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A THEOREM
ON THE MAXIMUM MODULUS OF ENTIRE FUNCTIONS

MATTS ESSEN

Let f(2) be an entire function. We denote max|f(z)] and min|f(z)| on
|z|=r by M(r) and m(r), respectively. Let 1 satisfy 0<i<1. We shall
study 7—* log M(r) for large values of . We assume that f(0)=1, which
is an unessential restriction.

We define
R

I(R) = f r=1-*(logm(r) — cosnA log M(r)) dr .

0

If log M(r)=O(+*), then f(z) is at most of order 4, and we have the fol-
lowing representation:

o0

fR) =TI (1 —-2/z,).

1
We form an auxiliary function

i) = fl'i (1+2/l2a))

and denote max|f,(z)| and min|fy(z)] on |z|=r by M,(r) and my(r),
respectively. We also need

R
I,(R) = f r-1-%(logm,(r) — cosnA log M,(r)) dr .

0
Our main result is

THEOREM 1. Let f(z) be an entire function and let A be any number
satisfying 0<A<1.

A. If the finite limit lim,_, . r—* log M (r) exists, then limg , . I(R) exists,
but this limit may be infinity. If the finite limit limp_,  I(R) exists, then
lim,  r—*log M(r) exists, but this limit may be infinity.

B. If r-*log M(r) and I(R) have an upper bound, then I(R) is bounded
below, and lim,_,  r—* log M(r) = « exists if and only if limp_, . I(R) exists.
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If these limits exist, then the lLimits lim, r—*logM,(r)=F and
limg, , I,(R) also exist, and

o =f = —limg, I,(R)/(nsinnl).

Many papers have been devoted to problems of this type. For a list
of references, the reader is referred to Kjellberg [7]. In this paper, Kjell-
berg uses methods from the theory of analytic functions to prove the
following result.

THEOREM 2. Let f(z) be an entire function and A any number satisfying
0<i<1l. If for all sufficiently large values of r,

logm(r) — cosmd logM(r) £ 0,
then lim,_, r—*log M(r) exists. The limit is positive or infinite.

ReMark. The existence of the limit also follows from the weaker as-
sumption that logm(r)— coszA log M(r) has an upper bound. The proof
is the same.

In [3], Essén gave an alternative proof of this theorem using general
properties of integral inequalities. A conjecture by Kjellberg that these
methods could yield further results has led to the present paper.

Recently Anderson [1] has used methods from the theory of analytic
functions to prove the following theorem:

THEOREM 3. Suppose f(z) is an integral function and A a fixed number
satisfying 0<A<1. If
« = lim r~*log M(r) < o

——r—>00

and

hmrl, r3—>00

I(ry,ry) £ 0
where I(ry,1y)=1(ry)—I(ry), 11 <7y, then

logM(r) ~ ar* (r > 00).
Moreover
log My(r) ~ or* (r - ).

Before proving Theorem 1, we want to show that Theorem 3 and the
part of Theorem 2 which deals with the existence of lim, , »—log M(r)
are consequences of Theorem 1 and the following simple reformulation of
results by Kjellberg [6]:

Lemma 1. Let f(z) be an entire function and let A be any number satisfy-
ing 0<A<l. If I(R) has an upper bound and lim,  r—*log M(r) < oo,
then lim,_ r—log M(r) < co.



A THEOREM ON THE MAXIMUM MODULUS OF ENTIRE FUNCTIONS 163

PROOF OF THE EXISTENCE OF lim, 7*logM(r) 1N THEOREM 2. If
logm(r) — coszA log M (r) has an upper bound, the same is true for I(R).
It follows from Lemma 1 that either lim,_  r~*log M(r) = oo or log M(r) =
O(r*). In the first case, we have nothing to prove. In the second case,
we have, according to Theorem 1, that I(R) is bounded below. Since
logm(r) — coszA log M(r) has an upper bound, it follows that limg , I(R)
exists, and Theorem 1 now gives the existence of lim,_, r~*log M(r).

Proor or THEOREM 3. From the assumptions, it follows by arguments
analogous to those above that logM(r)=0(r*) and that limp  I(R)
exists and is finite, and Theorem 1 gives the existence of the limits.

In [6], Kjellberg mentioned that the results in his paper could have
been stated for subharmonic functions. This is also true for the results
in [7] and the results in the present paper. In [2], Anderson has, among
other things, made this generalization of his results in [1].

Several lemmas are needed in the proof of Theorem 1. In these lem-
mas, 4 always denotes a number satisfying 0<i<1.

Lemma 2. If log M,(r)=0O(r*), then I,(R) is bounded.

Lremma 3. If log M, (r)=O(r*), then lim,_,  r—*log M,(r)=p exists if and
only if limg | I,(R)=1y exists. If these limits exist, then

af singd = —y .

Remark. The proof of Lemma 2 is similar to the proof of Theorem 5
in Boas [3] and to the beginning of the proof of Theorem 1 in Anderson [1].
Results such as those in Lemma 3 are well known and usually proved
with methods from the theory of analytic functions. As an instance,
we can mention Theorem 1 in Anderson [1]. We give a new proof, using
the convolution equation which we deduce from formula (15) in Kjell-
berg [7].

Lemma 4. a) If I,(R) is bounded, then either I(R) tis bounded
limg , I(R)=co.

b) If log M(R)=O(R?) and if I(R) has an upper bound, then limg_, . I(R)
exists if and only of limp_,  I,(R) exists.

Proor or LEmMma 2. We consider z-1-* logf,(z), defined so as to be real
on the positive real axis, and we integrate over a half-circle in the upper
half-plane and a diameter on the real line in the same way as in Section 3
in Anderson [1]. Since log M,(r)=0(r*), we obtain
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R
f w14 [log f,(x) — e~#(log |f1( — )| +imn(x))] dz = O(1) .
0

Here n(z) is the number of zeros of f,(z) in |2| <z, counted with multi-
plicities. Taking real parts after multiplication by the factor — e, we
obtain the lemma.

In the proofs of Lemmas 3 and 4, we need much additional notation.
We start from the formula (15) in Kjellberg [7] and the convolution
equation which is obtained from (15) by the change of variables R=e®
and r=e? (cf. Essén [5]). We define

p(x) = e log M(e?) ,
n(x) = e** logm(e) ,
¢1(x) = e** log M,(e%) ,
n(x) = e~** logm,(e?) ,
p(x) = n(x) —cosmip(z) ,

P@) = [p()at,

0
P1(x) = 1y(x) — cos i, (%) ,
P(z) = fpl(t)dt ’

0

2(1 + cosmA) z e*A-»
K@) = — w1y

It is clear that
I(e*)—I(1) = P(x) and I,(e*)—1,(1) = P,(x).
We also have that
lim, , o) =1lm,, @ (x)=0.

On all occasions when the following formulas are used, the functions ¢
and ¢, will be bounded.

(1) MENSPE @1,

(2) m+er = n+9,

(3) LD,

(4) @(1+cosmd) = mx K + @ xK .

The formula (1) is well known. The formulas (2) and (4) are obtained
from (13) and (15) in Kjellberg [7] by the change of variables mentioned
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above. Also, the formula (3) is known, but we have not found any ex-
plicit reference. The formula is valid since

Py = 71— @, COSTA = 71y + @1 —@; (1 + cosmd)
S n+ep—@(l+cosnl) =p.

In the inequality, we have used (2) and the right inequality in (1). In
(4), we eliminate 7, and obtain

pxK
1+cosmA’

(5) P1— g K =

If we express # and 7, in terms of p, p;,  and ¢, and use (4), we obtain
(6) @1 (1+cosmd)+p; < @p(1+cosmd)+p.
In the proof of Theorem 1, the formulas (5) and (6) are essential.

In the proof of Lemma 3, we need two more lemmas.

LemMA 5. Let t be a real number. Then
Ry = f e~ K (z)dx + 0.

—00

ProOF. A residue calculai;ion shows that

2(1+ coszA)

K(t) = {e}n(t—i),) _,_e-}n(t—iz)}z

and hence the lemma is true.

Lemma 6. We define

fK(y)dy z>0,

z

N(x) =

fK(y)dy x<0.

Then N(t)40 for all real values of t.
Proor. See Essén [5].

Proor or LEMMA 3. We shall use Pitt’s Tauberian theorem (Th. 10 a,
ch. V in [8]) in the same way as in Essén [56]. We shall use the fact that
@ and g, are slowly decreasing (cf. Def. 9b, ch. V in [8] for the definition
and Essén [5] for the proof).
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Integrating (5) and applying an integration by parts, we get

1
W) @1*N(x) — g+ N(0) = — (P1xE(z) - Py+K(0)).

14 cos
It is clear that the following proposition is true:

(8) lim, , ¢, * N(x) exists iff lim P, x K(x) exists .

T—>00

We have assumed that ¢, is bounded and it follows from Lemma 2 that
P, is bounded. We know, according to the Lemmas 5 and 6 that the value
0 is not assumed by N (¢) and K (). As just mentioned, we also know
that ¢, is slowly decreasing. If P, fulfills a Tauberian condition, for in-
stance that P, is slowly increasing, we can use (8) and Pitt’s Tauberian
theorem and prove that lim, ,  @,(x)=p exists if and only if
lim, ,  P,(x)=y exists.

It remains to prove that P, is slowly increasing and that g has the
value given in the lemma. Since, if # is a positive number,

z+h
Py(a+h)~Py@) = [ (m(y) - cosmd ¢y (y)) dy
eoh
s [ (1= cosm)gu(y) dy

a+h

log M, (e=+") f (1 —cosmd)e—*dy

A

@(x+h) (1 —cosmd) (e —1)A-1,
and since @, is bounded, it follows that

lim Tim(Py(z+h)—Pyx)) < 0.

h—>+0 x—>00

This means that P, is slowly increasing.
Since lim, | ¢,(x)=0 and lim, ,  P,(x)=0, it follows from (7) that

@1 *N(0)(1+ cosnd) = P,xK(0),
@1*N(z)(1+ cosnd) = PyxK(z) .
If the limits exist, we obtain that

BN (0)(1 +cosad) = y-K(0),

and since N(0)= —x tg(nA/2) and K(0)=1 (cf. Essén [5]), it follows that
pr singd= —y. The lemma is proved.

and hence
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Proor oF LEMMa 4. We know that P(x)=I(e*)—I(1) and that P,(z)=
I,(e®)—1I,(1), and hence it suffices to prove the corresponding statements
for P and P,. Consider the following equation:

® P(a) = Py(@) + [ (p)~p(0) dt .
0

Since, according to (3), the integrand is positive, we have that the inte-
gral has a finite or infinite limit as # — cc. Hence a) is true.

If log M(r)=0(r*), it is also true that logM,(r)=0(r*) (cf. Boas [4,
Theorem 2.9.5]). It now follows from Lemma 2 that I, is bounded. Hence
P, is bounded and b) follows from (9).

Proor or TarorEM 1. We shall use the notation given after the proof
of Lemma 2. In order to simplify the reading of the proof, we state the
lemmas once more, now using the new notation.

Lemma 1. If P has an upper bound and lLim, . @(x) i8 finite, then
lim, , . @(x) is finite.

Lemma 2. If ¢, is bounded, then P, is bounded.

Lemma 3. If ¢, ts bounded, then lim, ,  @,(x)=p exists if and only if
lim, , P,(x)=y exists. If these limits exist, then nf sinnd= —y.

LemwMma 4. a) If P, is bounded then we have that either P is bounded or
lim, , P(z)=oo.

b) If @ is bounded and if P has an wpper bound, then lim,__ . P(x) exists
if and only if lim,_,  P,(x) exists.

We first prove that if lim, ,  r-*log M(r)=lim, , ,¢(x) exists and is
finite, then limg_,  I(R)=lim, ,  P(x) exists. The latter limit may be
infinite.

Assume that lim, , . @(x) exists and is finite. Since ¢ is bounded, it
then follows (as mentioned in the proof of Lemma 4b) that ¢, is bounded
and hence, according to Lemma 2, that P, is bounded. Now, Lemma 4a
implies that either lim,  P(x)=oo or P is bounded. In the first case,
there is nothing more to prove. If P is bounded, we integrate (6) and
obtain

(10) (L+c0s2) [ (pa(4) —p(0) dy S Pla) ~Py(z)
0

Since the right member is finite and since, according to (1) ¢,—¢ is
non-negative, [5°(p,(f)—¢(y))dy is convergent. Now, ¢, is slowly de-



168 ' MATTS ESSEN

creasing (cf. the beginning of the proof of Lemma 3) and lim, ,  ¢(z)
exists, and hence ¢, —¢ is slowly decreasing. But if the integral of a
positive, slowly decreasing function ¢ is convergent at infinity, we must
have that lim, _ _g(z)=0. Hence

lim, , @i(x) = lim ) = o.

200 P

Since lim,__ . ¢, (%) exists and is finite, Lemma 3 implies that lim, , P,(x)
exists and is finite, and gives the value of «. Since P is bounded and
lim,_,  P,(x) exists, the existence of lim, ,  P(x) follows from Lemma 4b.
Hence we have proved that the existence of lim, ., ¢(x) implies the
existence of lim,_,  P(z), e.g. the first part of A in Theorem 1. We have
also proved the “only if”’-part of B in Theorem 1.

Conversely, let us assume that lim, , P(x) exists and is finite. It
follows from Lemma 1 that either lim, ,  @(x)= o or ¢ is bounded. In
the first case, there is nothing more to prove. In the second case, ¢ and
hence ¢, are bounded, and Lemma 2 implies that P, is bounded. Now
we first use Lemma 4b to conclude that lim__, . P,(x) exists, and secondly
we use Lemma 3 to conclude that lim,_, . ¢,(x) exists. Since ¢ is slowly
decreasing, it follows that ¢, —¢ is slowly increasing. With the same
kind of argument as above, it follows from (10) that lim, __ ¢(x) exists.
Hence the converse statements are proved and the proof is complete.
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