ON THE TOTAL REGULARITY OF FUNCTION-TO-FUNCTION TRANSFORMATIONS OF TRIANGULAR TYPE

JAN THOMPSON

By a function-to-function transformation of triangular type we mean a transformation of the form

(1)
$$F_x(f) = \int_0^x f(t) d\alpha_x(t) ,$$

where $d\alpha_x$ is a bounded measure on (0,x), and α_x is supposed to be normalized so that $\alpha_x(t+) = \alpha_x(t)$, 0 < t < x. The function f is assumed to be Borel-measurable and bounded on every (0,x). In particular, when $\alpha_x(t) = \beta(t/x)$, we have

(2)
$$H_x(f) = \int_0^1 f(xt) d\beta(t).$$

The latter is analogous to the well-known Hausdorff sequence-tosequence transformation.

The transformation F given by (1) is regular (convergence- and limit-preserving), if and only if (cf. [3, p. 16])

$$\int_{0}^{x} |d\alpha_{x}(t)| \leq M,$$

for all x > 0.

(4)
$$\int_{0}^{x} d\alpha_{x}(t) \to 1, \quad x \to \infty,$$

and

(5)
$$\int_{\mathbb{R}} d\alpha_x(t) \to 0, \quad x \to \infty ,$$

for every bounded and Borel-measurable set E.

Received August 26, 1965.

so that

In this paper we shall give necessary and sufficient conditions for a transformation of this type to be totally regular, i.e. regular and infinite-limit-preserving. The result will correspond to a classical one by W. A. Hurwitz [1] concerning triangular sequence-to-sequence transformations.

THEOREM 1. The transformation F given in (1) is totally regular if and only if (4) and (5) holds and there is a $t_0 \ge 0$, so that α_x is non-decreasing in $[t_0, x]$ for every $x > t_0$.

In the Hausdorff case theorem 1 takes the following form.

THEOREM 2. The transformation H defined in (2) is totally regular if and only if β is a bounded positive measure with

$$\beta(0+) = \beta(0)$$
 and $\beta(1) - \beta(0) = 1$.

In the proof of our theorems we shall apply the following definition and lemma (cf. Natanson [2, p. 207 and 266]).

Definition. A number λ (finite or infinite) is called a derived number of the function f at the point x_0 , if there exists a sequence

 $\{h_{\nu}\}_{1}^{\infty}$, $h_{\nu} \neq 0$, $h_{\nu} \to 0$ as $\nu \to \infty$, $\lim_{n \to \infty} \frac{f(x_{0} + h_{\nu}) - f(x_{0})}{h_{\nu}} = \lambda.$

We write $Df(x_0)$ for the set of derived numbers.

LEMMA. Let f be defined and finite on [a,b]. If at every point of [a,b] all the derived numbers of f are non-negative, then f is a non-decreasing function.

If we recall the necessary and sufficient conditions for regularity quoted at the beginning of this paper, the necessity of the conditions in theorem 1 is easily seen. We then conclude the sufficiency from the following result.

THEOREM 3. If F is totally regular, there exists a $t_0 \ge 0$, so that α_x is non-decreasing in $[t_0, x]$ for every $x > t_0$.

PROOF. The function α_x defines the totally regular transformation F according to (1). Let us further assume that, given $t_0 \ge 0$, there exist $x > t_0$ and τ with $t_0 \le \tau \le x$, so that for some $\lambda \in D\alpha_x(\tau)$, we have $\lambda < 0$. First let $t_0 = 0$. We get $x_1 > 0$, τ_1 with $0 \le \tau_1 \le x_1$ and $\lambda_1 \in D\alpha_{x_1}(\tau_1)$ with $\lambda_1 < 0$. Suppose that $\lambda_1 \neq -\infty$. (If $\lambda_1 = -\infty$ only small modifications are necessary.) Then there is a sequence $\{h_r^{(1)}\}_1^\infty$, $h_r^{(1)} \ne 0$, so that

$$\{\alpha_{x_1}(\tau_1 + h_{\nu}^{(1)}) - \alpha_{x_1}(\tau_1)\}/h_{\nu}^{(1)} \rightarrow \lambda_1, \quad \nu \rightarrow \infty,$$

that is

$$\big\{\alpha_{x_1}(\tau_1 + h_{_{\boldsymbol{\nu}}}{^{(1)}}) - \alpha_{x_1}(\tau_1)\big\} \big/ \, (\lambda_1 h_{_{\boldsymbol{\nu}}}{^{(1)}}) \ \to \ 1, \quad \ v \to \infty \ .$$

Choose v_1 so that

$$\{\alpha_{x_1}(\tau_1 + h_{y_1}^{(1)}) - \alpha_{x_1}(\tau_1)\} / (\lambda_1 h_{y_1}^{(1)}) > 0$$

and suppose that $h_{r_1}^{(1)} > 0$. We define a function f on $[0, x_1]$ by

$$f(t) = \begin{cases} -1/(\lambda_1 h_{\nu_1}^{(1)}) & \text{if } t \in (\tau_1, \tau_1 + h_{\nu_1}^{(1)}], \\ 0 & \text{if } t \notin (\tau_1, \tau_1 + h_{\nu_1}^{(1)}]. \end{cases}$$

(If $h_{\nu_1}^{(1)} < 0$ we take $f(t) = 1/(\lambda_1 h_{\nu_1}^{(1)})$ for t in $(\tau_1 + h_{\nu_1}^{(1)}, \tau_1]$ and t = 0 outside this interval.) Since t = T is regular we get

$$\int\limits_{0}^{x_{1}}f(t)\;d\alpha_{x}(t)\rightarrow0,\quad x\rightarrow\infty\;,$$

and

$$\int_{x_{1+}}^{x} d\alpha_{x}(t) \to 1, \quad x \to \infty.$$

Consequently there is an $\omega_1 > \max(1, x_1)$ so that

$$\int_{0}^{x_1} f(t) d\alpha_x(t) < \frac{1}{2},$$

and

$$\int_{x_1+}^x d\alpha_x(t) \ < \ 1 + \frac{1}{2} \quad \text{ for } \ x > \omega_1 \ .$$

Let $x_1,\ldots,x_{n-1},\tau_1,\ldots,\tau_{n-1},\omega_{n-1}>\max{(n-1,x_{n-1})}$ and f on $[0,x_{n-1}]$ be chosen so that

$$\int_{0}^{x_{n-1}} f(t) d\alpha_x(t) < 1/n ,$$

and

$$\int_{x_{n-1}+}^{x} d\alpha_x(t) < 1 + 1/n \quad \text{for } x > \omega_{n-1}.$$

Then according to our assumptions there exist (with $t_0 = \omega_{n-1}$) $x_n > \omega_{n-1}$ and τ_n with $\omega_{n-1} \le \tau_n \le x_n$ so that

$$\big\{\alpha_{x_n}(\tau_n+h_{\nu}^{(n)})-\alpha_{x_n}(\tau_n)\big\}\big/h_{\nu}^{(n)} \ \to \ \lambda_n \ < \ 0, \quad \nu \to \infty \ ,$$

for some sequence $\{h_{\nu}^{(n)}\}_{\nu=1}^{\infty}$, $h_{\nu}^{(n)} \neq 0$, $h_{\nu}^{(n)} \to 0$, $\nu \to \infty$. Suppose as before that $\lambda_n \neq -\infty$ and take ν_n so that

$$\left. \left\{ \alpha_{x_n}(\tau_n + h_{\nu_n}{}^{(n)}) - \alpha_{x_n}(\tau_n) \right\} \right/ \lambda_n h_{\nu_n}{}^{(n)} \; > \; 1 - 1/n \ .$$

Suppose that $h_{r_n}^{(n)} > 0$ and define f on $(x_{n-1}, x_n]$ by

$$f(t) = \begin{cases} -n/(\lambda_n h_{\nu_n}^{(n)}) \ + \ n-1 & \text{if} \quad t \in (\tau_n, \tau_n + h_{\nu_n}^{(n)}] \ , \\ n-1 & \text{if} \quad t \notin (\tau_n, \tau_n + h_{\nu_n}^{(n)}] \ . \end{cases}$$

(If $h_{r_n}^{(n)} < 0$ we choose f as before, mutatis mutandis).

In this way the function f is inductively given, and evidently f(t) tends to $+\infty$ with t. We get

$$\begin{split} \int\limits_{0}^{x_{n}} f(t) \; d\alpha_{x_{n}}(t) \; &= \int\limits_{0}^{x_{n-1}} f(t) \; d\alpha_{x_{n}}(t) \; + \int\limits_{x_{n-1}+}^{x_{n}} f(t) \; d\alpha_{x_{n}}(t) \\ &< 1/n \; + \; (n-1) \int\limits_{x_{n-1}+}^{x_{n}} d\alpha_{x_{n}}(t) \; - \; n\{\alpha_{x_{n}}[\tau_{n} + h_{\nu_{n}}^{(n)}] \; - \; \alpha_{x_{n}}[\tau_{n} +]\} / \; \lambda_{n} h_{\nu_{n}}^{(n)} \\ &< 1/n \; + \; (n-1)(1+1/n) \; - \; n(1-1/n) \; = \; 1 \; . \end{split}$$

Consequently, for all n,

$$F_{x_n}(f) \leq 1,$$

and

$$\lim_{x\to\infty}\inf F_x(f)\leq 1,$$

which contradicts the total regularity of F.

Therefore the assumption in the beginning of the proof must be false and accordingly there exists a $t_0 \ge 0$ so that all the derived numbers of the function α_x in $[t_0, x]$ are non-negative for $x > t_0$ and, by the lemma α_x is non-decreasing in $[t_0, x]$ for every $x > t_0$. The proof of theorem 3 is hence complete.

REFERENCES

- W. A. Hurwitz, Some properties of methods of evaluation of divergent sequences, Proc. London Math. Soc. (2) 26 (1927), 231-248.
- 2. I. P. Natanson, Theory of functions of a real variable, New York, 1955.
- 3. A. Persson, Summation methods on locally compact spaces, Diss. Univ. Lund, 1965.