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CONVEX SETS AND CHEBYSHEV SETS II

ARNE BRONDSTED
Introduction.

In a previous paper [1], the author proved the following result:

(V) For every integer n23 there exists an n-dimensional non-smooth
Banach space E with the property that every Chebyshev set in E ts convex.

(A subset M of a normed linear space ¥ is called a Chebyshev set if
each point in ¥ has a unique nearest point in M. We shall take all spaces
as real linear spaces; i.e. every complex space is identified with its under-
lying real space.)

Theorem (V) is a supplement to the following list of well-known results:

(I) A finite dimensional Banach space E is rotund if and only if every
non-empty closed convex set in E is a Chebyshev set.

(II) A finite dimensional Banach space E is rotund and smooth if and
only if the Chebyshev sets in E are identical with the non-empty closed convex
sets in K.

(IIT) A 2-dimensional Banach space E is smooth if and only if every
Chebyshev set in E is convex.

(IV) If E is a finite dimensional smooth Banach space, then every Cheby-
shev set in B 1is convex.

This collection of theorems naturally suggests the problem of character-
izing those finite dimensional Banach spaces in which every Chebyshev
set is convex,—in terms of the geometrical properties of the unit ball.
In the present paper we shall give such a characterization for spaces of
dimension 3. The proof is based on a lemma which also yields the basis
for a new proof of (V).

One might also ask whether it is possible to characterize those finite
dimensional spaces which are smooth,—in terms of the Chebyshev sets.
In the final section we shall give a solution of this (as it comes out) not
very interesting problem.
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For references to the theorems (I)—(IV), see [1]. Section 2 (Termi-
nology) and section 3 (Preliminaries) of [1] may also be useful to the
reader.

The author thanks Victor Klee for some valuable comments.

Preliminaries.

We shall briefly review some notation introduced in [1]. Let E be a
normed linear space with unit ball K. For a fixed Chebyshev set M in E
the metric projection of Z onto M (i.e. the mapping which to each point
in F assigns the unique nearest point in M) is denoted by =n. If n(z)=
n(z) for every x € EN\M and every z on the halfline emanating from 7 (x)
and passing through x, then M is called a sun. For x € E\N we put

K, =2+ |n(@)-2| K,

and we let 7', be the supporting cone of K at the point z(x); that is,
T, is the intersection of all closed halfspaces containing K, and bounded
by supporting hyperplanes of K, at n(z). A point x € E\ M is said to be
of type 1 if n(x) is a smooth point of K,. If n(x) is a non-smooth point,
then xz is said to be of type 2. No type is ascribed to points in M.

If M is a Chebyshev set in a finite dimensional space, then M is a sun,
and the metric projection onto M is continuous (cf. section 3 of [1]).

Basic Lemma.

In the proof of the lemma we shall use the following two propositions.
Proposition 1 has been proved in [1].

ProprosITION 1. Let E be a normed linear space, and let M be a Cheby-
shev set in E which is a sun. Then (intT,)nM =0 for every x € ENM.

ProprosITION 2. Let E be a normed linear space, and let M be a Cheby-
shev set in E which is a sun and has a continuous metric projection w.
If for every x € E\M there exists a y € ENM such that x € intT, and y
18 the limit of some sequence {y,} of points of type 1, then M is convex.

Proor. Assuming the condition fulfilled, we shall prove the convexity
of M by proving that every point x € E\M can be separated from M
by a closed hyperplane; (i.e. there exists a closed hyperplane such that x
is contained in one of the open halfspaces determined by the hyperplane
and M is contained in the complement of this open halfspace). If
x € E\M is of type 1, then by proposition 1 the supporting hyperplane
of K, at m(x) separates x from M. So, consider a point x € E\M of type



CONVEX SETS AND CHEBYSHEV SETS II 7

2, and let y and {y,,} be as stated in the condition. Let H, be the (unique)
supporting hyperplane of K, at n(y,). By proposition 1, H, separates
K, and M. The hyperplanes H, are of the form

H, = {z el: <‘=&n’z>=<§n’n(yn)>} ’

where £, is a non-zero element of £*, the dual of E. If we require

€all = 1,
and
<En>n(yn)> = sup {<£n’z>: RE Kyn}
(1) = inf{(§,,2): ze M},
then &, is uniquely determined, and
(2) CnYn)) = {EnYud + [7(Yn) —Yall -

Since the sequence {£,} is contained in the unit ball of E*, and any such
ball is known to be weakly compact (i.e. w*-compact), it follows that
{£,} contains a weakly convergent subsequence. Hence, we may as well
assume that {£,} is weakly convergent. Let & be the limit point. Let

H = {ZGE: <§,2> = <§,7t(y)>} .
It follows from (2) that

&a(y)) = &y + ny)—yll .

Hence, ¢ is not identically zero, and therefore H is a closed hyperplane.
Furthermore, using (1) and the fact that every z € K, is the limit of a
sequence {z,}, where 2z, € K, , it is easy to verify that

& nly)) = sup{(,2): z€ K}
= inf{(¢,2): ze M}.

Consequently, the hyperplane H separates K, and M. But then H also
separates T, and M. And since x € int 7T, it follows that x is separated
from M by H. This completes the proof of proposition 2.

Let K be the unit ball of a normed linear space I (or more generally,
a convex body in a locally convex topological linear space). One may
define a face of K to be a non-empty subset of bd K which is the inter-
section of K and some collection of supporting hyperplanes of K.
Clearly, every face is closed and convex, and every non-empty inter-
section of faces is a face. Among the faces containing a fixed x € bd K
there is a minimal one, namely the intersection of K and all supporting
hyperplanes of K at x; we shall denote this minimal face by N,. Note
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that a face N, may have faces of K as proper subsets. It is well-known
that if & is finite dimensional, then every face of K is of the form N_,
and every face may be obtained as the intersection of K and just one
supporting hyperplane.

LemMA. Let E be a normed linear space with unit ball K, and let F be
the set of those faces N, of K which are determined by non-smooth boundary
points x of K. Assume that the following three conditions are fulfilled :

(a) Every N, e F contains more than one point.
(b) If N,,N,e F, and N,nN,+0, then N,=N,,.
(¢) The set F is at most countable.

Then every Chebyshev set in E which is a sun and has a continuous
metric projection is convex.

REMARKS. Consider the following conditions:

(a’) Every exposed point of K is a smooth point of K.

(b') If Noe &, and H is a supporting hyperplane of K such that
HnN,+0, then N,<H.

(b"”) If N, e %, then K has the same supporting cone at every point
in N,

(¢') Every N, e & is contained in an open set O, such that N, e #
and N,n0,+0@ implies N,=N,.

Condition (a') is an obvious consequence of (a). If E is finite dimen-
sional, then (a) and (a’) are equivalent, according to a remark above.
It is easy to verify that each of the conditions (b’) and (b"’) is equivalent
to (b). The proof below will show that condition (¢) may be replaced by
condition (¢’). However, if E is separable, and in particular if E is
finite dimensional, condition (c¢’) implies (¢). Condition (¢’) always im-
plies (b).

Proor or THE LEMMA. Let M be a Chebyshev set in £ which is a sun
and has a continuous metric projection n. Let z € EN\M be a point of
type 2. To prove the convexity of M it suffices, by proposition 2, to
prove the existence of a point y € E\ M such that x € int 7', and y is the
limit of a sequence of points of type 1.

Clearly, we may assume that =0 and |jz(0)|| =1, whence K,=K. Let
N=N,,, and let L be the flat spanned by N. Note that the flat spanned
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by m(0o)— N is the subspace —z(0)+ L, and that this subspace has di-
mension =1 by condition (a), whence
(—a(0)+ L)\(n(0)-N) + 0 .
First, let us prove that
(3) 2+K < K, forevery ze —m(o)+L.

Since —m(0)+ L is parallel to every supporting hyperplane of K at x(o),
and K<T,, it follows that
:+K <T,

for every z € —n(0)+ L. Furthermore, by proposition 1,

(intT)nM =0 .
Hence, we have
(int(z+K))nM =0

for every z € — (o) + L which proves (3).
Let the mapping 7: E\M — bd K be defined by

w(2)—2
T(z) = ————.
ll(2) — 2l
Then, by condition (b), we have
(4) z€ —m(0)+L and t(z)e N  implies —24+T,=T,.

Using (3) and (4) we shall prove the following two statements:

(5) z € m(o)—N implies 7(2)e N and oeintT,.
(6) z € (—a(0)+ L)\(n(0)—N)  implies  7(2) ¢ N .
Let z € 7(0) — N. Then n(0) € z+ N which by (3) implies
2+K =K,
and
7(z) = m(o) .

But then it follows that 7(2) € N. By condition (b) this implies
—24T,=T,.
Using (4) we get T,=T,, and therefore
o € intT,.

This completes the proof of (5). To prove (6), let
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z € (—a(0)+ L)\(n(0)—N),
and suppose 7(z) € N. We know by (3) that z+ K< K,. Suppose that

z+K S K, .
Then clearly
T, < int(—2+T),),

whence, by (4) and proposition 1, we get
(o) ¢ M,

a contradiction. Hence,
:+K =K,.

This clearly implies =(z) € L and zn(z) +7z(0). Since N is convex, and the
segment [7(2),7(0)] is contained in the flat L spanned by N, it follows
that N contains a segment which is parallel to [7(2),7(0)]. Let u be the
midpoint of such a segment in N. Then it is easy to verify, using condi-
tion (b), that for a sufficiently large positive real A we have

Hn(z) +n(0))—Au+AK < T,
and
(2),7(0) € bd (¥n(2) +7(0))— Au+AK ) -

This, however, implies that the point
}(7e(2) + m(0)) — Au

has both n(z) and n(0) as nearest points in M, a contradiction. Hence,
we have proved (6).
Now we choose y to be any point in the relative boundary of z(o) —N.
It follows from (5) that
o€ intT, .

It remains to prove that y is the limit of a sequence of points of type 1.
To prove this it suffices to prove that if

z € (—n(0)+ L)\(n(0)—N),
and
[zy[n(n(0)-N) = 7,

then some point v € [z,y[ is of type 1. So, let 2z be as stated, and suppose
that the subset

7([z,9])

of bd K does not contain any smooth points of K. (Clearly, [z,y]<E\M.)
Since z is continuous, it follows that t is continuous, whence 7([z,y]) is a
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continuum. It is well-known (e.g. G. T. Whyburn [3, (10.3) p. 16]) that
such a set is not the union of any finite or countable family of disjoint
proper closed subsets. Since

©([z,9]) = U{z([z,y]) n N, pe t((zy])}
we therefore conclude by (b) and (c) that

7([2,9]) = ©([zy]) N N,

for some p € 7([z,y]). Since, by (5), we have t(y) € N, it follows from
condition (b) that N,=N, and therefore

7([2,9]) = N .

This, however, contradicts that 7(z) ¢ N by (6). Hence, we conclude that
there exists a point v € [z,y[ such that t(v) is a smooth point of K, i.e.
the point v is of type 1. This completes the proof of the lemma.

Remark. Clearly, the lemma is also true for spaces with non-symmetric
unit balls (cf. remark 2 of [1]).

A geometrical characterization of 3-dimensional Banach spaces in which
every Chebyshev set is convex.

The characterization is as follows:

THEOREM 1. Let E be a 3-dimensional Banach space with unit ball K.
Then every Chebyshev set in E is convex if and only if every exposed point
of K is a smooth point of K.

The ““only if”” part of theorem 1 is contained in the following well-
known result:

ProprosiTiON 3. Let E be a mormed linear space with unit ball K. If
every Chebyshev set in E is convex, then every exposed point of K is a smooth
point of K.

Proor. Suppose K contains an exposed non-smooth point . Then it
is eagy to see that there exist two different supporting hyperplanes H,
and H, of K with

HnK =H,nK = {z}.

But then the union of the two closed halfspaces which are bounded by
H, and H,, and do not contain K is a non-convex Chebyshev set. This
proves the proposition.
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Proor or THEOREM 1. Assume that every exposed point of K is
smooth. We shall verify that then the conditions (a)—(c) of the lemma
are fulfilled. Since in a finite dimensional space every Chebyshev set is
a sun and has a continuous metric projection, this will prove that every
Chebyshev set in ¥ is convex and thus complete the proof of the theorem.

Our assumption immediately implies that no N, e % is one-pointed,
whence (a) is fulfilled. (Compare the remarks following the statement of
the lemma). Since trivially no N, € & has dimension 2 2, it follows that
every N, e % is a closed segment. This again implies that (b) is ful-
filled. Finally, that condition (c) is fulfilled follows from a theorem of
M. Fujiwara [2], saying that a convex body in a 3-dimensional (euclidean)
space has at most a countable number of edges, and edge being a non-
degenerate segment which is the intersection of the body and two dif-
ferent supporting hyperplanes.

REMARKS. It is easy to verify that theorem 1 is also valid for spaces
with a non-symmetric unit ball.

It is obvious that in a 2-dimensional space every non-smooth point
of the unit ball is exposed. Hence, in such a space smoothness is equiv-
alent to every exposed point be smooth. (This observation together with
proposition 3 proves the “if”’ part of theorem (III) in the introduction.)
Therefore, by theorem (III), the characterization in theorem 1 is also
valid for 2-dimensional spaces. Whether it also holds for spaces of
dimension =4 is unknown.

Let us call a face N, of a convex body K in a finite dimensional space
E a perfect face if N, has the same dimension as the intersection of all
supporting hyperplanes of K at z. It is well-known that the number of
0-dimensional perfect faces (‘“‘corner-points’’) and (n — 1)-dimensional per-
fect faces (‘“facets”) of an n-dimensional convex body is at most countable.
The theorem of Fujiwara quoted above states that a 3-dimensional convex
body has at most a countable number of 1-dimensional perfect faces.
The main idea in Fujiwara’s proof is that of ‘“slicing’’ the body by means
of families of parallel hyperplanes, thus reducing the problem to a
2-dimensional problem. It is possible to extend this procedure to spaces
of higher dimensions, and thereby obtain a proof (using induction on
the dimension of the space) of the following result: The number of per-
fect faces of an n-dimensional convex body is at most countable. Using
this, it follows immediately from the lemma that in a finite dimensional
space E every Chebyshev set is convex provided that every face in F
is perfect, no face in # is 0-dimensional, and any two faces in & are
disjoint. If E is 3-dimensional, and no face in & is 0-dimensional, then
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(as we have seen above) all faces in & are perfect, and any two such faces
are disjoint. However, for spaces of dimension 4 or more, this is no
longer true.

The generalized theorem of Fujiwara is of independent interest; we
shall mention a reformulation of it. Let K be a convex body in an
n-dimensional space E, with o €int K, and let K° be the polar body in
the dual of . For any face N of K, let N* denote the dual face of v
in K°. Then
(1) dimN +dimN* £ n—-1.

It is easy to verify that we have equality in (1) if and only if N is a per-
fect face. Hence, an n-dimensional convex body K with o € int K has at
most a countable number of faces N such that equality holds in (1).

A new proof of theorem (V).

We shall prove the following theorem which has theorem (V) as an
immediate corollary:

THEOREM 2. Let F be a reflexive Banach space of dimension =3 con-
taining a smooth closed subspace F, of deficiency 1. Then F can be re-
normed to a non-smooth Banach E with the property that every Chebyshev
set in B which is a sun and has a continuous metric projection is convex.

CoroLLARY (Theorem (V)). For every integer n = 3 there exists an n-di-
mensional non-smooth Banach space E with the property that every Cheby-
shev set in E is convex.

Proor or THEOREM 2. We may consider F as a product G'x R x R,
where @ is a closed subspace of deficiency 2, such that F, =G x R x {0}.
Then the dual of F is G* x R x R, where G* is the dual of G; the value of
an element («',f',9') in @*x Rx R at a point (x,8,y) in GxRBx R is
{x,a'>+ BB +yy', where {«,n’) is the value of &’ at «.

We shall denote the unit ball of F' by C, and let

F, = Gx{0}x {0},
Cl = 0 n FI 3’
02 = O n F2 .

The element (0,0,1) will be denoted by e. With

aft) = (1—£2)+1,
and

pt) = -7t -34,
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we then define
K = U {te+a(t)C,+B(t)C,: te[—1,1]}.
We claim the following to be true:

(i) The set K is a symmetric convex body in F.

(ii) The set (e+C,)U(—e+C,) is the set of points in bd K which are
non-smooth points of K.

(iii) If H is a supporting hyperplane of K, and Hn(e+C,)+d, then
HnK=e+(C, Similarly for —e+C,.

For a proof of these three statements the reader is referred to the proofs
of the statements (i), (iv), (v), and (vi) of proposition 2 in [1]. After a
slight change in notation, the proofs in [1] carry over to the present
situation. (In the proof of the closedness of K, let compactness and
continuity be with respect to the weak topology on F).

Now, by statement (i), K is the unit ball of a new norm on F, equiv-
alent to the original one. Let E be the Banach space thus obtained. By
(ii), ¥ is a non-smooth space. To complete the proof of the theorem it
suffices to verify that the conditions (a), (b), and (c) of the lemma are
fulfilled. This follows easily from (ii) and (iii).

Some remarks concerning characterizations of smooth spaces in terms
of the Chebyshev sets.

It is well-known that a normed linear space is smooth if and only if
each of its (2-dimensional) subspaces is smooth. Let us say that a space
has property %, if every Chebyshev set in the space is convex. Then it
follows easily from the theorems (III) and (IV) and the remark above
that for a finite dimensional Banach space E the following conditions
are equivalent:

(i) E is smooth.
(ii) Every 2-dimensional subspace of E has property ;.
(iii) Z and every (2-dimensional) subspace of E has property %,.

Let us say that a space has property %, if every non-empty closed
convex set in the space is a Chebyshev set. Since a space is rotund if
and only if each of its (2-dimensional) subspaces is rotund, it follows
immediately from the theorems (I) and (II) that if in the conditions
above we replace ‘“‘smooth” by “‘rotund” or ‘“rotund and smooth”, and
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replace “%,” by “€,”’ or “%, and ¥,”’, respectively, then the conditions
are still equivalent. Note that in all three cases the conditions (i) and (ii)
are equivalent for arbitrary normed linear spaces.

The characterization above of smooth finite dimensional spaces in
terms of the Chebyshev sets seems to be as good as one can hope for.
For let F be a finite dimensional space which fulfills the conditions of
theorem 2, and let K be as defined there. Further, let K’ be the sym-
metric smooth body obtained by replacing the function g(t) in the defi-
nition of K by the function (1 —¢2)}. Then for any pair H,H’ of parallel
supporting hyperplanes of K and K’, respectively, the sets HnK and
H’'nK' consist either of a single point, namely if H and H' are not parallel
to F,, or the two sets are both translates of homothets of C,. Since
both K and K’ produce only convex Chebyshev sets, it follows therefore
easily that K and K’ actually produce the same Chebyshev sets.
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