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PROXIMITY AND HEIGHT

JACK L. HURSCH, JR.

1. Introduction.

Alfsen and Njastad [3] have given an example of a p-equivalence class
lacking a finest uniform structure. Other examples appear in [5] and
[7, p. 27]. These examples, and certain corresponding facts about func-
tions have led Fenstad (in [5]) to question the usefulness of the concept
of proximity. In particular, the concept of generalized uniform structures
has been introduced in [3] and developed in [8].

Motivated by these considerations, the author has formulated a new
concept, height, to help clarify the order structure of p-classes of uni-
formities. Several unforeseen consequences and conjectures concerning
the relationship between height and proximity have resulted. Among
these are 1) the construction of an example of two uniformities in the
same proximity class whose least upper bound is not in the proximity
class, and differing from previous examples by the fact that the two
uniformities in question are related in height; 2) the fact that height and
proximity are, in a certain sense, dual; 3) the conjecture that a height
class and a proximity class can have at most one element in common.
Since only a partial result is known (Theorem 4.1), the latter is an open
question. The purpose of this paper is to introduce the concept of height
and develop some of the initial consequences referred to above.

In Section 2 we introduce a quasi-ordering on the family of all uni-
formities on a set X, label the resulting equivalence classes height classes,
and prove some preliminary theorems.

Then, in Section 3, we review those facts about p-equivalence which
we need, and relate proximity to height. The dual nature of proximity
and height is discussed at the end of Section 3.

Section 4 contains some conjectures, examples, and counterexamples.

The author wishes to express his appreciation to W. Thron for stimulat-
ing his interest in the direction of the subject matter of this paper, and
for numerous enlightening conversations about the material contained
here.

Received July 9, 1965.
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2. Height.

Following common usage, we say that a subset U of X x X is totally
bounded iff X is the union of a finite number of sets B such that Bx B< U.
A uniformity % is said to be totally bounded iff each of its entourages
is totally bounded.

Now we can define an ordering of uniformities by means of relative
total boundedness. We say that a uniformity % on X is less than or
equal in height (<*) to a uniformity ¥~ on X iff for each U € % there
exists ¥ € ¥ such that Uu Ve is totally bounded. (V° denotes the com-
plement of V.)

The following results are immediate:

THEOREM 2.1. The relation ‘“‘less than or equal in height”’ is a quasi-
ordering (reflexive and transitive).

It is well known that a quasi-ordering leads to a family of equivalence
clagses (which in this case we shall call height classes) and a resulting
partial ordering (<) on the family of equivalence classes. If two uni-
formities belong to the same height class, we shall say that they are
equal in height (="). We will denote the height class to which a given
uniformity % belongs by H(%).

THEOREM 2.2. If U <V (every entourage of U is also a member of ¥"),
then % <t ¥ .

THEOREM 2.3. The smallest height class is the class of all totally bounded
uniformities on X.

It is well known that the set of all uniformities on X form a complete
lattice under the ordering <. We shall establish some initial results
concerning <*. It will be convenient to use the common notation v for
both least upper bounds of uniformities and least upper bounds of height
classes. (We must, of course, first establish that pairs of height classes
have least upper bounds.)

THEOREM 2.4. If U<V and W <tV then (UvW )<tV .

Proor. If T € (Uv#’) is of the form UnW with Ue % and WeW”
and ¥V and ¥V, are members of ¥ and 4,, 1=1,2,...,n, and B,
j=1,2,...,m are finite covers of X such that

(A;x 4;) < (Uu (Vy) and (B;xB) < (Wu(Vyp)),
then
(A;nB)x(4;nB;) = (Tu(Vyn Vy)).



152 JACK L. HURSCH, JR.

COROLLARY 2.1. If U <PV, then (UvY )=V .

Proor. By Theorem 2.2., ¥ " <* ¥ <* (%v¥"); and by Theorem 2.4,
(UvY)shY .

CorOLLARY 2.2. If % 1is totally bounded and ¥~ is arbitrary then
(UvY )=tV

Proor. Theorem 2.3 and Corollary 2.1.

3. Proximity and height.

We shall review only what we need of the facts concerning proximity.
For a more complete treatment, see [1], [2], and [4].

If % is a uniformity on X, then % induces a relation € on the power
set of X in the following way. A € B iff there exists U € % such that
U(A) < B, where

U(4) = {y: there exists € 4 such that (z,y) e U}.

We say that % and ¥ are in the same proximity class or that they are
p-equivalent iff % and ¥” induce the same € relation on the power set
of X. If is well known (see [1]) that every proximity class contains a
unique, smallest member %, which may be constructed in the following
way:

We say that a finite cover 4,, 1=1,2,...,n, of X is a p-cover of X ift
there exists a finite cover B,, 1=1,2,...,n, of X such that B; € 4,.

It has been shown in [1] that the sets U? ,(4;x 4,), where the 4,’s
are a p-cover of X, constitute a base for a totally bounded uniformity
which is the smallest uniformity inducing €. Following [1], we shall use
U£,, ¥V, etc. to denote the smallest member of the proximity class of
U,V ,... respectively.

It will be convenient to say that % is less than or equal in proximity
(£7) to ¥ if the relation € induced by % is a subclass of the relation €
induced by ¥". (This corresponds to the order given in [2].)

It is well known that the above construction of %, gives a one to one
correspondence between proximity classes and totally bounded uniformi-
ties which is an order-isomorphism when the ordering of proximity classes
is defined as above.

In particular, we shall make use of the following Lemma proved in [3].

LemmA. Let %, be the (totally bounded) coarsest uniform structure of a
p-equivalence class P of uniform structures on a set S. If V is a subset
of 8x 8 for which
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ACVA)NP) forall A< S,
then we also have

AC[VnUNANL) forall Ue, A< S.
COROLLARY 3.1. If <P ¥, then (UvV ,)=P YV .
We now prove the main theorem relating height and proximity.
THEOREM 3.1. If U <* V", then U S [V V(UVY"),).

Proor. Let all of the entourages picked below be symmetric. Let U
and U% be members of % such that Uto Uto U< U. Since # <* ¥ there
exist Ve¥ and 4;, 1=1,2,...,n, such that the 4, cover X and

n
(Ukuve) s |J (4;x4,).
i=1
Let U# be a member of % such that UsoUsoUs< U% and let Vie ¥
be such that VioVio Vi< V. Then let
B; = (Ukn V¥)(4,).
Clearly the B, constitute a p-cover of X with respect to the p-equivalence
class of v¥" and thus
n
U,=UB;xB)e@vy),.
i=1

To complete the proof, it will suffice to show that
(U, nVi) < U.

Suppose (t,u) € (U,n V%), then (¢,u) € (B; x B;) for some ¢ and there exist
x and y € 4, such that (x,f) and (y,u) € (UsnV#). Therefore, (z,y)€ V.
However, since (4;x 4,)<=(UtuV°¢), we have (z,y) € Us. Consequently,
since (z,t) and (y,u) € Us< U% and all the entourages under considera-
tion are symmetric, (¢,u) € U.

CorOLLARY 3.2. If a p-equivalence class & has a least upper bound,
then the relation U <™V between two members of P implies UV .

Proor. If #  is the least upper bound of &, then #,=(%v¥"),<¥ .
So ¥ =[¥V(UVY),]

CoroLLARY 3.3. If H, and H, are height classes, then H, < H, iff there
exists U, € H, and U, € Hy such that U, < U,.

Proor. If #,€ H, are such that %,=<%,, then, by Theorem 2.2,
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U, <" U, Conversely, if H <H, and %, € H, and ¥ € H, so that
U, £* ¥, then, by Theorem 2.3 and Corollary 2.1,

Uy = V'V WUy V)] € Hy
and, by Theorem 3.1, %, X %,.

THEOREM 3.2. Every height class H has a unique, largest member U,.
If U<r U,, then UL U,.

Proor. It is well known that there exists a largest uniformity %,
(generated by A=the diagonal of X x X) on X. Clearly, every finite
cover of X is a p-cover with respect to the p-equivalence class of %,.
If #cH,let Uy=(Uv(%,),). Clearly, ,cH. If %' <*%,, then, by
Theorem 3.1

U S (UL (U ~vU),) = Uy, -

Since %' € H implies %' £* U, %, is the largest member of H.

COoROLLARY 3.4. The family of all height classes of uniformities on a set
X forms a complete lattice.

Proovr. Since the totally bounded uniformities form a height class
which is the smallest one (Theorem 2.3), it will suffice to show that every
subfamily of height classes has a least upper bound. Let H,, a € & be a
subfamily of the family of all height classes on X and, by Theorem 3.2,
let %, € H, be the largest member of H, for each a. If

%=V%a’
acsf

then H(%) is certainly an upper bound for {H,: a € &/}. On the other
hand, suppose H’ is an upper bound for {H,: a € &/}, and %,’ is the
largest member of H'. Then, by Theorem 3.2, %,<%,;' for all a € .
Consequently % <%,’' which implies H(%)< H by Corollary 3.3.

CoRrOLLARY 3.5. If {%,: a € A} is a class of uniformities on X, then

Va@,) - 1(Va,).

aesf acf

Proor. By Corollary 3.3,
VH®,) < H(V%,,).
acsf acof

On the other hand, if %,  is the largest member of H(%,), then, by
Corollary 3.3,
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() <y 5)

[ 1X" 4 acsf
and by the proof of Corollary 3.4,

H(Yf’) = V) = V (1),

acsl

We pause to mention here, that it is not necessarily true that

An,) -8 A,).

aeof acf
A counter example will be given in Section 4.

In certain respects, height and proximity appear to be dual concepts.
In particular, the statements “‘every p-equivalence class has a unique
smallest member”’ and “‘every height class has a unique largest member”
appear to be dual. The duality is further suggested by the facts that the
unique smallest members of p-equivalence classes are exactly the mem-
bers of the smallest height class, and the unique largest members of
height classes are exactly the members of the largest p-equivalence class,
Furthermore, we have the facts that 1) the ordering of the p-equivalence
classes is isomorphic to the ordering of the smallest height class (well
known), and 2) the ordering of the height classes is isomorphic to the
ordering of the largest p-equivalence class (Corollary 3.2 and Theorem
3.2).

4. Thron’s conjecture and examples.

In considering the concepts of proximity and height, the question
naturally arises: To what extent does the knowledge of the p-equivalence
class and the height class of a uniformity determine the uniformity ?

ConNJECTURE 4.1. (THRON’S CONJECTURE). There exists at most one
uniformity in the intersection of a height class and a p-equivalence class.

All attempts by the author to prove this conjecture have failed. On
the other hand, the construction of a counter-example appears to be very
difficult. We wish to find two distinct uniformities 4 and B such that
A="B and A=? B. Since Theorem 3.1 implies that the p-equivalence
class of A and B cannot contain AvB, one is led to look at existing
examples of uniformities 4 and B such that

4 =PB+PAvB.
The first such example was constructed by Alfsen and Njastad [3].
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For convenience, we describe it in a form slightly different from the
original.

ExampLE 4.1. Let X be a set whose elements are indexed by the
product of the integers with themselves, i.e.,

X =f{wy i=1,2,...,j=1,2...}.

Let A;={z;;:j=1,2,...}, B;={x;,;: 1=1,2,...}, and let

4=U@x4), B=U®B;xB).
i=1 t=1
By abuse of the language we will let 4 and B stand for the uniformities
generated by A and B respectively. Then Alfsen and Njastad have shown

[Av(4,vB,)] + [Bv(4,vB,)],

[Av(4,vB,)] =?[Bv(4,vB,)] *?[Av(4,vB,)]v[Bv(4,vB,)]
=AvB.

By Corollary 2.2, we have 4="[4v(4A,vB,)] and similarly for B.
Thus, if 4=" B, we would have the example for which we are looking.
However, suppose 4 <* B, then there would exist a finite cover, C;,C,,
...,0,, of X such that

Bn(C;xC)) = 4.

It is easy to see that, if z; , € C, then x,; , ¢ C; for k+j. Consequently,
the n sets Cy,C,,...,C, cannot cover X. Thus 4 and B are not com-
parable in height.

We shall say that % is a partition uniformity if there exists a partition
{4,: a € &} of X such that the single entourage U, (4, x 4,) is a base
for #.

By using Example 4.1 as a model we have been able to construct the
following example of two uniformities 4 and B such A<* B, A=? B,
and 4 £B.

ExampLE 4.2. Let 4 be as in Example 4.1. Let j be any positive
integer. Let n=4(j+1) if j is odd, and }j if j is even. Let k be any
positive integer or zero. Given j, let ¢=1,2,...,n. If j is odd, let I=
2nk+¢. If j is even, let I=(2k—1)n+¢. In either case let m=1I1+n.
If j is odd, or if j is even and 1=k, let B, ; = {2, ;,%, ;}. If j is even
and k=0, let B, ;,={z,;}. The B, ;,’s constitute a partition of X.
Let

B = U(Bi,j,kXBi,j,k) .
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Let C, be the set of all 7, ;’s, and let C, be the set of all z,, ;’s. Clearly,
C,uC,=X, and if
C = (C1xC)U(CyxCy),

then BnC=4<A so that (if B is also used to denote the uniformity
generated by B) A<* B.

Now A4, has a base of elements of the form U=UJ_, (F;x F;) where
each F; is a union of A;’s, and the F;’s constitute a finite cover of X.
Consequently, some F; contains at least two A;’s. Suppose F; contains
both 4, and A4, such that i;<i, and 0<n=1,—4;. Let i,=s+rn,
where 0 < s<n. If r is even, let t=2n—1 and k=4r. If r is odd,
let t=2n and k=4}(r+1). Then B, , ;= {x; 1, 7;,,}. Clearly

BspxxBsyx) < (BnU) ¢ 4.
We conclude that

U =Av(A,vB,)=AvB, £ BvA,=Bv(4,vB,) =Y.

Thus, we have constructed an example of two uniformities in a p-equiv-
alence class which are comparable in height but not comparable in the
usual ordering.

We note that %v¥” is not in the p-equivalence class of # and ¥ .
(This follows either from Theorem 3.1 or by observing that AnB=4.)
However, any extension of the approach used in Example 4.2 must fail
to give us a counter example to Thron’s conjecture because of::

THEOREM 4.1. If % and ¥~ are partition uniformities such that U ="¥",
then [UN(UNY )=V V(XN

Proor. Suppose 4=U, ,(4,x4,) is a base for # and B=
Useg (By x By) is a base for #”. Since =" 7", there exists a finite cover
Oy, 1=1,2,...,m, of X such that Bn(C;xC,) <4, and a finite cover D,
Jj=12,...,m of X such that An(D;xD,)c=B. Clearly for be%,
B,nC,; can intersect only one A4,. Since the C;’s cover X, B, can inter-
sect at most » A,’s. Similarly each 4, can intersect at most m By’s.
Let E, be a maximal family of B,’s having the property P: For a € &,
no more than one member of E, can intersect 4,.

Such an E, exists by Zorn’s lemma. Having constructed £, K,,...,E,
we may construct E,,, maximal such that E,,, does not intersect
EE,,...,E, and satisfying property P. Now E, E,,...,E,, ., must
exhaust all the B,’s since if, for some B,,

‘Bb¢El’ l=1,2,...,nm+1,
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then there exists 4, and B, such that B, € E;, and both B, and B,
intersect 4,. Since B, can intersect at most n distinct 4,’s there can
occur at most n distinct 4,’s among the 4,’s. Since each 4, can inter-
sect at most m B,’s, there can occur at most m-n distinet B,’s among
the B, ’s. But this is a contradiction since the E’s are disjoint. Let

Fl= U'Bb’ l=1,2,..-,nm+l.
Byelp

Clearly, B(F;)=F,, so the F;’s constitute a p-cover of X with respect
to the p-equivalence class of B. Therefore,

nm+1

F=UW@ExF)e¥<@v7).
I=1

Now, if (z,y) € AnF both x and y are members of the same 4, and thus,
by the method of construction of ¥, both  and y are members of the
same B, so that (z,y) € B. Thus, we see finally that

AnF < B, MAnF)e v (%,v )]
which implies B € [#v(%,Vv¥,)] which in turn implies ¥" < [#Uv(%,v?,)]

8o that
(V' (U VY] S UV (v 7).

Similarly, we can prove the reverse inequality.
The conjecture suggested by dualizing Corollary 3.1 is:
CONJECTURE 4.2. If U <h V", then (UpA?V )="U.

ExamPLE 4.3. Let A and B be the two partition uniformities con-
structed in Example 4.1 above. Consider # =A4,AB,. Let
01 = {xi.i: 7:= 1,2,. . .} 3

let C;=C,¢, and let C=U?_,(C;xC;). Then (CnA)e A4, and (CnB) € B,.
If
D = {(@;,2;,,): t=1,2,...3U {(%g5,%,7): ¢%+J and k+1},

then D generates a partition uniformity %, and
CnAdA)u(CnB)<D.

Consequently, % < (A,AB,), so that Z <* A by Corollary 3.3. Clearly
% is not totally bounded. Thus, if we show that 4 A%, is totally bounded,
we will have a counter-example to Conjecture 4.2 by applying Theorem
2.3.
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Consider ¥ =(AAB,); clearly any entourage W € #~ must contain an
entourage Wi e # such that Wko Wio W< W. But since Wi e #", the
entourage W+ must contain a subset of the form

U(OL:) (B;n C,) x(BjnO'k))

where C’k, k=1,2,...,n, is a finite cover of X. Suppose (%4,1,%5 1) €
O} x Oy, then for arbitrary I and m, (x;,;,%;, ;) and (x; ;,%;,,,) are members
of A, thus

(xi,l’x]',m) € W‘g‘ o W’s‘ o W% c W’

and since the O)’s constitute a finite cover of X, W is totally bounded,
and thus #  is totally bounded.

Since (AA%U,) W, (AA%,) is totally bounded, and this completes
the proof.

We conclude with a theorem showing that height determines the
Cauchy ultrafilters, and an example showing that height distinguishes
between more uniformities than do the Cauchy ultrafilters.

THEOREM 4.2. If U and ¥~ are two uniformities such that U ="¥", then
U and ¥ have the same Cauchy ultrafilters.

Proor. It will suffice to show that, if Z <* ¥, then every ultrafilter
which is Cauchy with respect to ¥~ is also Cauchy with respect to %.

Suppose & is an ultrafilter which is Cauchy with respect to ¥". Pick
Ue%. Let V be a member of ¥ and let 4,,4,,...,4, be a finite cover
of X such that

n
A=UM;x4,)<Uuve.
i=1
Since &% is Cauchy with respect to ¥~ there exists F € &# such that
FxFcV. Let Bj=A;nF. Since U}, B;=F, some B, is a member of &
For x and y members of this B; we have z,y € F n4; which implies

(,y) e (Vn(4;x4,))<U.
Thus, B;x B;,<U and we have shown & Cauchy with respect to %.

ExaMpLE 4.4 Let R be the set of real numbers. Let d, be the usual
metric on the real numbers, and let dy(x,y)=|22—y%. Let % be the
uniformity generated by d,. Let ¥ be the uniformity generated by d,
and d,. It is well known that (X,%) is complete, i.e., the only Cauchy
ultrafilters are the ‘‘principal” ultrafilters generated by singletons.
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Since % =¥, every ultrafilter which is Cauchy with respect to ¥~ is also
Cauchy with respect to . On the other hand, every principal ultra-
filter must be Cauchy with respect to ¥". Thus % and ¥#” have the same
Cauchy ultrafilters.

In order to see that # 4" ¥", it will suffice to show that ¥ < %.
In turn, for this, it will suffice to show that, given ¢> 0,

W = {(@y): [22—y? < 1 or [x—y| = &)

is not totally bounded. Let 4,,4,,...,4, be any finite number of sub-
sets of R such that (4,x 4,)< W. Let m be a positive integer such that
1/m <¢e. Consider the points

v .
r; = m*n24+ —, 1=1,2,...,n,n+1.
mn

For any pair z; and z;, we have |z; —z,|<1/m<e¢, and

|x? — 2

1
T T = 1%y — @ [, 2| 2 %'2"”& = 2.

Consequently, no more than one z; can be a member of any 4;, j=1,2,
...,n. This implies that the 4,’s do not cover R.

Thus, % and ¥” are not equal in height, but they have the same Cauchy
ultrafilters.
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