EXPANSIVE AUTOMORPHISMS IN COMPACT GROUPS

T. S. WU

An automorphism \(\theta \) of a topological group \(G \) is expansive iff there is neighborhood \(V \) of the identity such that for any two distinct elements \(x, y \in G \), there is an integer \(n \) with \(\theta^n(xy^{-1}) \notin V \). For the notions of expansive homeomorphism on topological space, see [1], [2].

In [1], M. Eisenberg proved that when \(G \) is a compact connected Lie group and \(G \) admits an expansive automorphism, then \(G \) is abelian. He also shows the existence of expansive automorphism on \(n \)-dimensional torus group for all positive integer \(n > 1 \). In this note, we shall prove the following theorem.

Theorem. If \(F \) is a compact connected finite dimensional topological group and \(G \) admits an expansive automorphisms, then \(G \) is abelian.

Proof. Let \(G \) be a compact connected finite dimensional topological group. It is known that \(G \) is isomorphic to \((L \times H)/D \), where \(L \) is a compact simply connected semi-simple Lie group, \(H \) is compact connected abelian group, and \(D \) is a finite normal subgroup of the direct product \(L \times H \). (Cf. [4, Example 107]). Since \(D \) is finite,

\[
\frac{LD}{D} \approx \frac{L}{L \cap D}
\]

is a compact connected semi-simple Lie group. (Accurately, we should write \((L \times \{ \mu \})D \) for \(LD \), where \(\mu \) is the identity of \(H \).) Let \(\theta \) be an automorphism of \((L \times H)/D \). Then \((LD)/D \) is invariant under \(\theta \). This can be seen by the following diagram:

\[
\begin{array}{ccc}
L \times H & \xrightarrow{\pi} & H \\
\varphi \downarrow & & \downarrow \psi \\
(L \times H)/D & \xrightarrow{F} & H/\pi(D)
\end{array}
\]

Here, \(\pi \) is the projection, \(\varphi \) and \(\psi \) are the quotient maps, \(F \) is defined by

Received August 20, 1965.
This research was partially supported by NASA of U.S.A., NGR 10-007-005.
\[F(\varphi(l,h)) = \varphi(h). \] One could show that \(F \) is well defined and \(F \) is a continuous homomorphism. Since \(\theta((LD)/D) \) is also a compact connected semi-simple Lie group and \(H/\pi(D) \) is abelian, it follows that \[F \theta((LD)/D) = \pi(D) \in H/\pi(D). \] Since \(\ker F = (LD)/D \) we get

\[\theta((LD)/D) \subseteq (LD)/D. \]

Hence \(\theta \) induces an automorphism on \((LD)/D \). Now, by a theorem in [3], the bi-continuous automorphism group \(A((LD)/D) \) of \((LD)/D \) is compact when \(A((LD)/D) \) is topological by compact open topology. So the natural action of \(A((LD)/D) \) on \((LD)/D \) is equicontinuous, a fortiori, no automorphism on \((LD)/D \) can be expansive unless \((LD)/D \) is degenerate. Thus, we can conclude if \(\theta \) is an expansive automorphism on \(G \), then \((LD)/D \) is degenerate, and \(G \) is abelian. The proof is complete.

REFERENCES

WESLEYAN UNIVERSITY, MIDDLETOWN, CONN., U.S.A.