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EXTREMELY AMENABLE SEMIGROUPS

E. GRANIRER
1. Introduction.

Let S be a discrete semigroup, m(S) the space of bounded real functions
on § with the usual sup norm, and m(8)* be the conjugate Banach space
of m(S). An element ¢ € m(S)* is a mean if ¢(f)= 0 whenever f=0 and
@(1)=1 where 1 is the constant one function on §. The semigroup S is
said to be left amenable, denoted by LA, if there is a mean ¢ in m(8)*
which is in addition left invariant i.e. satisfies ¢(f,)=¢(f) for any f in
m(S) and a in S (where (f,)(s) =f(as) for any s in S). We say in this case
that S, or m(S), admits a left invariant mean. 8§ is said to be extremely
left amenable, denoted by ELA, if m(S) admits a left invariant mean ¢
which is in addition multiplicative, that is ¢(fg)=¢(f)¢(g) for any f,g
in m(S).

The first to consider extremely amenable semigroups was T. Mitchellt
in [14] who proved among others the following interesting result: The
semigroup S admits a multiplicative left invariant mean if and only if
it has the common fixed point property on compacta (i.e. for each com-
pact Hausdorff space X and for each homomorphic representation S’ of S
as a semigroup (under functional composition) of continuous maps of X
into itself, there is some z, in X such that s'(z)) =%, for all s in §’).
It has been shown by Mitchell [14] that if S has the property that each
two elements of S have a common right zero (i.e. if a, b € § then ac=
be=c for some ¢ in §) then S admits a multiplicative left invariant mean.
The converse statement has been shown by Mitchell [14] to hold true only
under the additional hypothesis that S has left cancellation or is abelian.
Mitchell even conjectures in the introduction of [14] that this converse
implication does not hold true in general, i.e. that there exists an ELA
semigroup which does not have the property that each two of its ele-
ments have a common right zero.

We get as a consequence of the theorems proved in this work, that
Mitchell’s conjecture is not correct, i.e. the property that each two ele-
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ments of § have a common right zero characterizes the semigroups
which admit multiplicative left invariant means.

If a € 8, denote by 1, that element of m(S)* which satisfies 1,f=f(a)
for each fin m(S). Elements of {1,; a € S} are said to be point measures.
If a € S and ¢ e m(8)*, let L,p € m(S)* be such that (L,p)f=¢f, for any
J in m(S). We write sometimes [,f instead of f,.

We have furthermore the following Day—Falner type characterization
of extremely left amenable semigroups (see Day [4, pp. 524-525] and
Fglner [9]). (For a beautiful proof of Falner’s theorem see Namioka [16].)

THEOREM. The semigroup S admits a multiplicative left invariant mean
if and only if there is a net of point measures {1, } which converges in norm
to left invariance i.e. such that

lim,||L,1, —1, |l = O for each a€S.

(The last condition implies immediately that any two elements of S
have a common right zero.)

If S is a discrete semigroup then the convolution multiplication ©
renders (S) (the Stone-Cech compactification of S or the set of multi-
plicative means on m(8)) a semigroup. Then 8(S) has a right zero if and
only if 8 is ELA. Combining part of Mitchell’s results in [14] together
with those obtained in this paper one has the

THEOREM (characterization). The following conditions on a semigroup S
are equivalent :

1. 8 has the common fixed point property on compacta.

2. 8 admits a multiplicative left tnvariant mean.

3. B(8) has a right zero.

4. There is a net {1, } of point measures which converges in morm to left
tnvariance.

5. Each two elements of S have a common right zero.

Condition 5 and hence each one of the above conditions implies (and
is not in general implied by) that each element of S has a right zero.

As pointed out in Mitchell [14], it is shown in Ljapin [13, p. 66] that a
semigroup S has the property that any element has a right zero if and
only if it has the individual fixed point property on any set, i.e. in an
arbitrary representation of the semigroup by transformations on any set
(under functional composition) every transformation has a fixed point
(which may depend on the transformation). The last part of the theorem
shows that the common fixed point property on compacta for § implies
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that § has the individual fixed point property on any set. It is in fact
this implication which was conjectured to be false by Mitchell.

If A<8 then ¢ e m(8)* is said to be A-left invariant if L,p=¢ for
each a in A. If 4 consists of one element b, say, then we say that ¢ is
b-left invariant. If B< 8 and ¢ € m(S)* we write sometimes ¢(B) instead
of ¢(1g) where 1 is the function on § which is one on B and zero other-
wise. 1 will stand for 1§ sometimes.

If S is a left or right cancellation semigroup, then ¢ € § has order n> 1
if n+1 is the first integer which satisfies c**1=c¢. An element ¢ has in-
finite order if no such » =1 exists.

The following two theorems which are interesting for their own sake,
we think, are in fact the crux of the proof of the above theorems:

THEOREM. Let 8 be a right cancellation semigroup and ¢ € S be an ele-
ment of infinite order. If ¢ € m(S)* is a c-left invariant mean then p(A)
takes at least all rational values in the closed unit interval when A ranges
over all subsets of S, which are left c-almost convergent?.

TaEOREM. Let S be a right cancellation semigroup and ¢ € S be an ele-
ment of order n22. If ¢ € m(S)* is a c-left invariant mean then (A) takes
at least all values r=k[n, k=0,1,...,n when A ranges over all subsets of S,
which are left c-almost cenvergent.

CoNSEQUENCE. Let S be a right cancellation ELA semigroup. Then S
18 the trivial group containing identity only. (If ¢ € B(S) then p(A)=0or 1
only.) In particular among groups, only the trivial group is ELA.

This consequence has been proved by T. Mitchell in [14] for the case
that S has two sided cancellation. As pointed out in Mitchell [14] (after
proof of theorem 3) his method runs into difficulty if two sided cancella-
tion is replaced by right cancellation. Using the preceding two theorems
we give a simple proof for the characterization theorem. We, furthermore,
investigate the class of ELA semigroups in analogy to M. Day’s investiga-
tion of amenable semigroups in [4].

The fact that the property ELA for a semigroup S is equivalent to
the property that any two elements of S have a common right zero en-
ables us to give very simple proofs to the following results which have
analogues for amenable semigroups (see Day [4, pp.516-517] and
[10, p. 50]):

(a) If S is ELA, so is any homomorphic image (due to Mitchell [14]).

2 4 <8 is left c-almost convergent if @,(4) =@,(4) for any two c-left invariant means
1> Pa-
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(b) If 8 is a semigroup with S=U, 8, where S, are ELA semigroups
and for any ¢,,t,e T,

S,u8, <8, forsome t;eT,
then § is ELA.
(c) If § is an ELA semigroup then any countable subsemigroup is
included in a countable ELA subsemigroup.

The analogy between ELA semigroups and amenable semigroups
breaks down when we come to full direct products. While as shown by
Day [4, p. 517] the full direct product of even left amenable groups need
not be left amenable we have here that the full direct product of ELA
semigroups 78 ELA.

We ask now the following question: Let S be a ELA semigroup. Is
each finitely generated subsemigroup contained in a finitely generated
ELA subsemigroup ? We answer this question in the negative by giving
an explicit example of a semigroup S with the following surprising
properties:

S is a countable ELA semigroup such that any subsemigroup which
can be included in a finitely generated subsemigroup (and a fortiori any
finitely generated subsemigroup) is not ELA while the remaining sub-
semigroups, i.e. those which cannot be included in finitely generated
subsemigroups, are ELA. Surprisingly enough each subsemigroup of S
is left amenable and even moreover admits an infinite dimensional set
of left invariant means (none of which is multiplicative, if the subsemi-
group can be included in a finitely generated subsemigroup). Further-
more S has left cancellation, is not right amenable, and does not contain
elements of finite order.

In view of this example it is interesting to note that such a behaviour
is impossible if 8 contains “enough’ periodic elements (c € S is periodic
if ¢ =c" for some n = 1). In fact we have:

ProrosiTioN. Let 8 be an ELA semigroup such that each of its right
ideals contains a periodic element. If S, is a finitely generated subsemi-
group, generated by {s,,...,s,} say, then there is some s, in S such that
{815+« 180,841} generates a ELA subsemigroup.

2. The characterization theorem.

We begin with the following known facts:

If 8 is a semigroup, ¢ € S and ¢ € m(8)* is any c-left invariant mean
then ¢(cA4)=¢(4) for any A <8, since ([,1,,)(s)=1,4(cs) =1 ,(s) for any
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s in 8. In particular if ¢ is a left invariant mean on § and B any right
ideal then bS < B if b € B which implies that ¢(B)=1. Therefore, if S is
LA, any two right ideals have nonvoid intersection.

LemMA 1. Let S be a right cancellation semigroup, ¢ €S an element of
wfinite order and 4V <8 be such that cV<V. Then for any positive
integer k there exist subsets A,,...,A, such that:

(i) Uk4,="7.
(iii) cA; <4, if i<k—1 and cd, < A4,.
Proor. If ct=¢’ for 44 then ¢m=c¢ for some m >1 which cannot be.

Hence {c"}?° consists of different elements. Let a € V and consider the
sets V,(a) defined by

Vi(@) = {ca,c*+la,c*+tla,. .. c*Ha,...},
Vy(a) = {c?a,c*+%a,. .. ,c*+2%,. ..},
V,:,(a) = {cka,c%*a,. .., cktkq,. . .} .

Then Vi(a)nV,(a)=0 if i+j,
k
UVia) = V7, cVia) © Viu(a), cVia) = Via).
1

Let now ¥~ be the set of all ordered k-tuples (Uy,...,U,) where 0+ U,
are subsets of S,

[:JUiC V, U;nU; =0 if 147,
cU,c U, ifigk-1, cU,<U,.
We have shown that ¥ +0. We partially order ¥~ by
(Voo Vi) = (Uy,...,Uy) iff U; <V, 15isk.

Let {(U,%...,U*); a €I} be a linearly ordered subset of ¥~ and let
UL=U, Up for 1<i<k. It is clear that cU < U, for 1<i<k—1 and
cU < U,°. Moreover U2NU,°=@ if i=j since

UPnUP + 0 implies UAnUf + 0

for some «,8 in I. Now either (U,*,...,U,*)=(U/%,...,U,?) or the re-
versed inequality holds. In the first case we would have

G+UnU =TTy
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which cannot be. The reversed inequality would imply that UfnU/+0
which again cannot be. Hence (U,%...,U% ¥  and obviously
(US...,U0N=(Uy%...,U,%) for each « € I. Since any linearly ordered
subset of ¥~ has an upper bound we get by Zorn’s lemma that ¥~ con-
tains a maximal element say (4,,...,4,;). We show now that V=U*4,.
In fact assume that ae V and a ¢ U¥4,. Then two cases may occur:

L {c"a}nU%4,=0. In this case define 4;*=A4,UV (a) for 1<i<k
Then A*nA4*=0 if i+j since

Via)nVya) + 0 and (L’:J Vi(a)) n (L’:J Ai) -

It is also clear that c4,*<A}X,, 1<i<k—1, and c4,*<A,*. The fact
that (4,%,...,4,*)Z(4;,...,4,) contradicts the maximality of
Ay, .., 4,).

2. {c"a}*nUk4,;+ 0. In this case let m=1 be the first integer for
which c¢™a € U"A and define ca=a. Then c™a € 4,, say, and c™'a ¢
Uk4,. Let A;*, 1<i<k, be defined by

AX =A;if @ £ 49-1,
A}, =4, _,U{c"a}
in case 2<¢,<k and

AX = A, if 15i<5k-1,

A’k* = Ak U {Cm_la}

in case 4y=1. It is clear that cA} ;= A} in the first case and c4,* < A4,*
in the second case and that Ai* 15z < Ic are disjoint. Hence
(A% 4 3 (Ayye ., 4y)

which contradicts again the maximality of (4,,...,4,). This shows that
=U¥4, which finishes the proof.

CoroLLARY. Let S be a right cancellation semigroup which contains an
element ¢ of infinite order. Then for any rational number 0=r <1 there
exists a set A <8 such that p(A) =r, for any c-left-invariant mean p € m(S)*.

Proor. If r=0o0rr=1then A=0 or A =8 will satisfy the requirement.
If r =m/k where 0 < m < k are integers then take ¥ =8 in the above lemma.
There are hence disjoint sets A4;,...,4; such that

k
U4, =8, cd,cd,,if 1 <isk—1, cd,<A4,.
1

Hence, if y is a c-left invariant mean, then
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P(din) Z pled;) 2 9(4,) if 1sigk-1,
p(4)) 2 plcdy) = p(4y) .
P(4y) £ 9(4,) S 9(4y) = ... S p(4y).
Therefore ¢(4,)=¢(A;) if ? <k which shows that

and

Thus

k
kg(4,) = 21 ¢(4;) = @(8) .
Therefore @(4;)=1/k for 11k, and A=U74,; will satisfy ¢(4)=
mlk=r.

LeMMA 2. Let S be a right cancellation semigroup and c € S an element
of order n=>2. Let 94V <8 be such that cV<V. Then there are n sets
A,,...,A, such that

(i) 4;nd;=0 if i+j,
(i) Ut4,=7,
(iii) cd;<4;,if 1<isn—1 and c4,<4,.

Proor. Let a e V and consider the sets V,={c%a},15i<n. Then V,
are disjoint,

Uv,c Vv, eV, V,,if 1sigsa—-1, ¢V, < V.
1

Let ¥ be the set of n tuples {Uy,...,U,} such that U,;+0@ are disjoint
subsets of S,

Uu,cv, cU,cU,,if 1gign-1, ¢U,<U,.
1

We partially order ¥~ by
(Uy...,U0) = (Vy...,V,) iff V,<U, 1=i=n.

Then ¥"+¢ and as in the proof of lemma 1, ¥" contains a maximal
element say (4,,...,4,). We show that V=U74,. Infact if ac V and
a ¢ U4, then either

{ea,...,cra}n(UA) =0

{ea,...,cra}n(U4) + 0.
In the first case the sets 4;*=A,u{cla} would satisfy
(Ay*,..., 4,5 e and (4,%,...,4,%) Z (4;,...,4,)

which cannot be. In the second case let m be the first j for which

or
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15j<n and cfac UA,, and denote c®a=a. Then cmac A, say. If
1922 let
A*

to—

= Ay u{emla), A = A if 0441
and if 7,=1, let
A*=A,u{cma}, AX=A;ifi%+n.
In both cases
(Ar*,..., A, e and  (A*,...,4,%) Z (4y,...,4,),
which cannot be. Hence 4,,...,4, are the required sets.

CorOLLARY 1. Let S be a right cancellation semigroup ¢ € S8 an element
of order n=2. For any r=Fk[n, k=0,1,...,n, there exists a set A <8 such
that p(A)=r for any c-left invariant mean ¢ € m(S)*.

Proor. If r=0 or 1 then 9 and § will satisfy the requirement. If
0<r=k/n<]1, let 4,,...,4, be the sets of lemma 2. Then 4=U*4,
will satisfy (4)==Fk/n.

REMARk. Let G be the cyclic finite group of order =, {e,a,...,a”1},
and ¢ the unique (a-) left invariant mean on G. Then ¢(4) ranges
exactly over the values {k/n; k=0,1,...,n} when 4 ranges over all sub-
sets of G. Hence Corollary 1 is the best possible result in this direction.

CoROLLARY 2. Let S be a right cancellation semigroup and ce S. If a
multiplicative c-leftinvariant mean ¢ € m(S)* exists then c is an tdempotent.

Proor. If A<S then [p(4)P2=¢(1,4-1,)=¢(4). Hence p(4)=0o0r 1.
The corollary to lemma 1 implies that ¢ has finite order » and corollary 1
of lemma 2 implies that n=1, that is, ¢2=c.

CoroLLARY 3. Let S be a right cancellation ELA semigroup. Then 8 is
the trivial group consisting of identity only.

Proor. By corollary 2 of lemma 2, S contains only idempotents.
Hence ab®=ab for each a,be 8 and so ab=a. This shows that if a=+b
then aS=a and bS=5b and so aSNbS=G which cannot be. Hence §
contains exactly one element e.

CorROLLARY 4. Let S be a semigroup, Sy<8 a subsemigroup such that
each two right ideals of S, and of S,, have nonvoid intersection. If a Sy-left
invariant multiplicative mean @ € m(S)* exists then for each a, b in 8,
there is some s € 8 such that as=bs.

Proor. We use as in Mitchell [14] a construction of [12]. For a,be S
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we define a(r)b iff there is some ¢ in § such that as=bs. Then by the
proof of lemma 2 of [12, p. 371] a(r)b is a congruence relation (i.e. an
equivalence relation such that a~b implies ca~cb and ac~bc for each
cef). If s’ is the equivalence class which contains s €8 then as in
Ljapin [13, pp. 361-362] and [12, p. 371] §’'={s’,s € §} becomes a right
cancellation semigroup and F: S — 8§’ defined by Fs=s' is a homomor-
phism onto. Define now on m(S’) the following linear functional:

¢'(f') = o(f'(F)) where (f'F)(s) = f'(F(s))

for f' e m(S’) and s in 8. It is clear that ¢’ is a multiplicative mean and
since for each ¢ in S and f’ in m(S’),

(YY) = f(F@O)F) = (f'F)st) = (L F)E),
where s is any representative of s’, we have that ¢’ is Sy'={s"; se Sy}
left invariant on m(8’). Therefore s,’2=s,’ for s,’ € S," and using the
right cancellation one gets s,’s)’=s;" for s;,',8," € 8," which shows that
8’8y’ =s, for any s, € §y’. If now s,',8,’ € S,’ then
81, So' n 80’ So’ + 0
which shows that S," contains exactly one element. This implies that

8;~ 8, for any s,,8, € S, and therefore that s,5=s,s for some s€ 8.
We need in what follows the following observation due to Mitchell:

Lemma (Mitchell [15, Cor. 6(a)]). Let S be a semigroup such that for any
ay,a5 €8, a.b=asb for some b in S. Then any two elements of S have a
common right zero (i.e., if a,,a,€8 then a,b=ab=> for some be 8).
Moreover if A<S is finite then Ac=c for some c in 8.

Proor. There are c,,c, such that a,2c;=a,c; and ¢ such that
016, = gl = b .
Then a,b=a,b=>b. Now by induction: If
4 ={ay,...,a,} =8, ag =c¢c for 1gisn-1,
@nCy = Cy €€ = C =D,
then a,b=0 for 1gi<n.

THEOREM 1. Let S be a ELA semigroup. Then any two elements of S
have a common right zero.

Proor. § is in particular left amenable and therefore any two right
ideals have nonvoid intersection. If a,b € 8, then by corollary 4, ac=bc
for some ¢ in S and by Mitchell’s lemma we can even assume that ac=
be=c.
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This theorem has been proved by Mitchell [14] for the case that S is
commutative or has left cancellation.

Remarks. If 8 is a ELA semigroup and @ € S then theorem 1 implies
that ab=>b for some b in §. If S’ is a representation of S as a semigroup
of transformations on the set X under functional composition and if
&' € 8’ then §'t'=t' for some ¢’ and if z, € X then

8'(t'2o) = (s'')(m,) = (o) -
Hence t'(z,) is a fixed point for s’ and so § has the individual fixed
point property on any set (see Ljapin [13, p. 66]). It is this implication
of theorem 1 which was conjectured to be false by Mitchell [14].

We are now after a Day—Folner type (see Day [4, p. 524-525] and
Folner [9]) characterization of ELA semigroups.

Lemma 3. Let S be a semigroup. Then there exists a met {1, } of point
measures which converges in norm to left invariance if and only if any two
elements of 8 have a common right zero.

ProoF. Assume that any two elements of S have a common right zero.
We introduce then a partial ordering in § (as in [12, p. 376]) which renders
8 a directed set (see definition in Kelley p. 65) as follows: We say that
b>a if either b=a or ab=>b. It is clear that a>a and if b>a and c¢>b
then

ac = a(bc) = (ab)ec = bec = ¢,

that is ¢>a (for the case where a+b and b+c; if either a=b or b=c
then trivially ¢>a). Furthermore if a,b€ S, there is a ¢ in S with ac=
bc=c, that is c>a and ¢>b. On the directed set {S, >} define the net

g, =1, € m(S)*.
Let a e §. Then

(Lalao)f = f(a'go) = lasof for f in m(8S) .

Let s,€ S be such that as,=s, If s>s, then, if s,s=s¢ it follows that
as=as,8 =8,8=2¢ and if s=s, it follows that as=s. Hence

”Lalps'—¢s” = ”Lala"ls” = Hlas—ls” =0 for 828y

which finishes the first part of the proof.
Conversely if 1, converges in norm to left invariance and a,b € S then

1Laly,—1gJl < 1 and [Lyl,,—1,] <1

for o =y, say. Now ||1,—1,|| is either 2 or 0 and is 0 if and only if a=b,
as directly checked. Therefore as, =s,, and bs, =s,,.
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THEOREM 2 (strong extreme amenability). Let S be a semigroup.
Then S admits a multiplicative left invariant mean if and only if there
exists a net of point measures {1, } in m(S)* which converges in norm to
left invariance.

Proor. If such a net {1, } exists and ¢, is any of its o* cluster points
then as known (Day [4, pp. 520-521]) and directly checked, ¢, is left
invariant and multiplicative (since each 1, is multiplicative). Con-
versely if S admits a multiplicative left invariant mean and a,be S
then ac=bc for some ¢ € § by theorem 1 and by Mitchell’s lemma we can
even assume that ac=bc=c. Invoke now the previous lemma.

Remarks. Let §(8) =m(S)* be the set of all multiplicative means on
m(S) and consider m(S)* to be equipped with the Arens multiplication ©®
(Day [4, p. 527]), that is

pO¥f) = ulg) where gls) = »(f,) .

Then ® renders §(S) (which as known is the Stone-Cech compactifica-
tion of the discrete space S) a semigroup. In fact if u,v € 5(S), fof; € m(S)
and g,(s)=»(l,f;) then

(9192)(8) = "(ls(flfz))

and therefore
© O v(fifs) = w(g:g2) = p(g1) u(gy) -

8 admits a multiplicative left invariant mean if and only if A(S) contains
a right zero, i.e. an element ¢, € $(S) such that

@O @, =@, for each ¢@epBS).
If ¢ © @y=ep, for @ € (S), then (Day [4, p. 528, lemma 2])

Ls¢0=ls®¢0=¢o’

hence g, is left invariant. Conversely if ¢, is left invariant and f € m(S)
then ¢,f,=@,f and 80 ¢ © gof=g.f (Day [4, p. 530, cor. 4]).

We assemble now part of Mitchell’s results together with those obtained
in this paper to get the following characterization of ELA semigroups.

THEOREM 3 (characterization). The following conditions on a semigroup
S are equivalent:
(1) 8 has the common fixed point property on compacta.
(2) 8 admits a multiplicative left invariant mean.
(3) B(S) has a right zero.
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(4) There is a net {1, } =m(8)* of point measures, which converges in norm
to left invariance.

(5) Each two elements of S (and hence each finite subset of S) have a common
right zero.

Condition (5) and hence each one of the above conditions implies (and
is not in general implied by) that each element of S has a right zero (i.e.
property IT of Ljapin [13, p. 66]).

REMARK. (1)<=-(2) and (5) = (2) are due to Mitchell [14]. Further-
more due to Mitchell is also the implication (2) => (5) under the additio-
nal assumption that § is either abelian or has left cancellation. (2) = (5)
in the present generality disproves Mitchell’s conjecture in [14]. Our
proof is entirely different from [14].

Proor orF THEOREM 3. (2)<=(3) <> (4) < (5) has already been
proved. Also, (1) = (2) is immediate, using the fact that B(S) is com-
pact (and therefore there is a ¢, € f(S) with Lp,=¢, for all s in §). We
give a simple proof that (5) = (1):

Let : 8§ - 8’ be a homomorphism of § onto a semigroup of continu-
ous transformations from the compact space X into itself under functio-
nal composition, let 4 =8 be finite and

K,={xeX; (gs)(x)== for each s 4}.

K , is closed and not empty since Ac=c for some ¢ in § and if x, € X
and s e A, then
n(8)n(c)(@o)] = n(sc)@o) = nlc)z,

that is 7(c)(x,) € K 4. The closed sets K , <X have the finite intersection
property and so K 40 (where 4 runs over all finite subsets of S).
Any x,e N K, is a common fixed point for n(S)=4_8".

In the semigroup consisting of the two elements {e;,e,} with e;e;=e;
for 1<14, j<2 each element has a right zero (i.e. itself) but e;,e, do not
have a common right zero. For another example see Mitchell [14]. This
finishes the proof.

Remarks. The implications (3) <= (5) seem to us especially interesting
in view of the trivial observation that S may satisfy (5) without having
a right zero. In fact if §={1,2,3,...} with ¢-j=max {7,j} then each two
elements of S have a common right zero while § does not. The same set
S with usual addition or multiplication is not ELA and even moreover
for any left invariant mean @, ¢(4) has to take all rational values in
[0,1], since the element 5 has infinite order for both considered opera-
tions.
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3. The class of ELA semigroups.

ProposiTioN 1. (a) If S i¢s an ELA semigroup and S’ a homomorphic
tmage of S then S’ is ELA (due to Mitchell [14]).

(b) If S is a semigroup with S=U,.; S, where S, are ELA semigroups
such that for any t,,t, in T,

8, U8, =8, forsome t,inT,
then S i¢s ELA.

ProOF. (a) Any two elements of S have a common right zero and any
homomorphic image of 8 enjoys this same property.

(b) If a,be S then a € 8, and beS,, hence a,b € §,, for some ;¢ 7.
Hence ac=bc=c for some ce S, <8.

ReMARKS. As known, subsemigroups of LA semigroups need not be
LA (Day [4, p. 516]). In analogy subsemigroups of ELA semigroups
need not be even left amenable. In fact, let S; be the free semigroup on
the two generators a,b. Let §=.8,0{0} with the multiplication given by
80=0s=0 if s€S; and stisasin §, for s,z € ;. The semigroup S is ELA
since it has a right zero while 8, contains the two disjoint right ideals
a8,,b8,, and hence is not even LA (as known).

Let S be a LA semigroup. If S, is a countable semigroup then 8, is
contained in a countable LA subsemigroup ([10, p. 50]). In analogy we
have:

ProrosiTIiON la. Let S be an ELA semigroup and Sy<8 a countable
subsemigroup. Then S, is contained in a countable ELA subsemigroup.

Proor. If Sy={sy,85,...,8. ..}, let A, ={8y,8;,...,8,}. There are ele-
ments ¢, € S such that 4,c,=c, and ¢g € S such that B;=A4;U{c,} satis-
fies Bycy=c,. If ¢y,...,c,_, have been chosen, let ¢, be such that B, =
4,u{ey,. . .,c, 4} satisfies B, c,=c,. Let S’ be the countable semigroup
generated by U B,. Then S,<8,’ and if a,b€ S, then a,b are words
in ay,...,a,, where {a,,...,a,}<UPB,. Since B,<B,,,,

{ay,...,a,} < B, forsomek.
Hence a;c;,=¢;, for 1=1,2,...,m, and therefore ac,=bc,=c;,.

Remarks. Let {S,; t €T} be semigroups and S=IT,.rS; be the set
of all functions defined on 7' with f(¢) € S, for each teT. If f,ge 8,
define the product h=fg by h(f)=f(t)g(t) (i.e. the product of f(f) and
g(t) in 8,) for each ¢ in 7. The semigroup S is said to be the full direct
product of {S;; te T}.
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ProrosrtioN 2. If {S,; t € T} are semigroups, then their full direct pro-
duct 8=T1,.rS; is ELA if and only if each S, is ELA.

Proor. Since 8, are ELA, each two elements of S, have a common
right zero in 8, (by (2) = (5) of the characterization theorem). If f,g e 8
and A(¢) is a common right zero of f(t) and g(t) in 8,, for each ¢ in 7',
then A is a common right zero of f,g in 8. Conversely, if any two ele-
ments of § have a common right zero then each S, has this property.

REeMarks. This proposition 2 breaks down the analogy between ELA
semigroups and LA semigroups. As shown by M. Day [4, p. 517, F'’]
the full direct product of even amenable groups need not be amenable.
We have emphasized in the above proof the point that in an ELA semi-
group any two elements have a common right zero since it seems to us
that a proof of proposition 2 using only the results given in Mitchell’s
paper [14] would be much more difficult.

Let S be a LA semigroup, ¢ a left invariant mean on m(S) and S,= 8
a subsemigroup with ¢(S,)>0. Then §; is LA. This is a result of Day
[4, p. 518] and in analogy with it we prove:

ProrosITION 3. Let S be a ELA semigroup, ¢ a multiplicative left in-
variant mean on m(8) and Sy<8 a subsemigroup with p(Sy)>0. Then S,
is ELA.

Proor. Since ¢(4) is either 0 or 1, ¢(Sy)=1. If a,be 8, then ad=
bd=d for some d in S. Since p(dS)=¢(S,)=1,dS8n Sy+9. If cedSnS,,
then ac=bc=c and ce §,.

We use in the next example the following trivial generalization of a
result of Mitchell [14]:

ProrosiTiON 4. Let S be a semigroup which contains a finite left ideal I.
Then 8 is ELA if and only if S kas a right zero. In particular (Mitchell [14])
if S 18 finite, then S 18 ELA if and only if S has a right zero.

Proor. § can be represented as a semigroup of continuous transfor-
mations from the compact Hausdorff (discrete) I into itself by
8(t) =8 for se8 and iel.

If S is ELA, it has a common fixed point in I, i.e. there is some i,
with siy =1, for each s in §. Conversely if § has a right zero then a fortiori
any two elements of S have a common right zero.

ExamprLE 1. We give here an example of a semigroup S whose set of
left invariant means is “huge”, in fact it is even affinely homeomorphic
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with the set of all means on m(S) and nevertheless this set does not
touch any extreme point of the set of means in m(S)*, that is, S is not
ELA.

Let So={e1,€5. . .,€,,...} Wwith e;e;=¢; for each 1<¢,j< o and let @
be any finite group containing two or more elements. Let S=G xS,
i.e. the set of pairs (g,e;) with g € G and

(91:94)(92’3;;) = (9192,‘55) .

Then {(g,¢,); g € G} is a finite left ideal. If (gy,e;) would be a right zero
of S then

(ggo’ej) = (97812)(90’8]‘) = (go’ej)
for any g in G. Hence gg,=g, for g € @ which cannot be since @ is a
nontrivial group. By proposition 4, the semigroup S is not ELA.

We show now that A4;={(g,¢;); g€ G}, 1=1,2,8,..., are the only
groups and left ideals of S. In fact if 4 is a group and left ideal in S
then it is a minimal left ideal and since it intersects some A, we have
A< A, for some ¢, But A; are also minimal left ideals and therefore
A=A, If I={1,2,3,...} then {4;; i eI} is the set of groups and left
ideals of §. By [11, p. 102] there is an isometric isomorphism 7' from
m(I)* onto the set of left invariant elements of m(S)* which maps the
set of means of m(I)* onto the set of left invariant means of m(8)*. Now
the set of means in m(l)* is affinely homeomorphic to the set of means of
m(8)*, since S and I are both countable nonfinite. Hence the set of
means of m(S)* is affinely homeomorphic with the set of left invariant
means on m(S).

ExamprLE 2. We give in what follows the promised example of a
countable ELA semigroup S such that any of its subsemigroups which
can be included in a finitely generated subsemigroup (and a fortiori any
finitely generated subsemigroup) is not ELA, while the remaining sub-
semigroups, i.e. those which cannot be included in finitely generated
subsemigroups are ELA. Furthermore each subsemigroup of § is LA
and even admits an infinite dimensional set of left invariant means
(none of which is multiplicative, if the subsemigroup can be included in
a finitely generated one). Moreover S has left cancellation, is not right
amenable and does not contain elements of finite order.

We shall need the following result due to A. H. Frey [8] (many thanks
are due to A. H. Frey for kindly letting us have a preprint of his thesis)
for which we give a new proof:

Lemma (A. H. Frey). Let S be a semigroup and I1<8 a left ideal. If I
18 LA, so0 is S. In particular, if I is commutative, then S is LA.
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Proor. By Day’s fixed point theorem ([5, p. 586]) there is a mean ¢
in m(8)* which is I-left invariant, that is L,p=¢ for a € I. If now
s € 8, choose some a € I. Then

Ls(p = Ls(Laq)) = Lsa(P =@

since sa € I. Hence ¢ is a left invariant mean on m(S). If I is commu-
tative then it is LA (see Day [2]).

Let 8 consist of all left sided sequences s=(...,$,,...,8,,8;) Where
0<s;< oo are integers with only finitely many nonzero s; and at least
one s;+0 (i.e. the constant zero sequence is not included). For any s
in § we define its degree, d(s), as the biggest j for which s;+0 (Hence
d(s)=1.) The multiplication in S is defined as follows: If s,t e S with
d(s)=m and d(t)=n» and
then 8= (...,0,88m-1>--+581), t = (...,0,8,,8, 1,...,81),

o — {(...,O,tn,...,t1)=t if m=d(s)<d(t)=n,

(v 30,85 - - 38p1158n Flnsbn1sbn_ss- - -»t;) i m=d(s)2d()=n.

Hence d(st) =max {d(s),d(t)} and s*=(...,0,ks,,s,_4,. . .,8;), which shows
that § contains only elements of infinite order. Furthermore, assuming
that we have already shown associativity, we have that if s®,...,s® are
elements in S which generate the subsemigroup 8, and if m=
max; _;_,d(s®) then d(s) <m for any s in §,. This is deduced easily from
d(st) =max {(d(s),d(t))} and d(s*¥)=d(s) for any k=1.

We show now that the multiplication is associative: Let s,t,u € S,
d(s)=k, d(t)=m, d(u)=n.

CasE 1. If d(u) >max(d(s),d(t))=d(st), then s(tu)=su=u since d(u)>
d(t), and (st)u=w since d(u)> d(st).

Casg 2. If d(s)<d(t), then (st)u=tu and since d(s)<max {d(t),d(u)}=
d(tu) we have s(tu)=tu.

Case 3. We can hence assume that d(s)2d(f) and d(u)=
max {d(s),d(t)} =d(st). Then d(st)=d(s) and

(st = (...,0,8,, 8415+ « +38m+1:Sm + bmbm—1>+ - +»11)%
(v0 30,885 15+ 3Smt b btmetss + csbpatsbn+ UpsUp_g,+ + +,Uy)
' if du)=n<m=d(t),
_ (v0 30,8085 —15- + «3Sm+1sSm + b+ Yo Upp—1> + + > Uy)
if du)=n=m=d(t),
(v 030,808k 15+ +38p01s 8+ Uy U150« o, W)
if duw)=n>m=d(t).
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Now
8(e ey 0t 5o v osbpsns by F Uy Uy _gse oo, Uy) i d(w)=n<m=d(t)
s(tu) = {8(...,0,t, +Up, Upp_1,- - - %) if diu)=n=m=dt
S(e e s 0y Uy Uy gy v oy Uy) if d(u)=n>m=d(t)
(+2 050,858k 15+ + +38mi1sSmF bt + ~sbpatstn F Uy Ug_1,e - s Uyq)
= if n<m
T 50,858kt -+ + 5Smats S bt Uy U1 - + - »Uy) if n=m
(v0es0,85:85 15« +38pa1,SpF Ups Uy 150+, %) if n>m.

Thus (st)u=s(tu) always.

Denote by e™ that element of S which has 1 in the »n’th place and 0
otherwise and let ke™ be that element of S which has £ in the n’th place
and 0 otherwise. As directly checked the following relations hold:

(ce30,8,,80 15 - -581) = (8,6™) (8,1 D). . .(8,6D)

(if some s;=0 then s, does not appear),
(ne®)(meD) = (n+m)e?D, (ne®)(me?d) = (me) = me? if j>4.

Let now s,t € 8. If m>max{d(s),d(t)} then se™ =em =te™ which shows
that any two elements of S have a common right zero and so § is ELA.

Assume that S, is a subsemigroup which can be included in the sub-
semigroup generated by {s@,...,s®}. Then d(s) < max,_; ,d(s?) for any
s in §,. Let m=max{d(s); s€S,}. Then m=d(b) for some b in S,.
We claim that b2 and b do not have a common right zero in §,. Since
if ¢ € 8, is such that b2%c=bc=c¢ then

d(b) = d(c) = max{d(c),d(b)} = d(b) .
Hence d(b)=d(c) and so
be = (...,0,b,,4CpsC1sr- - -51) = (o« 0,6, Cp15++ +,C1) .

Thus b,,=0, which contradicts the fact that d(b)=m. Hence S, is not
ELA. That S has left cancellation is shown as follows:
Let st=su. If d(s)<d(t) then st=¢ and

d(¢) = d(su) = max{d(s),d(u)} .

Hence d(u)>d(s). Therefore su=u which shows that t=u. We can
therefore assume that d(s)2d(f) and by symmetry that d(s)2d(w). If
d(s)=Fk, d(t)=m, d(u)=n, then

(«+ 30,800 o3 8mi1s 8+ s bmets - + +581)
= (v000,80,. 0 8041, T U, Upy_qye + 5 Uq) .

Math. Scand. 17 — 13
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If m>n, then s, +¢,,=s,, and so ¢, =0 which cannot be. Hence m<n
and by symmetry n<m. Thus m=» and

8yt =8p+ Uy, by 1=%y, 4, ..., b=
which shows that {=u. We show now that every subsemigroup S, of S

is left amenable and even moreover, has an infinite dimensional set of
invariant means.

CasE 1. Assume that S, is generated by the finite set {t®,...,1®}.
Let m =max,_,;_,d(t®) and let {s,...,s®} be the set of all s of degree
m. Let I, be the subsemigroup of S, consisting of all elements of the form

1 2 k 1 1 1
(+00s0,m, 8P +m82+ ...+ 8B D D sD)

where n,,...,n; range over the set of nonnegative integers with n,>1,
and

&M = (...,0,80, 6

AP ) I

Since 7, =1, the degree of any element of I, is m. Furthermore since

(c0es0,8,, 0 1y« o308)(e o+, 0,0,, 0015+ - +,0y)

= (...,0,8,+b,,0,_1,...,8;)

= (.v0,0,00,0 15 - 0.+ ,0,0,,8,_1,. . .,0q)
(if @,+0 and b,+0) we have that I, is a commutative semigroup.
Furthermore

(c0 s 0,m8D + 08P 4 L 47, 8B 5D D D)
= (s(k))nk(s(k-—l))nkq. . (8(2))n2(8(1))n1)

where (s®) is s to the j-th power and (s®)° means that s® does not
appear. Hence I,<=S,. But I, is even a left ideal of S,. In fact if ¢® is
such that d((9) <m then tPs=s for any s in I,. If d(t?)=m, then t®=s¥
for some j and therefore

(-..,0,6D,8D ,...,8)
(oo 0,m D+ gD s, 8D 8D 8D

= (., 08P+ ..+ (m+ 18P+ .+ mys®, 8D 8D o, ., 80)
which belongs to I,. Since sI,<1I, holds true for any generator of S, we

get that S,I,<I,, that is, I, is a left ideal of S, and I, is commutative.
This implies, by Frey’s lemma, that S, is left amenable.

Case 2. If 8, is not finitely generated then S,={s®,s®,...,s™, . . . }.
If S, is the subsemigroup of S, generated by {s®,...,s™} then Sy=
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UPS, and S, <8,,;. By case 1 each S, is left amenable and by Day [3]
or Dixmier [6, p. 215-216], S, is left amenable. The set of left invariant
means on m(Sy) is infinite dimensional since its finite dimensionality
would imply by [10, p. 56] that S, is finite. The fact that S does not
contain elements of finite order furnishes the desired contradiction.

Now 8 is not right amenable since it contains the two disjoint left
ideals Se® and Se®. (Se® is the set of all the sequences s in § for which
8,2 1 while Se® is the set of all the sequences s in S for which s,= 1 and
8,=0). In fact moreover, if S, is a subsemigroup of S which contains two
elements s,t of degree m,n resp. such that if £=min (m,n) then the k—1
tuples (84_y,. . -,81); (tg—1>- - -,t;) are not equal, then S, is not right amen-
able (since in this case Sys, Syt are two disjoint left ideals of S,).

If 8, is a subsemigroup which cannot be included in any finitely gener-
ated subsemigroup of § then for any n, there is some s, in S, with
d(sy) > n,. Otherwise if s € S, then d(s)=m < n, and therefore

8= (...,0,8,,8m 1+ -151) = (8,48™)(Spp—1€™ ). . .(8,6W) .
Hence S, is included in the subsemigroup generated by
{e(l), 6(2), cee e(no)}

which cannot be. If now s,t €S, and ny=max{d(s),d(t)} then let u € §,
be such that d(u)>n, Then su=tu=wu which implies that §, is ELA.

REMARK. After constructing the example used in the preceding proof
we found out that this same example S has been considered before, by
E. 8. Ljapin, in a different context. E.S. Ljapin has shown that the
semigroup S plays a particularly important role in the structure theory
of the semigroups with the property that each element has a right zero
(i.e. with the individual fixed point property on any set). See Ljapin
[13, p. 69, p. 336 and pp. 339-344]. It seems to us that even the proof
of the associativity of multiplication given above is still not superfluous,
since our representation of 8 is somewhat different from that of Ljapin.

RemaRrks. In the above example 2 of the ELA semigroup S each
finitely generated subsemigroup 8, is not ELA. This happens since S
does not contain “enough” (in fact not at all) periodic elements. We
have:

Prorosirion 6. Let S be an ELA semigroup such that each right ideal
of S contains a periodic element. If S, is a subsemigroup generated by the
finite set {sy,...,s,} then there is some 8., in S such that the subsemi-
group generated by {sy,...,8,,8,41} t8 ELA.
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Proor. Let ¢ € 8 be such that s;c=c for ¢=1,2,...,n. Then there is
some d € ¢S such that e=dF satisfies e2=¢ and s;e=e (since eccS). Let
S,’ be the semigroup generated by {s;,...,s,,e}. Then S," has a right
zero, namely e and is hence a fortiori ELA. (An element ¢ €8 is periodic
iff it generates a finite subsemigroup. If § has left or right cancellation,
then ¢ € 8 is periodic iff ¢ has finite order.)

PRrOPOSITION 7. Let S be a semigroup and I <S8 a left ideal. Then 8 is
ELA if and only if I is ELA.

Proor. If § is ELA, se 8, pem()* and fem(l), then define
(f.)(@)=f(sa) for any @ in I. Since I is a left ideal f, € m(I). Define now
(Lgp)f=o(f;). Then L, are w*-continuous on m(I)* and map B(I) into
itself. Hence by Mitchell’s fixed point theorem ((1) <= (2) of the charac-
terization theorem) there is an element ¢, € 8(I) with L,p,= ¢, for s 8
and a fortiori for s in I.

Conversely, if I is ELA then again by Mitchell’s fixed point theorem
there is some ¢, € §(8) with L,p,=¢, for each a in I. If se 8§, let acl
be arbitrary. Then

Ls% = Ls(La‘Po) = Laaq’o = Qo>
gince sa € I.

REeMARK. Replacing in the above proof, S(I)[8(S)] by the set of means
on m(I)[m(8)] and Mitchell’s fixed point theorem by Day’s fixed point
theorem (see [5]) one gets that if S is a semigroup and I <8 a left ideal
then S is LA if and only if I is LA. The “if”’ part is due to A. H. Frey
[8] and the “‘only if”’ part to Mitchell [15].
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