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ON THE DECOMPOSITION OF
A CHOQUET SIMPLEX INTO A DIRECT CONVEX
SUM OF COMPLEMENTARY FACES

ERIK M. ALFSEN

The purpose of this note is to study the problem mentioned in the title.
We shall give a necessary and sufficient condition that a face F shall
induce such a decomposition (Theorem 1). This condition is satisfied if F
is closed; which in the metrizable case implies that the complementary
face F' is an F s;-set (Theorem 2). The proofs are mainly combinatorial,
and the presentation involves a number of preliminary propositions
which may be of some independent interest.

There is a close relationship between the material of the first part of
the present note and O. Hustad’s investigations on supplementary sub-
cones [5]. In particular one may obtain the decomposition of a simplex
into a direct convex sum of a closed face F' and its complement F’
(Corollary of Theorem 1) by application of the Corollary 2 of Proposition
10 of [5].

Throughout the paper K is assumed to be a compact convex subset
of a locally convex Hausdorff space E over the reals, and all occurring
functions are assumed to be real valued. The concept of a face is defined
e.g. in [1, p. 99], and we recall that the face generated by a point z of K,
can be expressed as follows:

(1) face(z) = O D(z,n),
n=1
where .
(2) D@#,0) = (6sx—(x—1)K)nK, a=1.

We shall use the symbol F’ to denote the union of all faces not meeting
a given face F. Thus by definition

(3) zeF' <« face(@)nF =0.

For later references we state the following fundamental property of
simplexes, which is obtained by the lattice-characterization of simplexes
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(cf. e.g. [4, p. 145]) and by the Decomposition Lemma for vector lattices
[3, p. 19].

ProrosrrioN 1. If K is a simplex, and if 2=37_,u,y;, x=3].,v;2; are
two proper convexr combinations on K, then there exists a third convex com-
bination x =3;;0,w;; on K such that y;,z; can be expressed by the following

convex combinations:

m

(4) Yo = 2 oytitwy,  i=1...m,
j=1
n

(5) % = > 04V Wy, j=L...,m.
i=1

Note that the investigations up to Theorem 1 only depend on the con-
clusion of Proposition 1, and so they are independent of the topological
properties of K and E.

ProrosrTiON 2. If F 8 a face of a simplex K, then F' is also a face of K.

Proor. Clearly it suffices to prove that F’ is convex. To this end con-
sider a proper convex combination

(6) z = Y+ UsYs >
where y,,y, € F'.

If x ¢ F’, then there exists a point z; € face(x)nF. By the definition
of a face, there exists a convex combination

(7) z =21+,

where z, € F, z,€ K, and »;+0. In this case also v, 0, for otherwise
z=2z, € F and so y, € face (x) = F contrary to the assumption y, € F’ for
1=1,2. Thus (6) and (7) are both proper convex combinations, and so
there exists a convex combination x=37;_,0;w; on K satisfying (4)
and (5).

Assume first g,,+0. Then the expression (5) for z, implies w;; €
face(z;) < F, and the expression (4) for y, implies w,, € face(y;), which
gives a contradiction since y, € F’.

Assume next g,;=0. Then the expression (5) for z, implies 2, =w,,
and g,, =, + 0, and now the expression (4) for y, implies 2, =w,, € face(y,),
which is a contradiction since z, € F and y, € F'.

These two contradictions complete the proof.

If F is a face of a simplex K, then the set ' will be termed the com-
plementary face of F. This terminology, however, is only partly justified
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by the properties of F”. Clearly F' is the largest face disjoint from F,
but it is by no means certain that K itself is the smallest face containing
both F and F’. In fact we shall establish a necessary and sufficient
condition that K =face(FUF’), and we first observe that this is equiv-
alent to K =conv(FUF’) by virtue of the following

ProrosiTioN 3. If F and G are faces of a simplex K, then
(8) face(F U @) = conv(F U G)

Proor. Let y, be an arbitrary element of face(Fu(@). By the ex-
plicite expression for the face generated by a convex set [1, p. 99], there
exists a point z € conv(FU(@) and a convex combination

(9 T = Y+ Uy

where y, € K and u,+0. In this case we may also assume u,+0, for
otherwise y, =2 € conv(FUG@) and there is nothing more to prove.
Since x € conv (F UQ@), there exists a convex combination

(10) Z = 1121+ Ve2s,
where z;, € F' and z, € G.

If v,=0, then z=2,€ G, and by (9) y, € face(x)=G. Similarly »,=0
implies ¥, € F. In both cases we are through, and so we may assume
v,#+0 and v, 0 for the rest of the proof.

Now (9) and (10) are proper convex combinations, and so there exists
a convex combination z=3? j=10;w;; on K satisfying (4) and (5). Here
the proof splits up in a few simple cases:

1) Assume g,;,=0. Then the expression (4) for y, implies y, =w;, and
012=u;+0. Now the expression (5) for 2, implies y, =w,, € face (z;) =G.

2) Assume g,,=0 and apply a similar argument to yield y, € F.

3) Assume g,,+0 and g,,+0. Then the expressions (5) imply
wy, € face(z,) < F and w,, € face(2,) = G. Hence by the expression (4) for
Y1, ¥, € conv (FUQ) and the proof is complete.

If F is a face of K and x € K\ F’, then there exists an « =1 such that
D(z,6)nF +0, and we shall write

(11) o, F) = inf{« | D(z,0)nF +0} .
One may term d(z, F) the ‘“‘relative distance’ from x to F, and it is natural

to write &(z, F)=oo if z € F’, although that will not be needed in the se-
quel.

Prorosrtion 4. Let F be a face of the convex set K and let x be a point
of KN\FuF'. If
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Y1 € D(x,;00)NF, where oy = 6(z,F),
then there is a convex combination
(12) = py+(1-p)y,,
where y, € F' and p= oy
Proor. By the definition 2, there is a point y, € K such that
Y1 = xgZ—(xg— 1)y .
Hence there is a convex combination
(13) = py,+(1-p)y,,

where p=wx"1+0. Also u=1, for otherwise =y, € F contrary to as-
sumptions.

To verify that y, € F' we assume the converse, by which there exists
a point w, € face(y,)nF. By the definition of a face there must be a
convex combination
(14) Yo = owy+(1—p)w,,
where w, € K and ¢+0. Also g¢+1, for otherwise y,=w, € F, which by
(13) would imply « € F contrary to assumptions. Now consider the
point z defined by
(15) 2 =y +(1—=v)w,,

where »=pu(u+90—up)t. It is easily verified that 0 <»<1. Hence (15)
is a proper convex combination. In particular z € F. By substitution of
(14) and (15) into (13) one obtains

z = vluz+ (1 —vu)w, .
Solving for z and remembering that u=w«,1, one obtains
2 = vo® — (vag— l)w, € D(x,v5) 0 F .

This contradicts the definition of «, since » < 1, and so the proof is com-
plete.

ProrosiTiON 5. Let F be a face of a simplex K, and consider a proper
convex combination

(16) z = uy1+(1-p)ys,

where y, € F and y, € F'. If a convex combination

17) ‘ x = vz +(1—v)zg,

18 distinct from (16) and if z, € F, then z, & F' and v<p.
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Proor. Note first that x¢F for otherwise (16) would imply
Y, € face (x) = F contrary to the assumption y,e F’'. Also = ¢ F' since
y, € face(x)nF. It follows that v+ 1, since v=1 implies x=2, € F. Also
we may assume v+ 0 for otherwise z,=2 ¢ F’ and » < u; hence there is
nothing more to prove.

Now (16) and (17) are proper convex combinations, and so there
exists a convex combination

2
T = zgijwij
L2y

satisfying (4) and (5) with uy=pu, po=1—p, vy=v, v,=1-9,

We first observe that gy, =0. In fact, if g, 40, then the formulas (4)
and (5) for y, and 2z, would yield w,, € face(y,) and w,, € face(z;) < F,
which is a contradiction since y, € F'.

Since gy =0, it follows from the formulas (4) and (5) for y, and 2,
that 0gy=091 +0ss=pp=1—p and g;; =gy; +05; =7, =7, and furthermore,
that y,=w,, and 2z, =w;;.

Next, we observe that p;,+0. In fact, if g;,=0, then it would follow
from the relation g;; + 015+ 021 + 093 =1 that u=», and from the equation

® = 0Wyy + 09Wae = 2+ (1 — 1)y,

together with (16) and (17) that these were identical in contradiction
with the assumptions.

Now, since

1 = 013 +012+ 00 = v+012+ 14,

we obtain y=v+0,,>v. Furthermore, since g5+ 0, the formulas (4) and
(6) for y, and z, yield w, e face(y;)<F and w, € face(z;). Hence
face(z,)NF +0, and so z, ¢ F'.

This completes the proof.

THEOREM 1. Let F be a face of a simplex K and let F' be the comple-
mentary face. For a given x € K\FUF' there is at most one convex combina-
tion
(18) T = Y1+ LYz
with y, € F and y, € F'.

Such a convex combination exists if and only if the “‘relative distance”
oxo=0(x, F) is attained in F, that 1s, if

FnDx,x) £ 9;

in which case the point y, of (18) is the unique member of this intersection
a”d ”1 = 060"1.
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Proor. 1) We first prove that a convex combination (18) with y, ¢ F
and y, € F’, must satisfy the requirements y, € D(x,x,) and u, = x,™L.

To this end consider an arbitrary number «>«, Then there is an
element 2, € FnD(x,«), and by the definition (2) there exists a 2z, K
such that
(19) 2y = ox—(x—1)2,.

Observe that «>1, since x=1 would imply z=2, € F contrary to as-
sumption.

Writing »; =« and v,=1—v,;, we may convert (19) into the proper
convex combination
(20) T = 112+ 792, .

Since 2z, € F, we may apply Proposition 5 to obtain v, <py,, or equiv-
alently o = u,~t. Since & > x, was arbitrary, we must have oy >y, 1.

Solving (18) for y,, one obtains y, € D(x,u;™). Hence u, ' 2 «,, and so
we must have y,"l=«, and y, € D(z, p,™?).

2) Next we prove that D(z,x,)NF can not have more than one ele-
ment, which by the first part of the proof will establish the uniqueness
of a convex combination (18) with y, € F and y, € F".

To this end we assume that y, and 2, are two members of D(x;,x,)NF.
Applying the definition (2) and solving for y, and z,, we observe that y,
and z, occur in convex combinations like (18) and (20) with u, =v; =,
By Proposition 5, this entails y, =2,.

3) Finally assume D(z,x,)NF +0. By Proposition 4, there is a convex
combination (18) with y, € F and y, € F’, and the proof is complete.

CoroLLARY. If F is a closed face of a (compact) simplex, then every
x € KN\FUF' can be decomposed uniquely into a convex combination

(21) T = pY+1eY
with y, € F and y, € F'.

Proor. Let ay=6(x,F). By compactness
FnD@,x) = () FnD(z,x) + 9,
a>og
and the conclusion follows from Theorem 1.

Following the terminology of [2], we shall say that a function on K
is of class ¥ if it is affine and l.s.c., and it is of class &, if it is the point-
wise limit of a descending sequence from ¢. Also we shall use the symbol
U, to denote the unique positive normalized boundary measure [1, p. 98]
with barycenter z in a simplex K.
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ProrosiTioN 6. If K is a metrizable simplex and f € C(K), then the func-
tion x~ffdu, 18 of class %,.

Proor. The u.s.c. upper envelope f is pointwise limit of the (down-
ward-) directed set of all continuous and concave proper majorants of f
(cf. e.g. [4, p. 140]). By a standard argument (based on the existence of
a countable base for the compact metrizable space K) there is a descend-
ing sequence {g,} of continuous concave functions on K which converge
pointwise to f.

By a known result (cf. e.g. [4, p. 145]), the l.s.c. lower envelopes g,, are
affine for n=1,2,.... Hence g, is a descending sequence from %, and
the limit k=inf, g, is of class &,.

It is known (cf. e.g. [4, p. 145]) that

Qn(x) = fgn dpg

for all ze K, n=1,2,.... By the Monotone Convergence Theorem and
by the definition of boundary measure [1, p. 98],

k(z) = ln-fnfgn d‘”'a: = infnfgn Ay

= [Fau. = [fdu..

This completes the proof since k € ¥,.

THEOREM 2. If F is a closed face of a metrizable simplex K, then F' is
an F s-set.

Proor. Let K be metrizable, and define a function k& by
(22) k(x) = p(F), =zekK.

The indicator function yp is u.s.c., and so there exists a descending se-
quence {f,} from C(K) which converges pointwise to yz. By the Mono-
tone Convergence Theorem

k(x) = fo d:uz = ﬁmn—)oo g'n(x) ’

where g,(x) = [f,du, for n=1,2,... . By Proposition 6, g, € ¥, for
n=1,2,... . It follows in particular that % is affine.

For every natural number 7, let (g, ,)m=1,2--- be & descending se-
quence from ¥ converging pointwise to g,, and define

kn = inf{g,-,, I’l:,j=1,. ..,n} .
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Now {k,} is a descending sequence of l.s.c. functions which converges
pointwise to k.

If z € F, then Spt(u,) < F (cf. e.g. [1, p. 100]), and so k(x)=1.

We claim that if x € F’, then k(x)=0. To verify this assertion, we
assume the converse, that is u (F)+0. We first observe that u (F)=+1,
for otherwise Spt(u,) < F and so z € F, contrary to the assumption z € F'.
Now we write u,(F)=2, and we define two positive normalized measures
n, and =, as follows

Ty = l_l(lux)F’ Ty = (1 _l)_l(/‘z)clf’ .

Now My = A+ (1—A)m,y .

Writing y, and y, for the barycenters of =, and =,, we obtain a proper
convex combination
z =y +(1-2)y,.

Hence y, € face(x). On the other hand Spt(rn;) = F, and so y, € F. This
gives the desired contradiction since x € F'. Thus we have completed
the proof that k(x)=0 for xz e F'.

Applying the decomposition of the first part of the theorem together
with the fact that k is an affine function, we obtain

(23) k() =0 < zeF'.
Now define
By, = {x|ky) £ 1m}, mmn=12,....

By the lower semi-continuity of k,, E,, ,, is closed for all m,n. By virtue
of (23) and the fact that k,\ %, we shall have

F=N UE,,.

m=1 n=1

Hence F' is an F;-set, and the proof is complete.
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