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EQUIVALENCE OF
TWO METHODS OF INTERPOLATION

TORD HOLMSTEDT
Introduction.

The purpose of this paper is to show the equivalence of two methods
of introducing interpolation spaces, defined by Gagliardo (see for in-
stance [2]) and by Peetre (see for instance [6]). (We remark that in view
of the results in [5], we also get the equivalence with the interpolation
spaces in [3], [4].)

Section 1 deals with Gagliardo’s and Peetre’s definitions of interpola-
tion spaces. The short Section 2 contains some preliminaries to the proof
of the equivalence, which is given in Section 3. For the main result see
Theorem 3.1.

The problem treated in this paper has been suggested to me by pro-
fessor Jaak Peetre. I thank him for valuable advice and for his great
interest in my work.

1. The definition of the interpolation spaces.

Let A, and A4, be two Banach-spaces, which are continuously embedded
in a Banach-space .«/. The corresponding norms are denoted by |la||,,
respectively [a . (Often in the applications we have A,<4, or
A4,<4,.)

a. Gagliardo’s definition of interpolation spaces between Ay and A,. We
introduce

(1.1) M(a) = {(»,y) |a; € 4;, 1=0,1, with

a=ay+a;, [l oyl Sy} -

M(a) is defined for all a € Ay+ A,. The pointset M(a) is contained in
the quadrant x>0, y 2 0 with the following properties:

(L.2) M(a) is convex .
(1.3) If (x,y)e M(a), then (x+h,y+k)e M(a), h,k=20.

Received November 5, 1965.



46 TORD HOLMSTEDT

We also assume that
(1'4) inf(a:,v)sM(a)x =0

(1.5) inf, pem@y = 0.

(1.4) and (1.5) are fulfilled for instance when 4,nA4, is dense in 4, or
A,, respectively. Denote by oM the boundary of M excluding those
points belonging to the positive halfaxes. The curve oM can be repre-
sented by a function

Yy =yx), O<zx<as+oo,

which is positive, convex, decreasing (infy=0) and with left and right
hand derivatives at every point of its domain of definition. The derivative
is negative and increasing.

With a suitable chosen set function ¥ one can show (see [2]) that the
space

AF = {a IF[M(a)]<oo}
with the norm
lallsp = F[M(a)]

becomes an interpolation space. Here we shall only deal with the
special case (see [2])

1/(a+6+1)
(1.6) FIM] = Fop, [M] = ( [ @y 1dar Idyl")
oM

1(at+p+1)
= (J. x”‘yﬂy'l"dx)
oM

with «,8,7,620, y+d=1. We write

Aa,ﬂmd = AFa,ﬂ,v,é .

REMARK. Arduini [1] has shown that 4, ,, , only depends on two
parameters, viz. «+y and f+4. This result will follow in a new way
from our theorem 3.1.

b. Peetre’s definition of interpolation-spaces between A, and A4,. We
introduce

(1-7) K(taa) = infa=ao+a1(”a0”A0+t”a1”A1)’ ae A0+A19 O<t<oo.

K(t,a) is a positive, concave and increasing function with left and right
hand derivatives at every point. If we further assume (1.4) and (1.5) we
get

lim, ,  t-1K(t,a) =0 and lim, K(t,a)=0.
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With a suitable chosen functional @ one can show (see [6]) that the
space
Ay = {a|ae dy=4,,D[K(t,a)] < oo}
with the norm
lall4, = PLK(E,0)]

becomes an interpolation space. Here we shall only deal with the special
case

o 1/p
(1.8) Dlg] = Py lo] = ( f ()P t-1 dt>
0
with 0<f<1, 1<p=s . We write
Ao p = Ag, -

REMARK. The conditions (1.4) and (1.5) are necessary for F, ;. ,[M]
< oo and @, ,[K]<oo.

2. The connection between 0M(a) and K(i,a).

From the definition (1.7) of K(t,a) it follows that the connection
between the points (x,y) on 0M(a) and K(f,a) is given by a kind of
Legendre transform

(2- 1) K(t, (L) = inf(x, y)edM(a) (x + ty)

or with the inverse transform
(2.2) T = SUP,_,c00(K(t,a) —ty) .

If we regard y as a function of z, we also get, at those points where y is
differentiable,

(2.3) K(t,a) = z—yly', = -1y .

At the points where y is not differentiable, we can give a meaning to
(2.8) by letting ¢y’ take any value between the derivative on the left
and on the right at the point. At those points where K(t,a) is differenti-
able we get

(2.4) x = K(t,a)—tk(t,a), y = k(t,a),

where

dK(t,a)

k(t,a) = o

As above we can give a meaning to (2.4), even when K(t,a) is not differ-
entiable.
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3. The equivalence between 4 sand 4, .

o, B, s
Our aim is to show the following theorem.

TaEOREM 3.1. If 6 +y=p(1—6) and S+ 6=p0, then A

3= AO, P and
the morms (|- || 4, by, and |||l 4 p are equivalent.

B, v,

We first prove the theorem for a special M. We assume that oM is a
curve, which does not touch the co-ordinate axes or is asymptotic to any
of them. Let (0,y,) and (z,,0) be those points where M meets the co-
ordinate axes. Then

(dyjdelyegy < oo and  dafdylymp, < oo
and we put
|dy/d|gmo- = |da[dyly—g- = +oo.
To a oM of this type there corresponds a K(t,a) which is defined for ¢ > 0
and for which, according to (2.1), (2.2) and (2.4),

K@) =0, k0)=y,< oo,
(3.1) {and
k() = 0 for &> |y(@g—0)| = |da/dylymo. -

NotaTtions. In the sequel we denote equivalence of norms by ~.
We omit 6 and p in @, , and write F, ,; instead of F, ; , ;. We also often
omit one or both variables in K(¢,a) and k(t,a). Note that in the sequel
always holds x+y=p(1—0), +J=p0 and y+d=1 but sometimes not
o,B,7,6=0.

Lemma 3.1. We have D[K]~ D[tk] ~ DK —tk].
Proor. We get

(@K = f t-v0-1 Kp dt
0

= [ (p6)~1 t=20 KPP + 0~ f t-» Kv-1F dt
0

but from (1.4), (1.5) and (2.1) it follows that

K < tsup(a:,y)eaMy = tyo ’
so that

t°K < t'-%, >0 ast—>0
and
K

IIA

SUP(, yyeoMT = %o »
8o that
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t*°K < t“’xo -0 ast—>oo.
Hence we have

(B[K])P = 61 f £-90 Ko-1 k di .
0
From Holder’s inequality we get

O(@[K])P = f §-v0 Ko-1J dt
0

(o] 1/p o]
< -pb-1 14 -po-1 Kp
< (!t (tk) dt) (Oft K dt)

D[K] < 6-1D[tk] .
The concavity of K(¢) gives us that K(t) >¢k(¢) so that
P[K] = D[ik],

and the equivalence between @[K] and D[tk] is proved.
The rest of the assertion is proved in an analogous manner.

LeMMA 3.2. We have
D[tk] = Fo ,1[M](1—-60)"V? and O[K—tk] =TF

p

1-1/p

_1,0[M] 67V,

Proor. We get

(D[tk])> = f 1p0-0-1 ko (¢) dit
0

= p(1-0)1 [ k() deve0)
0

= —p1(1—0)1 ( f P00 d(kP(2)) + [P0 kP ()] )
0

The last equality follows from a partial integration in a Stieltjes integral.
The last term will disappear; for according to (3.1) k(t) is bounded and
k(t) =0 for sufficiently large t. If we now change variables in the Stieltjes
integral and let k be a continuous variable, we get
0
@[tk = —p1(1-0) [ a0 d(kn)

k(0)
k(0)

= (1-0)1 f tpa-9 k-1 df; ,
0
Math. Scand. 18 — 4
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After another change of variables, where we let y be the independent
variable, we get because of k=y and ¢=|y'|! = |dz/dy|
Yo
(@) = (1-0)* [ 42 dafdylp-0 dy = (1= 0) (Fy,,o[MI? .
0
The second part of the assertion is proved in exactly analogous manner.
An immediate consequence of lemmas 3.1 and 3.2 is the following
CoroLLARY 3.1. We have Fy , [M]~F,_, [M]~PD[K].

LemMA 3.3. There is a constant C which only depends on p, 0 and «
such that for all x with 0Sx<p—1

F, M) < CFo (M), F,,[M]<CF,, M), F,,[M]sCoK].
Proor. According to corollary 3.1 it is enough to show one of the

inequalities. From Holder’s inequality we get

Zo

(F. (M)P = [ ayfly'! de
0

zo Bl@-1) ;%o o/(p-1)
< ( [y typove-o dw) ( [ oo dx)
0

0
= (Fo, p1[ M])PH/®-D (F, _, J[M])p/®-D
~ (Fo palM])P .
Lemma 3.3 gives us one of the inequalities of the equivalence between

the norms F, ;/M] and @[K]. To prove the remaining inequality we
need the following lemma.

LemmA 3.4. If 0Sx<p—1and 620, then
Fa,ﬂ[M] z pUP (a+1)-1/e Fa+1,ﬁ—l[M] .

Proor. We get

EAY X0
(a4 1) [ @y ly P do—p [ @iyt tly 0 do
0 0

= [ tfdz@ry 1y P o
0
Zo
= ey ly PR — [ @y dfda(ly|0) de

0
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Here is [x*+1y?|y’|°];° =0 and the last integral <0 for x,y =0, and |y'|® is
decreasing. Thus we get the lemma.

In order to prove the remaining inequality of the norm equivalence,
let & be an integer such that

a+k<p-l<atk+1.

By replacing « in lemma 3.4 by x,a+1,...,4+k we get a sequence of
inequalities

Foopd M)z B=DYP (x+1+1) VP F, 40y pa[M],  1=0,1...k,
which together give
(3.2) FofM] 2 CF, 1,511 M]

where C is a constant >0 that only depends on «, p and 6. Holder’s

inequality and (3.2) give us now the last inequality of the norm equiv-
alence
Zo

(Fpor, oMY = [ 22y |p da

0
Zo

g(!

= (Fa’ﬂ[M])p"pﬁ/(k+l) (th+k+l,/3—k-1[M])pﬁ/(k+l)
< C-PGD(F M) .
Note that 0=p/(k+1)=1.

1-B/(k+1) ,%o B/(k+1)
x“yﬁ Iy'la dx) <f xa+k+1yﬂ—k—lly’\5+k+1 d.’L‘)
0

Y
|
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Finally, we investigate the remaining case, when the coordinate axes
are tangent to or asymptotic to M. Let (x;,¥,) and (x,,¥,) be two points
of 0M (neither of them being an endpoint of éM) with z, <z,. Draw
the tangent to oM (or a line with a slope between y'(x; — 0) and y’(z; + 0))
at the point (x,,%,) and let that part of 6 for which = <z, be replaced
by the tangent. At the point (x,,y,) we make the corresponding construc-
tion, i.e. we replace the part of o.M for which y <y, by the tangent at the
point (x,,¥,). See the figure on p. 51.

We call the new boundary dM*. To 0. M* there belongs a K(t,a), which
we call K*(t,a). On oM* and K*(¢,a) we can apply what we have proved
above. Thus we know that there are constants C; and C, with 0<C, =
C, < oo, depending only on «, p and 0, such that

(3.3) 0,B[K*] £ F[M*] < C[K*].

If we now let ; — 0 and y, - 0, 9 M * will tend pointwise to 6, and from
the definition (2.1) of K we see that K*(f,a) tends increasingly to K(¢,a).
Then according to the Beppo Levi theorem @[K*] tends to @[K]. We
also have F[M*] - F[M]; for if (x,,¥;) is a point on oM between (x,,¥,)
and (z,,¥,), then

x3 Y3

FQLYP = [ ayfldylde? du + [ & ldafdyldy,
0 0

and when z; decreases towards 0, ¥’ and |dy/dz|’ increase in the first
integral, while the second is unchanged. When y, decreases towards 0,
z and |dz/dy|” increase in the second integral, while the first is unchanged.
Passing to the limit in (3.3) we thus get

C,P[K] = F[M] = C;P[K],

and theorem 3.1 is proved.
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