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SPECIAL TRIGONOMETRIC SERIES AND
THE RIEMANN HYPOTHESIS

L. A. RUBEL and E. G. STRAUS

By a special trigonometric series, we mean a series of the form

2 sind,z
(1) 271’—, 0<AgSh<SA<..., A, >o00,

n=0 n
which we abbreviate as 3A-1sinlx. We call the numbers 1, the fre-
quencies of the series. Throughout this paper, we restrict our attention
to the range x> 0. Let { denote the Riemann zeta function, and let

e =p+iy
denote the non-trivial zeros of .

Rademacher [2] has shown that if the Riemann hypothesis is true,
then the series

(2) 2

>0 7

sinyx

has certain jump discontinuities. It converges uniformly on closed inter-
vals of x> 0 that exclude the logarithms of the prime powers, to a func-
tion that jumps (— 4)p—t* logp at each klogp, k=1,2,... . He suggested
that such unusual behaviour of this special trigonometric series might
constitute evidence against the Riemann hypothesis.

At the same time, he began a program of synthesizing a special trigono-
metric series that has these jumps, in the hope that the distribution of
the synthetic frequencies would illuminate the distribution of the actual
frequencies y. We begin this paper by completing his program; indeed,
we construct in Theorem 1 a special trigonometric series having any
preassigned jumps, subject only to the mild restriction that the places
where the jumps are to occur have no finite limit point. There is also
considerable latitude in the density of the frequencies of such a series.

Our methods are elementary and use no number theory or properties
of ¢,

Received October 9, 1965.



36 L. A.RUBEL AND E. G.STRAUS

Next, extending Rademacher’s original argument, we show that the
series (2) has the described jumps if the hypothesis

(B-1)?
< oo

s>4v>0 ¥

(3)

holds. Now (3) is considerably weaker than the Riemann hypothesis,
and seems to be only slightly out of reach of what is now known about
the distribution of the zeros p. We end the paper by showing that if
the exponent 2 in (3) were increased to 2 + ¢, for any positive ¢, then the
corresponding series would converge.

In summary, it seems doubtful that considerations of this kind can
shed much light on the distribution of the zeros of the Riemann zeta
function.

THEOREM 1. Given any sequence {o,} of real numbers indexed by the
integers n, 1<n< N, N < oo, and any identically indexed sequence {s,} of
positive real numbers, that has no limit point, then there exists a special
trigonometric series that converges uniformly on each closed subinterval of
x> 0 that contains no 8,,, and whose sum H(x) jumps by o, at s, for each n
in the index set.

In addition to the assertions of the theorem, it is possible to make the
frequencies 4 distinct. Furthermore, given any positive continuous func-
tion wu(t), 0<t< oo, such that u(t) > oo as £ - oo, it is possible to make
the number of frequencies A that do not exceed ¢ smaller than fu(t). We
have not looked at the converse problem of thickening the sequence A.
Neither have we considered the problem of what jump discontinuities are
possible for a series of the form 3 ¢(A) sinAx for any function other than

P(A)=1/A.

Proor. We arrange the s, in increasing order. We shall suppose that
s;=n. This involves no loss of generality, since for each a >0,

sin (ad)x sml(ax)

R

It is an elementary fact that the series

X sin(2k—1)x

Stz =,;§1 2k—1

is 2n-periodic, converges uniformly on closed sub-intervals of (—,0)
to —m/4, and converges uniformly on closed sub-intervals of (0,7) to
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+x/4. Now it is easily verified that if § is restricted by 0 < d < }, then the
two series
sin (2k — 14 6)x sin(2k -1+ 68)x
ik b d i et A
ok—1+0 D

are uniformly equiconvergent; that is, the difference of the n-th partial
sums converges uniformly on >0. We then see that

sin(2k—1—-46)x sin(2k—1+4d)x
4
“ z\( 2k—-1-96 2k—1+6 )

converges suitably to a function with the same jumps as 28(x) coséx. The
same is true for the series 3, obtained by rewriting (4) in the form (1);
that is,

sin(l—d)z sin(l+4d)x sin(3—48)x sin(3+d)x

(5) 20 =

1-6 1+6 3-0 3490

Therefore, on choosing 8 properly, we can make the jumps of 3, at =
any number we please in the interval (—=/2,7/2). By choosing finitely
many numbers d,,. . .,d;, adding the corresponding series of the form (5),
and rearranging the sum by non-decreasing frequencies, we can make the
jump at z any number we please. By choosing the numbers §; to be
distinct, we may make the frequencies distinct.

We have, then, produced a series 3, of the form (1) that jumps first
at s, by the amount ;. The series 3, will also jump on some subset of
{ns,}, n=2,3,4,. .., and nowhere else. Suppose that the first of these is
148, Now if 8, <n,8;, we construct by the above procedure a series 3,
that jumps first at s, by the amount o,. If s,>n,s,, we instead make the
first jump of ¥, cancel the jump of I, at nys,. A similar provision is
made in case s,=n,8,. We provide, in any event, that the frequencies
that occur in 3, are not only distinct, but are different also from the
frequencies that occur in 3,. This is possible since the frequencies that
occur in 3, lie in a finite union of arithmetic progressions.

We now proceed in order, producing series 3, that have the required
jumps, or that cancel (perhaps only partially) unnecessary jumps intro-
duced in the preceding steps. Because the s, have no finite limit point,
and because the series 3; each have jumps spaced further apart than s,,
we arrive by addition at a formal series

(6) z=21+22+-..

that has formal jumps o, at the s,, and no other jumps. If we let 3,
denote ¥, with finitely many initial terms deleted, then 3, has exactly
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the same jumps as ¥,,. We shall specify later which terms should be de-
leted, but to begin with, we demand at least that the frequencies that
occur in 3, should all exceed n. We now let

(7) =43t

where 3’ denotes the rearrangement of the formal series by increasing
frequencies 4. Such a rearrangement is possible, and the rearranged 1
approach infinity, since for each positive number N, there are at most
finitely many frequencies that do not exceed V.

We denote the sequence of all the places where the jumps of the accu-
mulated ¥; occur by s,’,s,’,. .., arranged in increasing order — we have
seen that s,” > o0 as n - . Let I,,1,... be closed intervals whose
union is the complement of {s;’}, j=1,2,..., and such that each closed
subinterval of this complement is contained in a finite union of the I,,.
We denote by 3,[M,N] the sum of the terms of 3, with frequencies 1
lying in the interval M <A< N, with a corresponding meaning for
3'[M,N]. Our next deletion requirement on the 3,’ is that for each
n, M, N, we have

IS.[M,N] < 2" on ILu...ul,.

This is possible by the uniform convergence of each of the 3, on closed
intervals excluding its jumps. By the Cauchy convergence criterion, it
follows that 3’ converges uniformly on each interval I, for if we write,
for n=m,

IZ'[M,N]| £ |Z,[M,N]|+...+|2,[M,N]|+
+{]Z;,H[M,N]I+|Z;+2[M,N]]+,,,}
so that on I, if n>m,
IS [M,N]| £ {IZ;[M,N]|+...+ [, [M,N]} + 2.

Given ¢> 0, we need only choose n = m so that 2" < ¢/2, and then choose
M, so that for M,N = M,,

IZ;[M,N]| £ ¢/2n  for j=12,...,n.

It follows that |3'[M,N]|<e on I,, whenever M,N = M,, and we have
proved that 3’ converges uniformly on I,,. Consequently, 3’ converges
uniformly on each closed interval that contains no s,’.

A more delicate study must be made in the neighborhood of a point s;’
where the jumps of the series 3, occur. To each such s;/ we assign a
closed interval 7'; that contains s; in its interior and that excludes all
other places of jumps, s,’. It remains to be proved that 3’ has the proper
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jumps. But first, we must delete some more initial terms from the 3,,;
this will not affect the preceding arguments.

For each positive integer n, consider those intervals 7',, for m <n in
which ¥, has no jump. We delete enough initial terms from 3/, so that
on each such 7,

=, [M,N]| < 2 forall M,N .
Now we write

S.[M,N] = 3™ [M,N] + 37 [M,N] + 3 [M,N] + ...,

where 37 =3 if 3 does not jump in 7, and where 37*=0 (the empty
sum) otherwise.

By an earlier argument, we may, given ¢> 0, choose M, so that for
M,N =M, we have

STPIM N+ |30 [M,N])|+... <e.

In other words, the jump of ¥’ in 7', is the same as the jump of 3™ in
T,. It remains to prove that if 3, ,...,3,, are those 3; that jump in

T, and if
" z[m] an + an . + an

rearranged by increasing frequencies, then the jump of 3™ at s, is the
sum of the jumps of the ¥, there.

The case where only one of the 3, jumps at s, is trivial. We consider
here only the special case where 3, has an unnecessary jump at 2z be-
cause of a necessary jump at =, and 3, cancels this jump. The general
case is similar. Working modulo uniformly convergent series of continu-
ous functions near x =2z, the n-th partial sum of ¥, is

2(Z cosdx) % gn(QkT)

and the n-th partial sum of 3, is

,x\ 2 sin(2k—1)x/2
4 (Zcosé,- 5) > —op1

k=1

Now 3, jumps by the amount n 3 cos2nd; at x=2x, and 3, jumps by
the amount — 2z Ycosnd;’ at = 2x, so that in order to have the correct
cancellation, we must have

3 cos2nd; — 2 Ycosmd; =
Now, by a familiar formula,
% sin(2k—1)z 1 rsin2nt
S 2k—-1 2) sint

(=}
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Writing 3 =3, +3,, where 3 is arranged in order of increasing frequencies,
we see that for each sufficiently large real number ¢, there are twice as
many frequencies of 3, that do not exceed ¢ as there are frequencies of ¥,
that do not exceed ¢, give or take one or two terms. We must prove
then that the following sequence u,(r) converges uniformly in a neigh-
borhood of x=2x:

sin 2n# 12 sin 4nt

2 x,
b+ 2 (zcosaj' ) i 7
2 Oj

u,(x) = (X cosd;x) J.

sinf

Let us prove the result for 2z < x < 27+ 1, say. The range x < 27 is treated
similarly. We write

x =2n+y
and observe that

5 in 2nt &t — 5 , by sindnt it
u,(x) = (X cos x)J—~—— (}‘_cos ; §> of et
Now
y
1 1
lim fs1n2nt (————) dt =0

n—>oc0 v sint ¢

uniformly for 0<y =<1 by the Riemann-Lebesgue Lemma, in the form

f f(zx)e?= dx

< 4 [ 1f@+aly—f@) de,

applied to the function f(x)=(1/sinz)—(1/x) for 0<x <y, f(x) =0 other-
wise. Since the cosine sums are continuous, it follows that we need only
prove that the sequence u,’(z) converges uniformly for 2n<x<2x+1:

sin4nt

2nt
sin 2n dt + 2(3cosd;'x) f -~—-—d

u,'(x) = (Zcosdx) f

Changing variables, we write

sint

u,'(x) = {20086,;90 2 3 cosd;’ }J'w—dt
so that

u,'(x) —u,' () = {Zcoséx 2 Y cosd; }Jilil—tdt
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Since [8t~!sintdt is a uniformly bounded function of @ and b, and since
the cosine sums are continuous, we may, given ¢> 0, choose a number
6> 0 so that for 2nLx < 2r+ 4,

lu, () —u,,'(x)] < ¢  for all pairs m,n .

But uniformly for §sy =<1,

2ny ¢
. sin
lim f T
m, n—>00 t
2my

and the result follows.

Next, modifying Rademacher’s method, we exhibit the connection
between the series (2) and the zeros of (.

THEOREM 2. If the hypothesis (3) holds, then the series (2) converges
uniformly in each olosed interval that excludes all numbers of the form
klogp, k=1,2,3,...,p prime, to a function that jumps

—ip~**logp
at each klogp.

Proor. We begin with the Riemann- von Mangoldt Formula [1, p. 36],
which asserts that for > 1, ¢+ p¥,

SAm) =t — zg'lt‘? — }log(1—¢t-2) — log2n,

n=st
where

_|logp if n = p*, pprime, k = 1,2,3,...
An) = otherwise

and where we arrange the g in order of non-decreasing |y|. It follows
that the series

Zo 't
converges to a function f(t) that jumps —logp at each positive integral

power p* of each prime p, uniformly in each closed subinterval of ¢>1
that contains no prime power. Now write ¢ =expz, and F(x)=f(t), so that

exp (B +1iy)x
B+iy

Using the fact that the zeros g occur in conjugate pairs, we have

F) =3

Zepﬁ

T (26 cosyx+2y sinyz) .
y>0ﬂ +
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Writing c¢(x) as notation for a generic continuous function, and using the
facts that the g are bounded and that 3y-2< oo [3, p. 181], we have
sinyx

(8) F@) = o) + 2 X

>0

expfx .

Since with each 8 we also have its mirror image in the line y =}, we may
rewrite (8) as

F(x) = o() + 3 {exppu+exp(1—pla} —rr.
>0 Y
Let us now write, formally,
sinyx
(9)  Fla)—cz)—2Aexpha) 3 —"
>0 i
= Y {expfz+exp(l—p)xr—2 expix} a4l
>0 Y

Now for z in any fixed interval I,
expfz+exp(l—plz—2expix = O((B—1)?),

uniformly in I. Consequently, if the hypothesis (3) holds, then the sec-
ond series in (9) converges uniformly in each closed interval, and the
series > y~! sinyx will therefore have the expected behavior.

The next result shows that the hypothesis (3) is “almost’’ within
reach.

TrEOREM. For any number q>2,

S(B=1Yy < .
>3

Proor. Let N(o,T) represent the number of zeros ¢=pg+1iy of the
function that satisfy ¢<pf and 0<y<T. According to a theorem of
A. Selberg [3, p. 204], we have

(10) N(o,T) = O(T1ogT)
uniformly for } <o <1, where
r=1-Ho—-1%).
Let
1 NeDg
(11) S(O’,T) = Z -= z —_

B=0,0sy<T? n=1 Vn

According to (10) we have, for suitable constants c;, that
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n < coynr log‘yn
and hence

(12) Ya > ¢y(nflogn)°,
where
1 1
§=—=
r 1—4(o—1%)
Substituting (12) in (11), we obtain

TlogT

logty\s
S(0,T) < ¢y f (%g_> dt .
1

Now consider, for ¢>0,

1 ﬁ
f (6 —13)11 8(0,T) do = f ~J(T),
4 8>3, OSyST 4 q
where
- 3 o
p>4,0sy<T ¥V
We have

J(T) = ¢ f (0= 1)1 8(0,T) do < ¢, f (0— )1 j (“’f‘) dtdo,

from which it follows that

Tlongo t logt
J(T) < ¢, f o8 f(a ;al( g) dodt |
t=1 o=4%
where
o—}
“ ey
and therefore that
e g logt)”
1 o7 -1 (227 dodt
(13 J<T><c3_f t! — it (25 dodt
where
b=1}o-1).
But for any 1> —1 and » with 0<u <1, we have
3 1 —$logu 1
At dr = ———— A=V d ——T'(A+1).
ojxu dx (Cloguy ! yreVdy < (Cloguy ™ A+1)

43
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If we use this estimate in (13) with 2=0¢—4%, A=¢—1, and u=
(t! logt)t, we obtain

TlogT

=y logr 1

>t 0sysT VY 1 t (logt)?

Since the right side is bounded whenever ¢ > 2, we have the desired result.
We remark that a slight modification of the proof actually establishes
that

—3)e
(8 %)— < oo  whenever ¢=0 and p+¢>2.
y(logy)?
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