), and fy(w)=+0.
If D separates points, the D-topology is Hausdorff and it is easy to prove
the following

ProrosriTioN 5.1. If D <C(£2) separates points, the D-topology coincides
with the given topology on L.

The result showing the significance of 92 will now be given.

THEOREM 5.2. Let D be a t-conjugate real subalgebra of Co(f2) that
separates points. Then 08 exists.

Proor. By Proposition 5.1 we can use the D-topology for 2 in the
sequel.

A standard argument, using the local compactness together with
Zorn’s lemma, proves the existence of minimal r-invariant maximizing
sets. Now let I" be such a minimal set and 2 an arbitrary z-invariant
closed set that does not contain I We will show the existence of a
g € D, so that g does not assume its maximum on X, which proves that I"
is unique minimal, hence I'=04Q.

We remark, for use in the proof, that for 2>k >0 and z a complex
number

(3) |2+ h? < hk implies |z—th| <k or |z+th| <k,
(4) |2(+)ih| <k implies |z(F )ih|>2h—k.

There exists a point w, € I'—-2X and, since X is closed, a neighborhood
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of w, that does not intersect X and is of the form V=MN?_, V, where

Vi ={w; |[filw)=filw)| <&}

with f; € D. Since V does not intersect X, this is also true of VuzV.
We first construct a r-invariant neighborhood of a special form, con-
tained in VutV. Assume

Imfi(wy) = b; # 0 for 1=5i=<k
and
filw,) real for k+1=i=n.

Put b=min,_;_, |b;]. We can assume ¢ <b/2, which in particular means
that V,; and ©V; are disjoint for 1<¢<k. The set

Vis = {o; |[fi@) —filwo) +fi(@) = fwo)[fiw) = filwe) +fi(w) — fi{w,)]| < b}

is r-invariant and a neighborhood of both w, and rw,. We now define
the t-invariant neighborhood

k n
v, = ( N V,,-)n( N V,-)
i,j=1 i=k+1
and proceed to show that

Vo= Vurl.

If w € V,, then in particular w € V;;, 1 £4 <k. From (3) it then follows that

b I
22 or |fde)=Filel <5

|fi(w) = filwo)] < 4o, < 2 4

b

that is, w e V;urV,;. Assume that w e V; for a certain ¢ and let j=+¢,
1<j<k. We know that we V,utV;. If we 1V; we would have, by
repeated use of (4),
|[fi(@) = filwe) +fi{@) = filwo) Il filew) — filwo) +fi(w) — fiwo)]]
2 (e 2lb;] —e)(2b —s—e)
2 4(b—e): > 0% >2¢h,

which conflicts with the requirement that w € V,;;. Hence w € ¥, implies
we V. In the same way w e vV, implies w € TV, and we know that

Vo=V Vurl,
in particular that ¥V, does not intersect X. The set ¥, is of the form
VO = {(0 ) It,((l))-—T’J <g,v=1,.. -’N},

where £, € D and T, are real constants.

Math. Scand. 18 — 5
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Since I' is minimal and A=I"—V, a proper closed subset of I', there
exists an element s € D, so that

max , |s(w)] < max, ols(w)| = M .

The function g is now defined by g=(M-1S)"* where n shall be chosen so
that '

max,|g(w)| < 8 = (min,s,)(2 max, ,|f(w)[+1)".
Now consider the function s,=(f,—7T,)g € D. For an w € A we have
l8,(@)] = |(t(w)=T,)g(w)| = 2 max|t(w)|d < &,.

For w e V, the same inequality holds, thanks to the definition of V,,.
Hence we have |s,(w)| <¢, on I', and the same holds throughout Q. Let
' be a point with |g(w')|=1. Then

(@) =T, = [8,(0)] < ¢,

and o’ € V,. Hence every maximum point of g lies in ¥, which is outside
of 2. This is a contradiction and the proof is finished.

6. The boundary in the general case.

We now proceed to define a boundary 02 which will exist more often
than 0502, in particular for all real subalgebras of Cy(f2) that separate
points.

Let D be an arbitrary set of functions from C(£2) that separates points.
We will construct an isomorphic set of z-conjugate functions. (‘Iso-
morphism’ here means a one-to-one mapping which preserves the alge-
bra operations defined in D). Let £,, be the disjoint union of 2 with
itself, and denote the canonical embeddings w - w; and w - w,. We
map D onto a subset of Cy(£2,,) by f — fi, Where

Jialwy) = f(w), Jra(wg) = f(—w) .

This subset, D,,, consists of conjugate functions, relative to the involu-
tion w; > wy, wy > w; on £,,, but does not in general separate points.
Hence let 2 be the sets of constancy for Dj,, ;@ — @, the natural
identification map and f;, — f the restriction of f;, to Q. The elements
of Q are single points w, or w, and pairs (w,,0,) Where f(w)=f(c) for all
fe D. Clearly 2 is locally compact and has an involution, induced by the
involution on £,,. Now D is a set of conjugate functions that separates
points and if D has a boundary o we define
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02 = {0; @02} = {w; dyedR}.

If D is already a z-conjugate set every element of Qisa pair of the form
(w,Tw) and it is clear that the boundary just defined agrees with the
one given originally for z-conjugates sets.

The main theorem now follows from this definition and Theorem 5.2:

THEOREM 6.1. For any real subalgebra of Cy(£2) that separates points 62
exists.

It remains to establish the relation between 02 and 95Q and to sub-
stantiate the claim that the former exists more often.

THEOREM 6.2. Assume that, for a set D <=Cy(£2) that separates points, the
Silov boundary 958 exists. Then 02 exists and

where X, is homeomorphic to a subset of 052 that has no interior, regarded
as a subset of 05Q2.

Proor. We first define the set

2= {w; 0ed®,Iwy, £ 0w so that f(w,) = f(w) for all fe D}

and show that X has empty interior in ¢5(2. Assume that V is a non-void
set contained in 2 and relatively open in 95Q. For w € X the point w,
is uniquely determined since D separates points. Hence we have a map
o — wg which, in the D-topology restricted to 2uZ, is a homeomorphism.
Hence V can be chosen to that ¥ nV, is empty, and also ¥V n ¥, empty.
The set (952 — V)u 7, is closed and, since the values taken on V appear
conjugated on V,, also maximizing. But then 9502 <0SQ—V which is a
contradiction; 2 contains no inner points. _

The smallest involution invariant subset of £ containing the image of
5 under the map w — @, is

4, = {o; a={w,}, 0B} U {x; a={w,}, we R} u
U{x; a=(wy,0,), 0 €dQ or e dSQ}.
Let A be some involution-invariant maximizing set in Q. Then

is a maximizing set for D, hence 4>05Q. This implies 4> 4, and since
4, is maximizing we know that 9 exists and is equal to 4,. Since we
now have

Q2 = {w; &d,edy}
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it is clear that 95Q <92 and
00Q2-050Q = {w; 0ed’R,Ioe 2, 0%, f(6)=f(v) forall fe D},

which is exactly Z2,. Hence

02 =05Quz,,
and the proof is finished.

CoROLLARY 6.3. For a complex subalgebra of C(2) that separates points
002 =050.

Proor. In this case it is immediate that X is empty.

It should finally be pointed out that in the case of an algebra consisting
only of real-valued function neither concept of boundary is of any use,
since we have

THEOREM 6.4. Let D be a real subalgebra of Cy(£2), containing only real-
valued functions and separating points. Then 050 exists and 05Q =002 =0.

Proor. For the existence of 2542 the proof of Theorem 3.3.1 in [9] can
be restated, step by step, for real scalars. Then, by the Stone—Weierstrass
theorem, the algebra is dense in Cy#(£2), the algebra of all real functions
in Cy(2), and the argument of Theorem 3.3.2 in [9] gives the conclusion.
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