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A NEW PROOF
FOR FYULNER’S CONDITION FOR MAXIMALLY
ALMOST PERIODIC GROUPS

PER TOMTER

Introduction.

A topological group is called maximally almost periodic (m.a.p.) if the
continuous characters separate points of the group. An important part
of Pontrjagin’s duality theorem states that any Abelian, Hausdorff locally
compact group is m.a.p. A standard proof makes use of the Haar integral
and the associated L!-algebra; after the construction of a positive definite
function the Krein-Milman theorem is applied to obtain a suitable
character.

A general condition for m.a.p. of an Abelian, topological group has been
given by Felner ([2] and [3]; see also Cotlar and Ricabarra [1].). The
proof makes use of the Banach mean value; it is observed that the con-
volution of two positive definite functions is almost periodic (Godement
[4]), and an almost periodic function is the uniform limit of finite linear
combinations of characters. Our alternative proof dispenses with con-
siderations drawn from the theory of almost-periodic functions, but is
modelled after the above-mentioned classical proof for locally compact
groups. A Banach mean value will replace the Haar integral; we need a
substitute for the ordinary group algebra. For this we will use a suitable
subalgebra of the full generalized group algebra ; thus our proof of Felner’s
result will show an application of the generalized group algebra to a
practical problem.

In the first section we include a characterization of sets with positive
upper Banach mean value.

1. Banach mean values and relatively accumulating subsets.

The concept of a relatively dense subset of an Abelian group is well
known; in this section we are lead to the definition of a new concept,
relatively accumulating subsets; and we include proofs for the simple
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connections between these and the lower and upper Banach mean values
of the sets.

We will assume that @ is an Abelian group. We recall from the theory
of Banach mean values (see [2]): If f is a bounded real function on @,
the upper mean value of f is defined by

M(f) = Mef(x)) = mf sup 2 o fl@+ay);

ze@ n=1

2 = {&g,. . s00; 0y .0} 6, >0, Z(xn=1; a,€@ for n=1,2,...k.
n=1

Dually, the lower mean value of f is defined by

_ﬂ_[(f) —M( f) —sgpmi' z‘xnfx'*'an)
ze@ n=1
The Banach mean value, M, is a translation-invariant, linear functional
defined on the space of bounded real functions on G' with the property

M(f) = M(f) = M(f).

It is easily extended to the complex case. We have M(1)=1. If G is
not locally precompact, it is easily seen by an argument due to A.D.
Aleksandroff that M will not be strictly positive for continuous, positive
functions (open sets).

We will need the following concepts to construct functions for which
M will be positive.

Let A be a subset of G. A is relatively dense if a finite number of
translates of A covers @. The minimum number of such translates will
be called the D-index of A.

DerFiNiTION. A4 is relatively accumulating if the following condition
holds: There exists a natural number 7, such that for any natural number
m, at least m + 1 of any mn,+ 1 translates of 4 have a common, non-empty
intersection. The smallest number n, with this property is called the
A-index of the set 4.

ProposiTioN 1. A relatively dense set A is relatively accumulating; and
the A-index of A i3 not larger than the D-index.

Proor. Assume that {4 +¢;}, i=1,2,...,n, cover G, and let m be a
natural number. Consider any mny+ 1 translates of 4,

A+b,, 1=1,2,...,mny+1.

Choose a in 4, and consider the mn,+ 1 elements
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Ji=a+bi+by+ .. . +bi + b+ by 1= 1, mng+ 1
Then at least m+1 of these elements must belong to one of the sets
A +c;, let

Jippe e -:fi,,,+1€A+0k .
Then

atbi+ ... +bppa—0 € (A+b)n...n(4d+by,,);
and this proves the proposition.
ProrositioN 2. Let A be a subset of G and n a number such that no n+ 1

translates of A are disjoint. Then A — A s relatively dense, with D-index
not larger than n.

Proor. Let 4+b;,1=1,...m, be m disjoint translates of 4 (m <n +1).
If there are no m+1 disjoint translates of 4, then the sets 4 —4 +b;,
1=1,...,m, cover G. For if x € G, we have

(x+A)Nn(4+b;) + 0
for some ¢. Let x+a;,=a,+b; with a,,a,€ 4. Then
x = az—a1+bi € A—A+b1:§

hence the sets 4 — 4 +b; cover G.
In particular, if 4 is a relatively accumulating set with A-index =,
then 4 — A is relatively dense with D-index not larger than =.

THEOREM 1. Let G be an Abelian group and A a subset with character-
istic function y 4. We have:

M(xy) >0 if and only if A is relatively dense.
M(y4) >0 if and only if A is relatively accumulating.

Proor. The first part follows directly from the definitions. If 4 is not
relatively accumulating, we can, for any natural number n,, find an m
and translates y RSN FEC— such that no m+1 of these have a

non-empty, common intersection. Choose «;=1/(mn,+ 1), then

mn20+1 ( ) < m m 1
su 7 \T) = < — = —
Preq = zxA+:c, mno+ 1 mn, ny

and M(y,)=0. Now suppose that A is relatively accumulating with
A-index n,, and let 37, o; 7 44, be any convex combination of translates
of y,. We can always assume f<«x;<28, 1=1,2,...,n, for some §>0.
(Of course several of the translates may coincide.) Now determine the
number m such that mny<n < (m+1)ny. Then
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1

e+ 1y =
(since 37 _,&;=1), hence all
(x.Z——L—-—» 1 =12,...,n.
YT 2(m+1)my T

By hypothesis, at least m + 1 of the sets 4 +x; have a non-empty, com-
mon intersection; for x in this intersection we have

m+1 1

n
*; () 2 —— —
i§1 zxA+a:,( ) = 2(m+ l)no 2”0

Hence
n

1 _ 1
Supa:eGigl‘xiXA+xi(x) = o, and  M(x,) 2 omg >0.
We note that, since M(y,)< M(x,), the first part of Proposition 1 is
a consequence of this theorem.

CoroLLARY. Let A be a relatively accumulating subset of G. There is
then a Banach mean value on G, M, such that M(x ) > 0.

Proor. Relatively accumulating sets are exactly the sets with positive
upper mean value. For the conclusion, see [3].

2. Generalized group algebras.

A brief account of the generalized group algebra for a locally compact
group is given in [5, p. 275]. We note that local compactness is no nec-
essary requirement for this construction. In fact, let G be an Abelian,
Hausdorff topological group, let UC(G) be the Banach space of all uni-
formly continuous bounded complex functions on G' (supremum norm).
The dual space UC*(() is a Banach space, it is organized to a Banach
algebra by the convolution product. Let I,J € UC*(®). The convolu-
tion of I and J is defined by

(IxJd)f) = IJ(f-,)) for feUC(A);

that is, I is applied to the function y — J(f_,), where f, (x)=f(x—y).
Translation is defined in UC*(G) by

I(f) = I(f-,) .
“Involution” is defined in UC*(G) by

I'(f) = I(f*),  where f*(x) = f(-2).
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This latter operation will not in general satisfy the relation (I *J) =
J” *I”; thus UC*(G) will not always be a “-algebra. However, we shall
study a subalgebra where this relation does hold. The following relations
are easily verified:

IxJ =IxJ, = (IxJ),, (1) =),
Mol = 170 = Il *JI = ()|
In general, UC*(@) is a complex Banach algebra.
If M is a Banach mean value, M'(g)=¥M(g)+M(g*)) will define a
Banach mean value with the property M'(g)=M'(g*) for all g € UC(@Q).
Thus there will be no loss in assuming that M has this property. Further-

more, let f be a real function in UC(() with f=f*. We define an element
I of UC*(G) by

I(g) = Myf(2)g(=)).

The algebra .o/, generated by all translates of I consists of all elements
of the form 37, x;(I™),,, «; € C.

ProrosiTION 3. For J, and J, € o, we have (JyxJ,) =Jy *J,".

Proor. Let J,=37,0;(I™), and Jy=37 ,B;(I"),. Applying the
above relations, we get

1) = 3 oy ((I™4)) gy

]

I Rds = 3w () () iy,
¥

It is then sufficient to show that (I™)” = I"*, which can be done as follows:

I™)(g) = ([ xI*...xI)(g*)
= (Ix.. .+ Dyl 1((g*)-s,)]
= (Ix... x D)l (g% () +25))
= (Ix. . o Dgpli)(g(— 21— 25)) ]
= I(Z"D[I(xm_l){. ATy (g(— 2y —wp— . . —Z))} - }
= M My, - AMe(f@). . f@pg(—2— ... )} -}
- M(xm){M(xm-1>' cAM G (f(—20). - f(— )@+ - - +Z,)} - - }
= Mg {. . AMe(f@). . f@)g@+ .. +T,))}}
= I"(g) .

We can conclude that &/ is a commutative ~-algebra which is closed
under translations.
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We now gather the most important properties of the closure of &7, in
a theorem (For Banach "-algebras, see (5)).

THEOREM 2. Let f be a real function in UC(Q) with f=f*, and let the
algebra sZ, be given as above. The closure o, of o, in UC*(G), is a com-
mutative, Banach ~-algebra closed under translations. For any element
J € o, the translation x — J, is a continuous function from G into <Z;.

Proor. From standard theory, the closure of a commutative subalge-
bra is commutative. Translations and involution are isometries, hence
o, will be closed under these operations. The identity (J,*J,;) =
Jy xJ," is extended from 7, x &, to o7, x &, by continuity. For the last
result, let first J =1I™. We have

I™g) = Mg,y .. Mo (f(@) ... f@n)g(@s+ . .. +24)),

I™ag) = Mgy - M (f@) . . f@n)g(@1+ . .. + 20 +2))
= Mg, .. Mo, (f@—2)f (@) ... f@n)g(@rt ... +2p)),

1(T™)y, () — (I™)y,(9)]

= IM(:c,,,) cee M(xﬁ((f(xl’_yl) “‘f(%—yz))f(xz) v f@p)gle + .. +xm))l

< fIm-2gll Mg,y - - « My (f (1= 91) —f (@1~ 93) -
Let 6> 0, and choose a symmetric neighbourhood V of 0 in @ such that
for z,—2,e V

If(21) = f(29)] = 6flIfI™2.
Then, for y,—y,€ V,

[(1™)y,(9) — (™) (@) = Bligll

hence ||(I™),, —(I™),,[|<4. It follows immediately that translation by =
is a continuous function of x for any J € «7,.
Let J € o/;; and 6> 0. Choose J, € &, such that ||J —J,||<8/3. Then

12— (Tl = (=)l = =4l = 6/3
for any « € G. Choose a neighbourhood V of 0 in @ such that for z, —z,e V
1(T1)ey — 1)zl = 8/3 .
Now let y,—y,e V. We have
Iy = Tuall = 1y = (T)yll + 1T 1)y, = Tyl 1T )y =Tl < 6
THEOREM 3. Let & be a subalgebra of UC*(G) such that & is a complex

Banach ~-algebra, and let V be a strongly continuous, unitary representation
of G. There is then a unique ~-representation A of & such that
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Ay = Ia(KVsm))  for  1eZ; §neH,
where H is the Hilbert space for the representation, and {,) the inner prod-
uct.

Proor. It is easily seen that (V_£,%) is a function in UC(@), so the
right side of the equality is well-defined. For constant &,

n— I(:c)«V:cE’ 77>)
is a bounded, conjugate linear functional on H; we define 4,¢ as the
unique element & € H such that
Em) = Ix(Vebim))  for  nmeH.

A, is linear on H;

lA£IR = (&8 = I(KV,6,4,8)) = || 1IN} 1A L5
hence ||4;4|| =] ||¢]] and A4; is bounded with ||4,]|<|I||. The mapping
I - A, is easily seen to be a representation. We have

<AI‘ JE’ 77> = (I*J)(x)(<Vx§9 7]>) = I(y)[J(x)« Va:+y£’ 77>)]
and

((AroAp)émy = CALA;8),m)
= I(v)«Vv(AJf)’ ’7))
= I(v)(<AJ§’ V—u’?))
= I(y)[J(z)«Va:E’ V—y’?» = I(y)[J(x)(<Vx+u§’ "7))] .
Hence 4;, ;=A4;°4;.
We have

& Apmy = (A1n,E) = LKV 1,8))
= Iy({V_a1,8))
= I(:c)(<£’ V—m’?))
= Iz(KV.£,m)) = (46> = K&, (A)* ),

hence (4;)*=A4;., and 4 is a "-representation.

3. Proof of Felner’s condition.

We will prove the strong version of Folner’s condition.

THEOREM 4. Let G be an Abelian, Hausdorff topological group. Then G
i8 m.a.p. if and only if the following condition holds: For any z,€ G,
%y %0, there exists a relatively accumulating subset E of G, such that
v ¢ E—E+E—E.
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That this condition is necessary, is trivial; we only have to prove the
sufficiency.
Let x4 and K be as above, and choose a symmetric neighbourhood W
of 0 with
¢ E—E+E-E+W+W+W+W+W.

By the corollary to Theorem 1 we can choose a Banach mean value M
with M(xg)>0; again, as in section 2, we can assume M(g)=M(g*) for
all g€ UC(G). For the construction of the positive-definite function ¢,
we follow Fglner [2] and [3]. Let A be a uniformly continuous function
from G into [0, 1] with A(0)=1 and A(x)=0 for ¢ W. Then
j(@) = sup,zh(@—y)
is a uniformly continuous function from @ into [0,1] with j(z)=1 for
zeE and j(x)=0 for x ¢ £+ W, and
p@) = My(jl@—1t)j(—1)

is a real, continuous positive-definite function on @, with ¢(0)>0,
px)=0forx ¢ E—E+ W+ W, M(p)>0. Let
flx) = SUPyeE—E+W+Wh(“’ -Y);

then f’(x) is a uniformly continuous real function from G into [0,1] with
f'(@)=1 for xc E—E+W+W; f'()=0 for x ¢ E-E+W+W+W.
Define

f@) = H(f'@+f'(-2),

then f has all the properties just stated for f’, and f=f*.
As in section 2 we construct the functional I and the corresponding
Banach “-algebra. We have

I(p) = M(f(@)p(x)) = Mu(p(x)) > 0.

Assume ¢_, (x)+0 for some zecE—~E+W+ W+ W, then z+ax,€
E—-E+ W+ W, that is,

g€ E—E+E-E+W+W+W+W+W
which is a contradiction. Hence
I((p—zo) = M(:c)(f(x)‘?’—xo(x)) =0.

It is well known that a continuous positive definite function ¢ on G
corresponds to a strongly continuous unitary representation V of @
(over a Hilbert space H’) such that g(z)=(V &,&>. (See f.ex. Gode-
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ment [4]; the construction of V does not depend on the assumption that

G be locally compact). Let 4 be the corresponding “-representation of
&, (Theorem 3). We have

(Alzofo’50> = (Ixo)(a:)(<Va:§0’§O>) = I(a:)(<Vw+zo§0’§0>) = I(‘P—zo) =0

and (Ao be) = IV b)) = I(g) > 0.

Hence 4 ,%:l:A 7> and A,_Izo#:(). We now refer to Hewitt and Ross
[56, Theorem 21.37, p. 330]. By this theorem, there must exist an ir-
reducible “-representation T' of </, (over a Hilbert space H) such that
T,,,%:}: 0. Since .2/, is commutative, any irreducible ~-representation is
1-dimensional. Now let

teH, &+0, Jed,.

Define U (T ;§)=T, (). This is well-defined, for if 7',6=T £, we have

<TJ,¢-J’x'§ >TJ1-—J’15> = <(TJ,;—J’,)* °TJ,—J',§,§ >
= <T((J—J’)~)_,,«(J—J'),E & =T, %, Ty ;€ =0;
that is, T 7f= T;£.
It is easily checked that U, is a unitary operator on the 1-dimensional
space H. We have
£ = TJy +

Uil Ts8) = Ty,
U, U v(TJE) =U x(TJy‘f) = T(Jy),5 >

hence  — U, is a representation of G over H. We show that this repre-
sentation is continuous: Let #=7";£; any element in H can be written in
this form. Consider the map z -~ Uy=T,¢§. Since J € &/,, the map
x - J, is continuous (Theorem 2), the map J’ — T';. is continuous, and
finally, the map B - B¢ from the bounded operators on H into H is con-
tinuous, hence the result.

Since T,%:l:TI, H is 1-dimensional, and &40, we have T,E#TIZOE;
that is, U, (T;6)+T;5. Hence, U,, is not the identity operator.

Let &, have unit length in H, and let y(x)=(U,&),&,). By the above
argument U, &+ &), hence y(xy)+1. Thus y is a continuous character
on @ with y(x,)+1; and the proof is complete.

§=Ty)t,

-z
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