INFINITE KUMMER EXTENSIONS

WILLIAM LEAHEY

Let n be a positive integer and let F be a field which contains n distinct n^{th} roots of unity. Denote by F^* the multiplicative group of non-zero elements of F and denote by $(F^*)^n$ the subgroup of n^{th} powers of elements in F^*. Suppose C is an algebraic closure of F. The classical theory of Kummer extensions establishes a 1-1 correspondence between the subfields K of C which are finite abelian extensions of F of exponent dividing n and the subgroups Q of F^* containing $(F^*)^n$ and such that $Q/(F^*)^n$ is finite. The correspondence is such that if K corresponds to Q then $G(K/F)$, the Galois group of K/F, is isomorphic to $Q/(F^*)^n$. For an exposition of these results see [1].

The object of this paper is to extend these results to arbitrary (not necessarily finite) abelian extensions K of F whose Galois group is of bounded order n, i.e. if $\sigma \in G(K/F)$ then $\sigma^n = 1$.

Thus let K be a subfield of C containing F such that K/F is Galois and $G = G(K/F)$ is abelian of bounded order n. Define

$$S = S(K) = \{ \alpha \in K^* : \alpha^n \in F^* \}.$$

For $\alpha \in S$ define a function χ_α on G with values in K^* by the rule

$$\chi_\alpha(\sigma) = \alpha/\sigma(\alpha).$$

Just as in the ordinary theory of Kummer extensions it is easy to check that $\chi_\alpha(\sigma) \in Z$ and χ_α is a homomorphism of G into Z where Z denotes the group of n^{th} roots of unity in F^*. Further, the map $\alpha \rightarrow \chi_\alpha$ is a homomorphism of S into X, the group of characters on G. Note that since G is of bounded order any character on G is automatically continuous in the Galois topology on G.

Now let χ be any character on G. Since G is of bounded order n, one may assume that χ takes its values in Z. The map $\sigma \rightarrow \chi(\sigma)$ is continuous and satisfies

$$\sigma \tau \rightarrow \chi(\sigma) \chi(\tau) = \chi(\sigma) \sigma(\chi(\tau)).$$

Thus $\sigma \rightarrow \chi(\sigma)$ is a continuous cocycle for the system (G, K^*). Since $H^1(G; K^*) = 1$ (see [2]) there exists $\beta \in K^*$ such that

Received October 1, 1965.
\[\chi(\sigma) = \beta / \sigma(\beta). \]

Since \(\chi(\sigma)^n = 1 \) for all \(\sigma \in G \) one has \(\sigma(\beta^n) = \beta^n \) for all \(\sigma \in G \). Thus \(\beta \in S \).

This shows that the map \(\alpha \to \chi_\alpha \) of \(S \) into \(X \) is surjective. The kernel of this map is \(F^* \) and therefore \(S/F^* \approx X \).

Now set
\[Q = Q(K) = \{ \alpha^n : \alpha \in S \}. \]

Then \(Q/(F^*)^n \) is isomorphic to \(S/F^* \). Thus given an abelian extension \(K \) of \(F \) of bounded order \(n \) one can associate the group \(Q/(F^*)^n \). According to the Pontriagin duality theorem then \(G \) is topologically isomorphic to the character group of \(Q/(F^*)^n \).

Note that \(Q \) also has the property that \(K \) is generated over \(F \) by
\[S = Q^{1/n} = \{ \alpha \in K^* : \alpha^n \in Q \}. \]

For let \(K' = F(S) \) and let \(\sigma \in G(K/K') \). Then for any \(\chi_\alpha \in X \),
\[\chi_\alpha(\sigma) = \alpha/\sigma(\alpha) = 1. \]

The duality theorem gives that \(\sigma = 1 \). Therefore \(K' = K \).

It remains to show that any subgroup \(Q \) of \(F^* \) containing \((F^*)^n \) is a \(Q(K) \) for some field \(K \) and that the correspondence \(K \to Q(K) \) is 1-1. Given such a \(Q \) set
\[Q^{1/n} = \{ \alpha \in C : \alpha^n \in Q \}. \]

and take \(K = F(Q^{1/n}) \). Then \(K \) is the splitting field over \(F \) of the set of polynomials \(\{ X^n - \beta : \beta \in Q \} \). Since each of these polynomials is separable \(K \) is a normal separable extension of \(F \). On the other hand \(K = \lim \uparrow E \) where \(E \) is the splitting field over \(F \) of some finite set of polynomials
\[\{ X^n - \beta_i : \beta_i \in Q, i = 1, 2, \ldots, s \}. \]

Therefore \(G(K/F) = \lim \downarrow G(E/F) \). By the theory of ordinary Kummer extensions each \(G(E/F) \) is finite abelian of exponent dividing \(n \). Therefore \(G(K/F) \) is abelian of bounded order \(n \). Moreover, the field \(K \) just constructed has the property that
\[Q(K) = \{ \alpha^n : \alpha \in S(K) \} = Q; \]

for let \(R \) be a subgroup of \(F^* \) such that
\[Q \supset R \supset (F^*)^n \]

and \(R/(F^*)^n \) is finite. Then \(Q = \lim \uparrow R \). If \(E \) is the subfield of \(C \) obtained by adjoining the set \(\{ \alpha \in C : \alpha^n \in R \} \) to \(F \), then the theory of finite Kummer extensions gives that \(Q(E) = R \). Therefore \(Q(K) = \lim \uparrow Q(E) = \lim \uparrow R = Q \).
Finally, since any abelian extension K of bounded order n can be described by $K = F(S(K))$ it follows that the correspondence $K \rightarrow Q$ is 1-1. These considerations give the following

Theorem. There is a 1-1 correspondence between the abelian extensions K of F of bounded order n and the subgroups Q of F^* containing $(F^*)^n$. This correspondence has the property that if K corresponds to Q then $G(K/F)$ is topologically isomorphic to the character group of $Q/(F^*)^n$.

References

University of Hawaii, Honolulu