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A SECONDARY PRODUCT STRUCTURE IN
COHOMOLOGY THEORY

ANDERS KOCK and LEIF KRISTENSEN

1. Statement of results.

The cohomology H*(X; Z,) with coefficients in Z, of a topological
space X has the structure of a graded algebra over the Steenrod algebra
& =(2). The link between the algebra structure and the 2/-module
structure is given by the equations

(1.1) Sq'@) = 0,  Sqv(@) = 22,

for all 2 € H*(X) and 4> n. Still further structure on H*(X) is obtained
by considering secondary cohomology operations. Given a relation in
the Steenrod algebra of the form

R: Sad,+6=0, &,8,cs,

where & is an unfactorized term of excess =N + 1, that is, &(2) =0 for all
cohomology classes £ of dimension <N ; then there is a secondary opera-
tion Qu® associated with R. Definitions can be found in [1] (for 2=0)
and in [3]: we indicate the definition from [3] in Section 2 below. The
operation Qu® is defined on cohomology classes # of dimension n<N
satisfying @,(2)=0 for all », and in that case

QuR(@) € H™(X)[za,H"%8(X),
where ¢+ 1=deg(R). In [3] we proved that QuF can be chosen such that
(1.2) QuE@®) =0 for deg(®)<j-1,

where j is such that the excess of &,4, is larger than or equal to j for all »
(and j<N). Furthermore, if R is of the form

R: &8¢ + SgiH-Df + Sa8,+6 =0,

where the second term occurs only when i+1—j is even, and where B
has the property &(22)=B(2)%, and the excess of &,4, is larger than j for
all »; then, if deg(2)=j—1,
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(1.3) Qui(2) = {3,&,(2) &, (2)},
where &,,5, are determined by
Y(E) = 38,04, + 35, 4, +BRBe AR .

Here y denotes the comultiplication in & arising from the Cartan formula.

The formulas (1.2) and (1.3) are in a sense analogous to (1.1). However,
one could ask if there exists a secondary multiplication of cohomology
classes 20§ (not the notation used later in this paper) such that

(1.4) QuE(R) = &o2,

when deg(2) =4 and both sides are defined. If this is the case, then (1.2),
(1.3), and (1.4) together would be the secondary analogue to (1.1).
Let @ be a primary cohomology operation of degree i+ 1, and let

. & =>na + 8 (excess é>N),
" v@) = 36,28 + 36,04, ielandjeld,

be a relation for @; that is, a factorization of @ together with a splitting
of y(@) into two sums. Then there is a secondary product operation 4,

249 e Hr+e+i(X)[Ind ,
natural in 2 and §, defined whenever £ € H?(X) and § € H(X), p+¢=<N,
satisf N R
Y a9 =0, @ =0 &@ =0

for all »,i, and j. The indeterminacy is given as the (p+ ¢ +¢)-th grading
of _
Ind = 34,(H*X))+ Ib(H*(X)) ¢.9) + 3b,(2) &(H*(X)) .

This is proved in Section 4, where we also show that & is bilinear except
in the top dimension. The deviation from bilinearity is given (Theorem
4.8). Further properties of & are:

1. Two product operations associated with 4 differ by a ,,primary”
operation in two variables

2A9—249 = SAE)V L@, AA e .

This is proved in Section 4.
2. Deviation from commutativity. There is a product operation &
associated with 4 such that for 2 € H3X) and § € H(X)

249942 = (@) N(P) + stx(2)(2Y), 7neA,

whenever s+t <N, and the left side is defined. The mapping »: &/ — &
is the derivation of degree — 1 determined by x(S¢")=Sg"-1. Obviously,
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7=0if deg(a) is even. If deg(a)=2k+ 1, the term 7 is determined by the
fact that
(1.6) (p+1)%(8) 8g7 + a.8gr~ + Sgt+r7

is of excess larger than p for all p; that is, (1.6) vanishes on all clagses 2
with deg(2) <p. As an example we have

7 = (deg(I)+i,+1){(&)Sg™Sg" if & = &Sg*+ S,

where I=(iy,15,...,%;), & €&, and {: & — & is the homomorphism
halving degrees dual to the squaring homomorphism

(¥ ¥ > %, (¥(z) = a?.
This is proved in Section 5.

3. If A4 is a relation for @ and if 2 is an (n»— 1)-dimensional class such
that 242 is defined, then there is a secondary operation and a &-product
with

Qui(2) = 242,
where R is a relation derived from A4,
R: 3&,[8,8¢" 1] + Sgmtn-1((@) + &, (excess & =mn).
This is proved in Section 6.

4. If X is a suspension, X =8Y, then for any relation 4, 24§=0
whenever this is defined. This is done in Section 7, where we also con-
sider &4-products in connection with acyclic fibrations.

5. In Section 8 we give some relations between various secondary
products, and Section 9 contains two Peterson—Stein formulas.

It is well known that other properties of primary operations also carry
over to secondary operations. For instance, there is a Cartan formula
for secondary operations. Here, however, the situation is as yet not
entirely satisfactory. As for additivity there is a difference from the
primary case. If QuF is an operation associated with a relation

R: 3x,8,+¢=0,
where & € & is of excess =N +1, then QuZ is only defined on classes 2
of dimension <N, and
QuER+19) = QuE(?2) + QuE(D) if n<N,
QuE(2+9) = Qui(2) + Qui(y) + {D@,9)} if n=N,
where the deviation from additivity D(2,§) is given by

D(z,§) = X 8¢7®(8¢'™(2) Sg"™(9)) ,
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if é has the form
¢ = 3 8g7® Sqit Sglt) 4 ¢

where j(k)=deg(I(k))+ N +1 and excess of ¢ € .o is larger than N +1.
This was proved in [3, Theorem 4.3]. The case é=S¢¥+! has frequently
been used by Brown and Peterson (e.g. in [2], and to define the Arf
invariant).

Operations connected with @-products have been considered by
P. A. Schweitzer [6]. His approach is different. This connection is exa-
mined in Section 4.

The study of cohomology operations in this paper is based on a study
of cochain operations. The cohomology operation associated with a co-
chain operation a commuting with coboundary will be denoted by &.
Similarly, 2 will denote a cohomology class, and a representing cocycle
is denoted by =.

2. Preliminaries.

In this section we shall review some results from earlier papers [3]
and [4].

Let X~ denote the category of CSS-complexes. On J¢" we shall consider
the cochain functor C:(—; V), where the coefficient group is a graded
Zy,-module of finite dimension (as vector space over Z,). For each CSS-
complex K, C«(K; V) is a graded differential Z,-module. For V=2,
and V;=0{fori+0, C(K; V) is a graded differential algebra; this case is
simply denoted C'(K).

Let us consider the set of all natural transformations

6: C(—; V)~ C(-)
satisfying
0(0) = 0,  deg(f(x)) = deg(x) +14

for some integer 7, which we denote degf. This set is denoted 0V. It
has in a natural way the structure of a graded differential Z,-module,

(0+9)(x) = 0(x)+p(x), degb=degy,

@1 (40)(z) = 80(z)—(—1)'6(0x), degb=1.

Since we are working over Z,, we shall in what follows usually not write
signs as (—1)%. Also, let us consider the set QU:V of all natural trans-
formations y in two variables satisfying

y(z,y) € C(K) for xe C(K; U), ye C«(K; V),

p(2,0) = p(0,y) = 0 for all x and y,
and
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deg(y(x,y)) = deg(x) + deg(y) +1

for some integer ¢ which, as above, we denote degy. The set QU:7 has,
in an obvious way, the structure of a graded Z,-module. A boundary
operator V is defined by

(2.2) (V)(z.y) = op(x.y) + p(62,y) + p(x,0y) .
Obviously, VV=0.
Let Z(0V)=XKer4 and Z(QU-V)=KerV. We can define mappings

e: Z(OV) > AV,

(2:3) er Z(QUT) > AVQA7

where

AV = AQV*,

and &/ denotes the mod 2 Steenrod algebra. The definition of the map-
pings (2.3) goes as follows: Let

K(V,n) = TL,K(V;n+1),

where K(V,n+1) denotes an Eilenberg-MacLane complex. Since V is
finite dimensional, this product is finite. The basic cocycle in K(V,n) is

denoted b
Y 2, =2y €eCY(K(V,n); V).
Let 6 € Z407); then

0(z,) € C™*{(K(V,n); Zy)

and 60(z,,)=0. The homomorphism
(&V);—— Hr+{(K(V n))

defined by & — @({z,,}) is an isomorphism for n large. We define
£(0) = e1{0(z,)} € (L7); -

This is independent of n. Similarly for y € Z{(QU:7)

e(y) = v (p(zD,2))} € (FVRATY),,
where
v: VRV - H¥K(U,m)x K(V,n); Zy)

is the evaluation map.
The main theorem is

THEOREM 2.1. The two sequences
o7 2 Z(OV) > AV >0,

QU:V 2, Z(QU:V)—> AVQRAV — 0
are exact.
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For the first of these sequences this is proved in [3]. In case U=V =2,,
the second is proved in [4]. The same proof works for arbitrary U and V.

We shall give some simple applications of the 0-sequence in case V;=0
for 14+0. If dim(V,)=n, we have

Ci(K;V) =~ C{HR)DCHK)D...®CHK) (nsummands),

and 0 € OV =0 is considered as a function in n-variables.
Let a € Z(0'); then b € @2 is defined by

b(x.y) = alz+y)—a(z)—a(y) .

Obviously, be Z(0?) and be Ker(s). Hence there is d(a) e 02 with
Ad(a)=b. We can normalize d(a) in such a way that

d(a)(0,y) = d(a)(,0) = 0.
We need only to replace
d(@)(xy) by d(a)(@.y)—d(a),0)—d(a)(0y).
More general, we put
n—1
(2.4) da; zy,...,2,) = X d@)(@;,Tq+ ... +2,) .

=1
Then :
(2'5) 6d(a: Zyse o :xn) + d(a: 6x1’ e ,650”) = a’(zxi) - za(xi) ’

and for each j, 1<j=<mn,
(2.6) dla; xy,...2,) =0 if x,=0 for ij.

Let 6 € 0! and let
y(,y) = O(z+y) — 6(z) — 0(y) .

Since 460 € Z(0'), we can consider d(46). Obviously, y—d(40) € Z(0?).
Let
o(p—d(40)) = 8Dbe A®s/,  where abe Z(0).

Then for all pairs z,y of cocycles
O(x+y) — 6(x) — 6(y) —d(40)(x,y) ~ a(x)+b(y) .

Putting first « and then y equal to zero, we see that #=b=0¢ «/. The
theorem now gives the existence of d(6) € @ with

(2.7) A4d(6) = » —d(40) .
Again, we can assume that

d(6)(x,0) = d(6)(0,y) = 0.



A SECONDARY PRODUCT STRUCTURE IN COHOMOLOGY THEORY 119

We write (2.7) in the form
(2.8) Ad(0; zy,. . . x,)+d(A0; 2y, . . 2,) = 03x,) — 3 6(x;),

where d(0; x,. . .,r,) is defined by a formula similar to (2.4).
The following formulas are easily obtained. Let 6,p € ¢!; then

(2.9)  A(fy)(x)
= (40)yp(x) + 0(dy)(@) + (Ad(0)+d(40))(dp(%), yd()) .

If 6 0 and e @4t (=QU:Y, U=V =Z,, notation similar to ('), then

(2.10)  V(0y)(x,y) = (40)p(z.y) + O(Vy)(z,y) +
+ (4d(0) +d(40))(w(0,y), y(2.0y), Vy(z.y)) -

In case n=2, equation (2.8) gives

Ad(0)(x,x) + d(46)(z,x) = 0.

Putting
(2.11) d(0)(x,x) = x(0)(x),
we get

Ax(0) = x%(40)
and

0 € Z(0Y) = x(0) e Z(CY).

In [4, Section 5], it is shown that » induces a derivation »: & - & of
degree —1 in the mod2 Steenrod algebra and with »(Sq")=Sg"-1.
Let a € Z(0') and ®(x,y)=zy (cup-product); then (2.10) gives

V(a®)(x,y) = Ad(a)(D(0z,y), D(x,0y)) -
Let
A(x,y) = d(a; dzy,axdy) + g(x)x(a)(xdy) ,

where g(x) denotes the degree of z; then V(a®+ 4)=0. By the Cartan
formula y(&)=34'Q&" we get

e(ad§+A) = za/®au’ d/,au e .

Let a’ and a”’ be cochain operations representing @’ and @'’ respectively.
Now a straightforward application of Theorem 2.1 yields

LeMMmA 2.2. Let a € Z(0') and let y(@)=38"Qa", where ¢ denotes the
comultiplication in /. Then there s an element T =T, € Q11 with

(2.12)  (VT)(zy) = a(zy) — Za'(x) a”'(y) + d(a; bxy,xdy) + g(x)x(a)(2dy)
Jor each pair z,y of cochains.
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Later in this paper we shall also use Steenrod’s cup-i products. Such
products can be derived from Theorem 2.1 as follows. Let

Dy(zy) = zy +y= .

Then, obviously VDy=0 and &(D,)=0. Then there is P, e @-1 with
VP, =D,. Let D;(x,y)=P,(x,y)+ P;y(y,x). Then VD, =0 and &(D,)=0 for
dimensional reasons. From this we get the existence of an operation
P, e @4 with VP,=D,. A continuation of this procedure gives the
existence of operations P; € Q1! with

(VP)(zy) = Piy(2y) + Piy(y.2) .
We put
(2.13) rUy = Pyxy).

Lemma 2.3. There are cochain operations P; € QL with
(2'14) VP’L = P’lf—l(x?y) + P’i—l(y>x) s
or with the notatron (2.13)

(2.15) O(xUy) = 2U;_1y + yU; 1% + dxUy + 2U;0y .

For any cochain z € C*(x) we define

(2-16) Sqi(x) = 2U,_& + xun~i+16x .
Then sq* € Z(0") and
&(sq’) = S¢*

is the Steenrod reduced square.

The definition of a secondary operation @Quf associated with
R:3&,8,+é=0, excess ()>N, goes as follows. Let «,a,e Z(0') be
representatives for &,,8,. Let e € Z(0) be a representative for & of excess
>N. We say that e is of excess >N if e(x) =0 for all cochains z of dimen-
sion <N and on all N-cocycles . The existence of such a representative
is shown in [3, Lemma 2.2]. Sometimes it is convenient to choose a
representative for e of the form Y sg?, where sq! is an iteration of opera-
tions s¢¢ from (2.16).

Obviously,

V(Eoc,a,+e) =0,
ea,a,+e) = 0.

Hence by Theorem 2.1 there is a 6 € O* with

40 = Ix,a,+ €.
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If 2 is a cohomology class of dimension less than N +1, with 4,(2)=0
for all », then

(2.17) QuER) = {0(x)+ I, (w,)},

where w, are arbitrary cochains with dw,=a,(x).

3. Lemmas.

Many of the lemmas we use do not have any interest in themselves.
We have collected them in this section which is therefore of interest
only in connection with the later sections. Therefore, we propose that
this section is used for reference only. The proofs either use the exact
sequences of Theorem 2.1 (the proof of Lemma 1 is typical) or they are
purely computational checking (namely for lemmas of the form ,,V of this
is that”’). So we omit many of them. The cochain operations introduced
in the lemmas have other cochain operations as parameters. For instance,
in Lemma 3.1 below, the parameters for R are a € Z(0*), d(a) and d(x(a))
(see 2.5). We shall not burden the notation by the parameters R=
R, a@)deay. The letters a, a;, b, b; always denote elements in Z(0").

Lemma 3.1. There is an operation R € O* satisfying

(3.1) AR (uy,uq,u,%,) = d(a; Uy + g, g+ Uy) + d(@; Wy + Ug, Up +uy) +
+ d(a; uy,ug) + d(a; ug,uy) +

+ d(a; uy,ug) + d(a; us,uy)
and

(3.2)  B(uy,uq,uy,uy) + R(y,%,,0,0) + R(0,0,u,u,) + d(”(a)5 ul,uz) =0.

Proor. For short, denote by P the operation in @* given by the right
hand side of (3.1). Then an easy check gives AP=0. Also, since P is 0
if three of the arguments are zero, it follows that eP=0. So we may use
Theorem 2.1 to find an R" € ¢* with AR" =P. Consider R’ (u,,0,u5,0)
and R'/(0,u,,0,u,) as operations in @2. They are easily seen to be in
KerA. Now the operation R’ € 0* defined by

R (Uy,Ug,tg,%,) = R (wy,U,u5,%,) + R''(11,0,u3,0) + B"'(0,u,,0,u,) ,
has AR'=P just like R” and the further property
(3.3) R’ (u,,0,u4,0) = R'(0,u5,0,uy) = 0.
Now, consider the operation S € @2 defined by

S(uy,ug) = B (ty,t09,05,05) + RB'(,45,0,0) + B'(0,0,u,%,) + d(x(a); Uy,Us) -
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Then S(u,,0)=8(0,u,)=0 because of (3.3) and

A8 (uy,ug) = Py, Ug,uy,up) + P(11,45,0,0) + P(0,0,u,,u,) + Ad(x(a); u1»u2)
= d(@;u, + Ug,uy +Uy) + d(a; ug,uy) + d(a; ug,u,) + Ad(x(a); ul,uz)
=0.

The operation R defined by
By vg,uz,uy) = B (ug,t9,%s,%,) + S(uy,uy)
then has the properties (3.1) and (3.2).
Lemma 3.2. There is an operation V € 05 satisfying
AV (g, Ug,ug,%g,%5) = Q@3 Uy + Ug, Ug + Uy, Uy + Uy + U, Uy + Ug +Us) +
+ d(a; uy,uy) + d(a; ug,uy) + d(a; wy,ug,u5) +
5
+ d(a, u27u3!u5) +z ”(a)(ui) .
i=1
Lemma 3.3. With V as in the preceding lemma there is an operation
U e @Y1 satisfying

VU(u,v) = V(6uv,0,0,06u,0) + V(0,6uv,v6%,0,0) +
+ V(éuv,6uv,vdu,v6u,duv +vou) +
+ d(x(a); duv,vdu) .
LemMA 3.4. Let f be an arbitrary mapping from Zyx Z, into Z,, where Z,

denotes the nonnegative integers. Let f € Z(0'). Then there is an operation
G € QY with the properties

(3.4) VG(u,v) = f(g(u),g(v)) B(dudv) ,
' Gup) =0 if dv=0.

Proor. For st € Z, put
0 for g(v)+*t,
Gal(u,w) = 0 for g(v)=t, g(u)<s,
B(udv) otherwise .

Then V@5 (u,v) = B(dudv) for g(u)=s, g(v) =t and 0 otherwise. Obviously,
G%%(u,v)=0 if v is a cocycle. Let L be the set of (s,t) with f(s,t)+0. Then

G(u,v) = 3;G%u,v)
has the desired properties.
We shall need a Cartan formula for xz\a),

W) = TERE’ + 7107 + SE o
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which we shall for short denote 3&'®{”. Pick cochain operations ¢’
with £({')=¢’ and " with &¢")=2".

Lemma 3.5. There 18 an operation F € QY1, with

VF(u,v) =
d(a; duv+udv,dvu +vou, 5uU,0v + duv + v du, Suu,0v + u dv + dvu)
+ d(a; duv,udv) + d(a; Svu,vdu) + d(a; duv,vdu,duu,0v) +
+ d(a; udv,0vu,uv,0v) + g(u)x(a)(wdv) + g(v)x(a)(vdou)

(3.5)

such that if y is a cocycle

F(uy) = V(uy,0,0,y6u,0) + g(y)d(x(a); duy,ydu) +
(3.6) + 9(y) (@) (BuLyy) + Tq(0m,y) + T a)y,0u) +
+ X' yul" du + g(w)g(y)x(a)(uy) ,
where T, satisfies (2.12) with respect to x(a), {', and [, and V is as in
Lemma 3.2,

Proor. We define an operation F’ € Q1! by the formula

F'(u,v) = V(duv,udv,bvu,vdu,buu,6v)+ U(u,0v) +
+g(v)d(x(a); buv,véu) +
+ g(v)x(a)(duu) + g(v)d(x(a); duu,dv,6uv +vdéu) +
+ Too)(,00) + T)(0%,0) + Tpp(v,0%) + T(v,%) +
+ T (w)uyl"(0) + ZL' ()l (0u) +
+ g(u)g(v)d(x(a); udv,0uv)+g(u)g(v) x(a)(wv)
with V as in Lemma 3.2 and U as in Lemma 3.3. A straightforward but

lengthy computation gives that VF#’ is equal to the expression (3.5) ex-
cept for

9(v)%¥(a) (Sudv + dvdu) + (g(v) + 1)x3(a)(dvdu) +
+ (9(u) + 1)x%(a)(dudv) + g(u)g(v)»*(a)(dudv) .
According to Lemma 3.4, this expression may be put in the form VG(u,v)

with G(u,v)=0 if 5v=0. The operation F=F'+ @ has the required prop-
erties.

(3.7)

LeMMA 3.6. There is an operation C € O° satisfying

AC(u,w,w) = d(a; v,u,w) + d(a; wu,w) .
In particular,
A0(u,0) = d(a; v,u) + d(a; w,v) .

The proof is omitted.
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Lemma 3.7. An operation d(ba) satisfying (2.5) with a replaced by ba is
given by
d(ba; u,v) = bd(a; u,v) + =(b)au + »(b)av +
+d(b; a(u+v),au,av) + d(b; éd(a; u,v).d(a; du,0v)) .
The proof is omitted.

Lemmas 3.8-3.15 below are all applied in Section 8 only. Some of
them are trivial and put up only for notational convenience.

LeMMA 3.8. There is an operation C' € O satisfying

AC (ww,w) = d(b; w,w) + d(b; wau) + d(b; ww) +
+d(b; u+w,v+w) + %(b)(w)
and such that C'(w,v,w)=0 if two of the cochains are 0.
Lemma 3.9. There s an operation D € O0*+2N satisfying
AD(U w5, « o Wy o W W e o < WS,E)
= d(b; au+Sw,+s,av+3Jw;) +
+d(b; a(u+w)wy+wy,. . . wy+wy,a(u+v)+au+av+t,s+1t) +
+d(b; au,wy,. . ., wy,s) + d(b; av,wy,. .. ,wy) +
+ 3d(b; wi,w;) + d(b; s,t) + d(b; a(u+v),0u,a0) +
+d(b; a(u+v)+au+av+tt) + x(b)ou + x(b)av .
Lemma 3.10. Let D be as above and let a,b,a;,a; € Z(0') with
dega;+dega; = dega, 1<i<N.
Then there is an operation S € QL' satisfying
V8(u,6v) = d(x(b); a(éudv),a;duay dv,. .. ayéuaydv) + (V+4)D(E),
when E denotes the 4+ 2N tuple
(6uv,u6v,. co@ibu alv,. . aiu a) dv,. .., (g(u) + 1)x(a)(Sudv), x(a) (6u6v)) .

Here (V + 4)D means the sum of (4D)(Z) and the result of applying V
to D(£) considered as a cochain operation in the two variables % and v.

Lrmma 3.11. Notation as in the two preceding lemmas. The following
operation XI in @41,
XI(uw) = d(b; a(uv),. . .a;ua;'v,. .. da; duv,udv),g(w)x(a)(udv) +

+ D(E) + S(u,0v)
goes by V to
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Ad(b; a(uv),. . ., a;u @;'v,. . . d(a; Suv,udv).g(u)x(a)(udv)) +
+ d(x(b); a(dudv),. . . ,a;0u a; dv,... )+
+d(b; a(duv)+ 3 0;0u @' v +
+ (g(u) + L)(a)(dudv),a(udv) + Za;u a;' 6v) +
+ 3;d(b; a;0u a va;ua; 5v) +(g(u) + 1)x(b) x(a) (Sudv) +
+ d(b; a(d(wv)),a(duv),a(udv)) +
+ d(b; dd(a; duv,udv),x(a)(dudv)) + %(b)a(duv) + x(b)a(udv) .
LemMa 3.12. Let ¢(@)=38;08;, 1<i<N, and let T=T, be as in
(2.12). The folloving operation XII in Q%1,
XII(u,v) = g(u)x(b) T(u,00) + g(u)d(x(b); a(udv),...,a;ua;dv,...)+
4+ g(uw)d(%(b); 6T (u,0v),T(6u,0v
goes by V to g(w) d(x(b); 6T (u,6v),T( )
#(b) T'(ou,00) + g(w) Sx(b)(a;w a; év) + g(u)=(b)a(udv) +
+ d(%(b); a(dudv),. . . ,a;0ua; dv,...).
Lemma 3.13. Let C' be as in Lemma 3.8 and let A € QL. The following
operation XIII in QW1,
XIII(uw) = C'(6A4(6u,v),04(u,0v), A(éu,0v)) +
+ d(b; A(Su,v), A(u,00),04(u,0))
goes by V to
Ad(b; A(du,v), A(u,0v),04(u,w)) +
+ d(b; VA(Su,v),VA(u,00))+ %(b) (4 (du,0v)) .
Lemma 3.14. Let b,aja; € Z(0') with dega;+dega; independent of <,
1<¢<N. The following operation XIV in QV1,
XIV(uw) = 3(dega;)g(v) »(d)(a;u a;'v) +
+ g(u)g(v) #*(b)(@;w a; v) +
+ g()d(x(b); a;du a; v,a;u a; év)]
goes by V to , R
> (dega;) x(b) (a;u a; 0v) .

LemMMA 3.15. There is an operation XV in Qb with XV (u,v)=0 if
0v=0, and which by V goes to
(9(w) + 1)2(b) x(a) (Budv) .
Proor. By Lemma 3.4

We shall finally prove a useful proposition on symmetric cochain
operations.
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ProrosiTION 3.16. Let K € Z(Q%1) satisfy
K(zy) ~ K(zy),
Jfor all pairs x,y of cocycles. Then eK € o QA has the form
SB®%: + Z9:@B; + 190
for certain B35 € .

Proor. Let n be greater than the degree of K. Let 2 and § be the two
n-dimensional basic classes of H*(K(Zyn)x K(Z,n)). Now, if eK=
36,20, with g, and 3, admissible monomials in &, then by assumption
and commutativity of cup product

3 2,(2) 8.9 = 26, 8.(9) -

Since all terms in this equation belong to a vectorspace basis for the
cohomology, the proposition easily follows.

4. Definition and elementary properties.
Let @ € &. A relation A for @ is defined as a collection of the following

items: a factorizatio of &,
(4.1) a=>aa + ¢

and a splitting of the Cartan formula sum into two sums
(4.2) vi = 35,8, + 3b,0¢;, iel, jed.

Sometimes we are interested in making use of the symmetric form of @
so that instead of (4.2) we shall consider

(4.3) v = [3808 + bob] + 3¢ @8 .

The square bracket indicates the splitting of the Cartan formula sum
into two sums.

Note that a relation for 0 is just a factorized relation 0=34, &, +é
of the sort used in [1] or [3] for defining secondary cohomology opera-
tions.

Throughout this section, 4 will denote a fixed relation for @ of the form
(4.1), (4.2). To A we shall assign a secondary cohomology operation in
two variables. It will be denoted 244§. The excess of & will be denoted
N+1.

There is a choice of cochain operations involved in the definition,
namely a choice of «,.a,b,.c; € Z(O"), k € IuJ, with &(x,)=&,, etc. Also,
choose d(«,),d(a,) € 0* with
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Ad(x,; 2,y) = x,(x+y)+a,(x)+x,(y),

etc. For convenience, there will be no choice of e with &(e)=¢. We
determine e in the following way: write é as a sum of admissible mono-

A

mials é=3 8q¢’® of excess 2N +1. Then put e=3s¢!®™, Then e is of
excess =N +1 in the sense of Section 2. Also, let d(e) denote the oper-
ation in @ given in [3], (2.14)—(2.16) with

Ad(e; z,y) = e(x+y)+e(x)+e(y) .
Having chosen these «,, a,, b;, and e, put
a=Juxa,+e.

Then ¢(a)=4a. Also, we use the already chosen operations to define d(a)
according to Lemma 3.7

d(a; u,v) = d(e) + Zo,d(a,; u,v) + Zx(x,)a,(w) +
+ Zx(,)a,v) + Zd(o,; a,(u+v).0,(u).e,0) +
+ Sd(x,; 6d(a,; u,),d(a,; du,bv)) .
Finally, we have to choose an operation 7' € Q! with VT as in (2.12)

with respect to a, d(a), by, and ¢, k € IuJ. Let # denote the total choice
(“v’a’v’bk’ck’d(o‘v)’d(av):T)°

DEeriNiTION 4.1. Let 2,9 be cohomology classes in H*(X) such that

a@9 =0,
(4.4) b)) =0 foriel,
' &) =0 forjeld,
deg(2) <= N.

Then 244, relative to the choice 8, is the set of cohomology classes in
H*(X) represented by cocycles z of the form

(4.5) z = T(zy) + Za,(w,) + Zric(y) + Zbi()7;

where z is a cocycle in 2, y a cocycle in § and w,, r;, and r; are cochains
with the properties

ow, = a,(2y),
(4.6) or; = bx) foriel,

or; = ¢;(y) for jed.

Since e(xy)=0 by the last condition in (4.4), (2.12) gives that z is, in-
deed, a cocycle. Cochains satisfying (4.6) exist by the assumptions (4.4).
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If (X,Y) is a pair of spaces and y is a relative cocycle satisfying (4.6)
with w,,r; € C(X,Y), then z in (4.5) is a relative cocycle. Hence, in a
similar way, we get a set of relative cohomology classes 249 < H*(X,Y).
Similarly in case € H*(X,Y). For simplicity we consider only the
absolute case in this section

For the moment we shall denote the cup-4 product 24 relative to
the choice § by (@\ég)ﬂ. We shall investigate the effect of this choice. Let

( bksck: & ) d(a ) T)
ﬁ = (O‘w a,,b3,¢1,4(2,),d(a, )
denote two choices of the sort considered. We shall prove
ProrosiTioN 4.2. With B and 8’ as above,
(@49)s = @49 + T2 1/@)
for certain cohomology opergtions A, € <.
ProoF. Since &(x,)=¢(x,), there is an A,e @ with 44,=«, 4+«
Similarly, there are operations 4,, B;, C) in @* with
A4, = a,+a,, AB, = b,+b,, AC, = c,+¢;.
Now one may easily verify that the operation 4 € @' given by
(4.7)  A(x) = Z4,0() + T, A, (2) +
+ d(x,; 4,(0x),04,(x)) +d(x,; a,z,a,)

satisfies
A4 = a+a',

where a=Y«,a,+e, a'=3a,a,+e. This immediately yields 46=0 for
0 € 0* given by

O(u,v) = d(a; u,v) +d(a’; u,v) + A(u+v) + A(u) + A(v) .
Putting u or v equal to zero, one sees that ¢§=0. By Theorem 2.1 there

is a D € 0% with AD=0. Just as for the normalization property (2.6) of
d(a), one can prove that D can be chosen normalized:

Dup) =0 if =0 or v=0.
Let G € @41 be defined by

(4.8) G(u,v) = 3 By(u) ¢i(v) + Sbp(u) Oh(v), keluJ.
Then
VGQ(u,w) = Tby(u) cx(v) + Zhy(w) ilv) -
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Now it is easy to see that
T(ww) + T'(u,) + A(uv) + G(u,0) + D(duv,udv) + g(u) D(udv,udv)

is in Z(Q%1). Applying ¢ to the expression, we get an element of the form
SA®4, with 2,4 e.of. Let A4 be representing cochain operations.
Using Theorem 2.1, we get an operation H € Q! with

(4.9) VH(u,w) = T(ww)+T"(u,v)+ A(uwv) + G(u,v) + D(duv,udv) +

+ g(u) D(udv,udv) + 3 A () A,'(v) .
Let z be a cocycle of the form (4.5) representing a cohomology class in

(249),- We shall prove that this class also belongs to (849), + 3 4, (2) 4,'(§)-
We have the equations

Slw, + 4,(xy)] = a,(zy),
o[r;+ By(x)] = bi(x) for ie1,

Hence Olr;+ Cs(y)] = ¢(y) for jed.

(45) 2 =T'(xy) + Sow,+A2y) +
+ 3(r;+ By(@)ci(y) + Zb]'-(x) (”j"'o_'j(?/))
represents a cohomology class in (249),. Using (4.7), (4.8), and (4.9), we

t ! ” ’ e

8% s 4 3AR) Ky) = SHEY)+ZA,w) +d(x; w,, A (ay))+
+3r,0(y) + ZB(@)r;+ ZBy(x) Ci(y)] .

A similar argument proves the opposite inclusion. This concludes the

proof of the proposition.

REMARK. Let T+(u,v)="T(u,v)+3A () A'(v). Since VI'=VT+, it fol-
lows that we may change the 7' in g with 3A,(u) 4, (v) without changing
anything else. Hence to any product (&4), we may find another product,

4 h that oAy B1r
(g such 2t 249, = @f)s + ZH@ 1@

For the remainder of this section we shall work with a fixed choice g.
We shall prove two bilinearity lemmas. These will be used to determine
the indeterminacy of &, and to determine deviation from bilinearity of 4.

LeMMA 4.3. Let R e 0* be as in Lemma 3.1. Then there are operations
dy(T) € Q> and dy(T) € Q12 with
Vady(T; 2,253 y) = T(@y+22y) + T(@py) + T(2y) +
+ d(a; xly’xzy) + quJd(blc; Z1,%5) cx(y) +
+ g(@;)d(x(a); x10y,%,0y) +

and + R(6z,y,07,y,%,0Y,250Y)

Math. Scand. — 9
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Vado(T'; x; y1,42) = Ty +ys) + T(x,y,) + T(x.y,) +
+ d(a; 2y, xYa) + Zpys k(@) dley; Y1.92) +
+ g(x)d(x(a); 8y, 0y,)+
+ R(Sxy,,00ys,20y,,x8Y,) .
Proor. Immediate from Theorem 2.1.

It will be convenient to introduce an auxiliary functor S and a func-
tor transformation c: § - C-.

DerinITION 4.4. Let X be a CSS-complex. We denote by S(X) the
set of tuples s of cochains in C*(X) of the form
8 = [y | {w}, {rd: {r;}],
where x and y are cocycles, and where
ow, = a,(zy) ,
or; = by(x) foriel,
or; = c;(y) for jed.
We shall call s a system for x,y. We define c=¢(): S - C* by
c(s) = T(xy) + Zo,(w,) + Zrici(y) + 2bj(@)r; .

It is obvious that c(s) is a cocycle if deg(xzy) <N, and that 244 is just
the set of cohomology classes of the form {c(s)}, where s is a system for
zyand ze, yeg.

Lemma 4.5. Let s=[zy | {w,},{r},{r}], &=["y|{w}{ri} {r;}] and
8" =[ay" | {w,}, {r;}, {r}’}] be systems for (z,y), («'.y), and (x.y'), respec-
tively. Then systems for (x+x'.y) and (x,y+y') are given by

st = [w+a"y | {w,+w,+d(a,; 2y2'y)}, {ry+r;+db; 2.2 )L {r;}],

83 = [wy+y | {w,+w,+d(a,; zyey )}, {r, {r;+r] +dlc;; 9.9)}1,
respectively, and we have
c(8) +o(s') ~ o(s])

10 o(s) + o(s") ~ c(s})

} for deg(xy)<N .

Furthermore, there exist operations sq’®, A€ A, such that for deg(xy)=N

c(8) +0(8) ~ c(s]) + X ,8¢7P(xy) sg"P(2"y) ,
o(8) + ¢(8”) ~ ¢(s3) + X ,8¢7Pxy) sq'P(zy’) .

Proor. Applying Lemma 4.3 and Lemma 3.7, we easily get
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o(s)+c(s') = c(s7) + d(e; zy,x'y) +
+ 0[dy(T; 2,2 ; y) + X d(by; x,x")rs +
+ d(a,; d(a,; zy,&'y) + w, + w,w,w,) +

+ T, w,) + Zx(x,)(w,)] -
But
e = Zpsg’® = 3,sq" HOID 5gTD 1 3, 48q70),

where we have collected the monomials of exact excess N+ 1 in the first

sum. So
d(e) = T,dsg™HwD 8g7®) 1 3y, d(sg”)

Now [3], Corollary 3.6 gives
d(sqN+l+dng(l) qu(/T); xy’x'y) —_ sq-’(l)(xy) 8qf(/1)(x' y)
for deg(xy)=N, and [3, Lemma 2.6], gives that
d(sq™; zyx'y) = 0
if deg(xy)=N and r € R— A4, or if deg(xy) <N. This proves the one half
of the lemma. The other half is similar.
COROLLARY 4.6. If z' and y' are coboundaries, then (4.10) holds for
deg(xy) < N.
PrOPOSITION 4.7. Let deg(2§)=P < N. Then the indeterminacy for 24,
18 the (P +dega—1)" grading of
Ind*(2,9) = 3& H*X) + TH*(X) 8,9) + 2b,8) H*(X).
Proor. We first prove that if s, is a system for (x,0v), then {c(sy)} €
Ind*(2,9). Let sy=[x,0v | {w,}, {r;},{r;}]. Using (2.12), we easily get
c(%) = Zsby(@)(cs(v) +75) + Zo(a, (@) +w,) + e(@v) +
+ O[T(2,0) + Zr;0(v) +g(2) x(@)(wv) + Zd(ax,; a,(xv) +w,w,)] .

Since deg(zv) <deg((xév) < N), e(xv)=0. Obviously, (¢j(v)+r;) and
(a,(x v)+ w,) are cocycles. Therefore

(411)  {o(s)} € S&HXX) + ZhEH*X) < Ind*(2) .
Similarly, one may prove {o(so)} € Ind*(2,§) if s, is a system for (du.y).
Now, let s and § be arbitrary systems for (x,y), (z+ du,y +dv), respec-

tively. Obviously, there exists a system s, for (¥,0v) so that Lemma 4.5
gives a system s, for (x,y+0v), and by Corollary (4.6) and (4.11),

{c(s)+c(sy)} = 0 mod Ind(2,9) .
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Also, there is a system s; for (du,y-+dv), so that Lemma 4.5 gives a
system s, for (x+ du,y+dv), and, again,
{o(sy) +¢(s4)} = 0 mod Ind(2,9) .
Since s, and § both are systems for (x + du,y + 6v), we obviously have
{c(sg) +¢(8)} = 0 mod Ind(2,9) .

On the other hand, if s=[xz,y | {w,}, {r;},{r;}] is a system for z,y, then for
arbitrary cocycles z,, z,, and z;,

st = [ay | {w,+2}{ri+2}{r;+2}]
is a system for z,y, and
{e(s) +o(sM)} = 3&,(3,) + 32 8,9) + Zbi() % .
This proves the proposition.

THEOREM 4.8. Let deg®=deg?’ and degf)=deg®)’. If 244 and 2'4f are
defined, then, so is (2+2')4y, and modulo indeterminacy we have

BAY+ 849 = @+2)&y
Jor deg(zy) <N. Furthermore, if

e = stqJ(r) = zAsqN+1+dng(l)8qJ(,l)+ZR_Aqu(r) ,
and
excess 8¢/ > N+1 for reR-4,

then for deg(2§) =N, the following equation holds modulo indeterminacy
BEG+2'4) = @+2)4) + Z87P(@Y) Sg7P@E' ) .
Sitmilarly, we have modulo indeterminacy

29 + 244 = =49 +9) Jor deg(2§) <N,
289 + 240 = 240 +§) + T8TA@Y) S¢P@F) for deg(2))=N .

ProorF. This is an immediate consequence of Lemma 4.5 and Propo-
sition 4.7.

Let A be the following relation for & € &

=a1+0

= 3b,6+3b,0¢, iel, jed.

Then there is a close connection between the operation @; defined in
Schweitzer’s paper [6] and the secondary product 4. For any space X

(4.12) A: Lpz
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and cohomology operation &: H*(X) - H*(X), the operation d, is an
additive relation
H*(X™, fat wedge) -~ H*(X) .

The operation &, is more general than & in the following sense: It can
be defined for any finite number of variables (we cannot do this until
for any positive integer n we have established an exact sequence

Q15 72Q) —> HARQ...04 -0 (n copies of &),

where @ denotes cochain operations in » variables). Secondly, we have
restricted ourselves solely to Z,-coefficients. So we shall compare only
a special case of the Schweitzer operation with &, 4 asin (4.12). Suppose
@ € & is of degree s—r. In this case the definition of @, is given by means
of the diagram below. In this diagram XvX is a subspace of X x X in
the usual way, X; is the diagonal subspace of X x X. The rows are
exact sequences for the injection

(X %) -2 (X x X,XvX).
Commutativity holds because of the stability of &.

HrY (X2, %) 25 H7(X x X, X,u(X v X)) s HA(Xx X, XvX) L Hr(X %)

a _———"|a a

4

HY X x X, X v X) —> Ho (X *) > HO(X x X, X;U(X v X))— H¥(X x X,XvX).
An obvious diagram chase gives an additive relation (dotted arrow)
dg: H'(XxX,XvX)—> HsY(X,*)

defined on Kerd*nKerd, and with indeterminacy Imd*uIma. Denote
by x the exterior cup product

H*(X,*)QH*X,*) > H¥X x X,XvX).
The connection between @ and the & is then given by

ProrosrTion 4.8 Let 244 be defined with dim(2) >0, dim(§)>0 and
with A as in (4.12). Then 842 x 9)) is defined, and as sets of cohomology
classes

249 < a,@x9).

Proor. Let u,v € C*(X); then u xv=pf(u)p(v), where p, and p, are
the two projections X x X — X. If  and v are cocycles, then w x v re-
Presents 2 x 9. Also, uv=d¥(u xv). By the special assumptions on 2,9,
2x§ is in the kernel for
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H*X x X,*) > HY(XU(X v X)),

and by the exact cohomology sequence for the pair X x X, X u(X vX),
we may therefore find a w’ € C'(X x X,*) such that

ow' +xxy € C(X xX,X,u(XvX)).
Then j*{6w' +zx y}=2x4. By (2.5) and (2.12)

a(dw' +xxy) = adw' + Fby(p*z) ci(pty) + 0T (p*x, py)
+ éd(a; dw',x x y+dw') .

By assumption, there exist cochains r;,r; € C*(X) with

(57‘1=bix, 67"1:01:1/ iEI,jEJ.
Therefore,

a(dw’ +xxy) = é[a(w’)+ 3 p¥(r,) ci(p*y) + Zb;(p¥r) pH(r;) +
+ T(p*z,p*y) +d(a; dw',x x y+ow')] .

From this follows that é*-'{a(x x y + éw’)}—and therefore @4(2 x §)—is
represented by

(4.14) a(d*w’) + Trici(y) + Thi@)r;+ T(x.y) € C(X,) .
On the other hand, since dw'+xxy e 0'(X x X, X, u(XvX )),
d¥w' = d¥xxy) = zy;

thus, in Definition (4.5) we may use d*w' as the w of 24§. Doing this,
we get (4.14). Thus we have proved that &4(z x ) and 244 have a com-
mon representative. Using the fact that £ and § are not of dimension
zero, it is easy to see that the indeterminacy found in Proposition 4.6
is contained in the indeterminacy Imd*uIlmaé for &; This completes
the proof.

A universal example P for & acting in dimension (p,q) is constructed
by means of a map f between generalized Eilenberg-MacLane complexes

f: K®x K@ - [1,K9x [1,K9x L K®.

Here K®=K(Z,p), K@=K(Z,q), KO=K(Z,p+degh,), K9P=
K(Zy,q+degc;) and K =K(Z,,p+q+dega,). The map fis defined such
that

) = bao,

f,(xu)) = ij(Q) ’

fHa?) = o,z 59) ,
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where 2@ denotes the fundamental class arising from the factor K, etc.
We now construct P as the pull-back of f and the standard fibering with
acyclic total space

T1LO x TILY x TIL® - [1K® x [TKD x [TK®,
where L®= L(Z,,p+degh,— 1), ete.

5. Deviation from commutativity.

Since the comultiplication in the Steenrod algebra is commutative,
there is a symmetric formula

(5.1) p& = [Z6;0¢ +b@b] + 3¢ ®E; .

Obviously, the middle term can only appear when degé is even. In this
section we shall consider a 4-product with the factorization 4=3&,&,+ ¢
of @, and the splitting of the Cartan formula sum indicated by square
brackets in (5.1). As usual, let N + 1 denote the excess of é. The product

244 is then defined if deg(2§) <N and if there exist cochains w,, r;, 7, 8;
such that

a,(zy) = ow,,
ci(@) = ory,
(5:2) b(x) = ér,

‘5;(3/) = ds; .

Now, since &(w, +a,(xUy) +d(a,; 2y,yx))=a,(yx), we see that in order to
define §A42, it is only necessary to add the following requirement to (5.2):
there exists s such that

(5.3) b(y) = ds.

ProrposrTION 5.1. If (5.2) and (5.3) hold for cocycles z,y (deg(zy) < N),
then 249 +§ A2 is represented by E(z,y) +d(e; xy,yx), where E € Q4! s the
cochain operation defined by
(5.4) E(up) = T(u,0) + T(v,u) + d(a; uv,ou,0uuv,uU,0v) +

+ a(uuy) + Zci(u)une] (v) + bu)uib(v) + X (w)uei(v) ,
where T satisfies (2.12).
ProoF. For reasons of degree, e(xU,y)=0. Using the fact that x and y

are cocycles, (5.4) is an immediate consequence of Definition 4.1 and the
definition of d(a) expressed by d(«,), d(a,), d(e).

Prorosrtion 5.2. Let F be the cochain operation given in Lemma 3.5,
then V(E + F)=0.
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Proor. VF is given in Lemma 3.5. A straightforward computation
gives the result, using the particular symmetric form of @ in (5.1).

Since E + F € Z(Q%1), ¢ is defined on K+ F. To get some information
about ¢(Z + F), we prove

PRrOPOSITION 5.3. The operation E + F is symmetric in the sense that
(B +F)=x.y) ~ (E+F)(y)
for arbitrary cocycles x,y.
Proor. It is easily seen from (3.6) that
F(zy) = g(@)g(y)=(a)(zy) ~ 9(y)g(x)x(a)(y2) = F(y.x) .
Furthermore, by (5.4)
E(z,y)+E(yx) = d(a; zy,yx) + d(a; yz.ay) + a(@Uy) + a(yue) +
+ Zei(@)ure; (y) + bla)uid(y) + S (@)urci(y) +
+ Zei(y)uie; (@) + by)uidb(@) + Ze; (y)urci@) -
Using Lemma 3.6, this is seen to be equal to
00 (xy,y,0) + a(6(xUqgy)) + Ad(a; 2Uy,yUsx +2Uy) +
+ 8(Zei(@)Uac; () + b(x)Usb(y) + Ze; (2)Ugcily))
which is cohomologous to 0.

By the propositions 5.3 and 3.16, we infer the existence of cochain
operations A,,A,',n € Z(0") such that for cocycles z,y

(B+F)(@y) ~ Th(x) A @) +n@)ny) + i) 4, (x) .

Now the 7' in the definition of & may be changed by anything in KerV
giving some other &-product. For instance, we may add the term
>(u) A(v). Hence with this change of 7' and therefore of E, we get

(5.5) eE+TF) = 7Q7 .
THEOREM 5.4. There is a &-product such that for deg(2§) <N
(5.6) 249 + 942 = AB) A(P) + 9(@)gy)x(e) @)

whenever the left hand side is defined. Furthermore, there are operations
8q’® e of such that for deg(2f))=N

(5.6) 24+ 942 = 7(2) 7(9) + g(@)g(y)x(e) @9) + Z(Sg"OEH)*,

whenever the left hand side is defined. Both equations hold modulo in-
determinacy. The operation 3 € & satisfies
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(1) =0 2f degd is even,

(ii) ¢f degd@ is odd and if 2 € H?(X) is any p-dimensional cohomology
class, then
(5.7) (p+1){a) SqP2 + 6.8qP-1% + Sghdesd-Dip5n — 0,

Proor. Let 2 and § be cohomology classes such that the left hand side
of (5.6) or (5.6') is defined. By (5.5) and Theorem 2.1 there is an opera-
tion B e Q%! with

(5.8) VB(u,v) = E(uw)+ F(u,v) + n(u) n(v) .
We use this equation on the cocycles z,y. By Lemma 3.5,

F(zy) = g(x)g(y)x(a) (zy) .
So we get
E(z,y) ~ g(x)g(y)=(a)(@y) + n(x) n(y) .
But by Proposition 5.1, 244+ A2 is represented by E(x,y)+d(e; zy,yx).
Now, just as in the proof of Lemma 4.5, d(e; zy,yx) =0 for deg(xy) <N,
and for deg(zy)=N,

d(e; xy,yx) = 28¢7xy) sq/ O (yx) .

Using that » is a derivation in &7, one may see that xfa)(’a? 9 Enfe)(i 9
modulo the total indeterminacy. This proves (5.6) and (5.6’). If dega
is odd, there is no middle term in (5.1) ,so that for any cocycle x

Tex)uye; () + S (R)uyci() = 83 c(x)Uqe; () .
Therefore, by (5.4)
E@xx) ~ d(a; x2,2%) + a(zux) .
Thus by (5.8) and (3.6)
(5.9) a(zuyx) + (9() +1)x(a) (@) + (n(x))* ~ 0.

This is true for any cocycle z. In particular, take x to be p-dimensional.
Using the Definition (2.16) of reduced squares, (5.7) is an immediate
consequence. This completes the proof.

For any concrete & it is in principle easy to solve the equation (5.7)
for 7. We shall give one such computation. Let { be the dual of the
squaring homomorphism {* in the dual Hopf algebra o&/* of &/. It has

the property . R
2@ = C@@) .
ProPoSITION 5.5. For =& Sq2+1 8¢, I =(1,,...,1,), the corresponding

7 18 given b
s gien oY (degI+i+1)(3) Sq' ST .

i
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Proor. Let g be an integer and let us apply the operation
(5.10) Sq% 8q?I Sg2a 4 SqlesI+2a+ Jqi Sqf

to the bacis class 2=2,, € H*(K(Z,2q)). This obviously gives zero.
The operation (5.10) can therefore be written in the form d= > SgK,
where K is admissible and of excess =2¢+ 1. Since deg(K) is even and
since for all admissible K =(k,,...,k,)

excess (K) = 2k, — degK ,
we get that excess(K) is even. Therefore, excess(K)=2g+2. Since
Sq' S8qn=(n+ 1) Sgn+! for all n, we get
@ 8q¢% = & Sq¥+1 Sq* Sq*
= (deg(I)+1+1) & Sqleal+2++1 Sgi 8T + & Sq'd .

Using this equation and (5.7) for p=2¢+1 and

2 = Bogny € HUH(K(Z,20+ 1)),
("73)2 — (degI+i+ 1)& Sqdeg1+2q+i+1 Sq" SqI:'I?

= ((degI+i+1)¢(&)Sq? Sqf )% .
Hence (¢2)2=0 for

& =7+ (degl+i+1){(&)Sq*SqL.

Since H*(K(Z,,p)) is a polynomial algebra, &#)=0. Since p was an
arbitrary odd number, we get ¢=0, which concludes the proof.

we get

6. Connection with secondary operations in one variable.

In this section we shall investigate 242 for certain dimensions of 2.
Let 4 be as in (5.1).

ConvenTION 6.1 If dega is even, put m =} dega. Then the operation
7 in (6.3) below is zero, and no meaning is attached to the symbol 7.
If dega is odd, put 7 = }(dega —1). Then the middle term in (5.1) does
not appear, and no meaning is attached to the symbols b and m.

Let n be a positive integer, fixed throughout this section. By the
Cartan formula (5.1) we have for any n— 1l-dimensional cohomology
class 2

a8qn-12+Sgmn-152 = 6(22) + (bR)? =
Hence &8gn-1+8gm+n-1} is of excess =7 and may be written

(6.1) A8+ Sgmin-15 = F&/ Sgrtiesn g 4 ¢



A SECONDARY PRODUCT STRUCTURE IN COHOMOLOGY THEORY 139

with excess ézn+1. Using (6.1), we see that
(6.2) r = asq"l48qmtn-1p 4 T clsq"te% ¢ te € Z(OV)

belongs to Kere. Since excess (6)=n+1, the representative e can be
chosen to be of excess =%+ 1 in the sense of Section 2.

Now, consider the cochain operation K € Q%! given by
(6.3) K(u,v) = a(uuy) + buubv + Te(c,(u)c,(v)) .

Using the Definition (2.16) of s¢* as a cochain operation, we get for an
n-dimensional cocycle z

(6.4) K(x,z) = r(z)

since e(x)=0.

Our intention is to prove 242 = QuF(2) for 2 of dimension n—1 and a
suitable relation R': 3k k' +1. By the definition of QuF in [3], a co-
cycle representing QuF(2) is given by 6(x)+3k,(2), where A6=
Skk,+1 and é2=Fk, (x). The desired equality is obtained by the con-
struction of a particular 6 using cochain operations involved in the
definition of 4.

ProposITION 6.2. The following operation K is in Z(Q)

Ruw) = K(uw)+d(a; uwv,ou,dul,w,uu,dv) +
+ Sd(c]; ¢,(0u),(v),0,)0,(80)) + g(u)x(e])(c,me,30) +
+ Zeuuiey'v + Topuiey u + T(uv) + T(vu) + Fluy)

where T satisfies (2.12) relative to (5.1) and F is given in Lemma 3.5.

Proor. VF is given explicitly in (3.5). A straightforward computa-
tion gives the assertion.

From the proposition now follows that ¢ is defined on K. To get some
information on ¢K, we prove in analogy with Proposition 5.3

ProPOSITION 6.3. The operation K is symmetric in the sense that

K(x,?/) ~ K(y7x)

for arbitrary cocycles z.y.
Proor. By (3.6), F(z,y)~F(y,x). Also,
a(zU,y) +a(yu,x) = d[a(xusy) +d(a; xUyy, d(xUsy)] .
Similarly for the other terms in K(z,y). Also,

d(a; zy,yx) ~ d(a; yo.ay)
by Lemma 3.6. The remaining terms cancel.
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By Proposition 3.16, the symmetry of K gives the existence of cochain
operations y;,y;, and v € Z(0") such that

R)@9) = {Zyi) v )+ ©(@) ©(y) + Zyiy) v (@)} .

We may use the same trick as in Section 5: Choosing a suitable 7' in the
definition of K, we get

(8.5) e(B)(2,9) = {t(=) (¥)} .
By Theorem 2.1 we choose an operation B € Q%! with
(6.6) VB(u,v) = K(u,v) + t(u) t(v) .

If in this equation we put u=v=x, where x is an n-dimensional cocycle,
we get by (6.4)
0 ~ (n+1)x(a)(*®) + T(x)?.

Hence there is a relation 7' of the form
r = (n+1)x(a)sq® + sqn+mr + €

with excess (¢/)=n+1 (in the sense of Section 2).

We shall use B to construct an operation 6 with 460 =r+7'. First, we
construct a cochain operation 6’ defined on cochains of dimension
=n-—1 and on cocycles of dimension n. We put

for degu < n—4: 0'(u) =0,
for degu = n—3: 0'(u) = Jci(u)c; (ou),
for degu = n—2: 0'(u) = (n+ 1)x(a)(udu)+ T (u,0u) +
+ Sciuuye” (Bu) + Sei (w) (),
for degu = n—1: 0'(u) = B(u,0u) + T(u,u) + d(a; u?+uu,6u,u?) +
(6.7) + Jciu)use; (w) + V(udu,0,0,u0u,0) +
+ C(ouu,udu,0uu,u) + C(udu,udu,0) +
+ n[x%(a)(udw)+ x(a)sq®1u] ,
for degu = n
and du = 0

6'(u) = B(u,u) + 3w ""u ,
V as in Lemma 3.2, C as in Lemma 3.6. By a lengthy but straight-
forward computation one may verify
ProposrTiON 6.4. With the 0' defined in (6.7),
A0 =r+ 7

whenever this makes sense (i.e., for cochains of dimension <n and for
n-cocycles).
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By Lemma 3.4 in [3], there is an extension 6 € 0! of 0’ with

(6.8) 40 = r+1r
such that
for degu<n—1,

0
O(u) — 0'(u) =
() = 0'(w) {Zal(u)(xz(éu). ..o,(0u) for degu=n—1,
where «; € Z(0"), and r > 1. In particular, 6(x)=6'(x) for n— 1 cocycles z.
THEOREM 6.5. Let A be a relation for & € o

>&,8,+¢é (excesséz=2n-—1),
g8 +5eb1 + [/ e8],
and let R be a relation
R = 3&,[a,8q" 1] + Sqm+n-1b + 8, (excesséy=h),

where n is a fixzed integer and m =} deg@ (see Convention 6.1). (A relation
of this form is given in (6.1)). Then there are operations & and QuE with

242 = QuE(2)
modulo the total indeterminacy, for all n — 1-dimensional cohomology classes
2 for which 242 is defined.

Proor. Since 242 is defined, there exist cochains w,, r,, and s so that

» T
ow, = a,(rx) = a,8q" 'z,
6Ti = C;($) )
or = bx .
Let
e = Xc,8q"t8%¢ Lo 1",

Then e, is a representative of &, of excess 2n. By (6.8)
46 = 3 (x,a,+e)sg" + sgmtn-1p 4 ¢, ,

and therefore 0 defines a secondary operation Quf associated with R.
A cocycle representing Quf(2) is given by

(6.9) 0(x) + I, (w,) + sgm+*-1r.

The operation T chosen in connection with (6.5) defines a &-product,
and 242 is then represented by

(6.10) T(z2) + Zo,(w,) + Zric (@) + 26 (2)7; + Zrb(@) -
The difference between the cocycles (6.9) and (6.10) is by (6.7) seen to be
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03rucir + d(a; 2%,22) + nx(a)sgh-la ~ (n+1)x(a)(z?) .

Altering Qu® by the primary operation (n+ l)xfa) Sqn-1, we get the
theorem.

7. Coboundary and suspension.

In Definition 4.4 we introduced a functor § from the category of
CSS-complexes to the category of sets; S(X) consists of all tuples
[x.y | {w,},{r:},{r;}] satisfying the conditions stated in the definition.
These were called systems for x,y. Here we need to consider two kinds
of generalized systems.

Let A and B be as in Section 4. Then, by S;(X), we denote the set of

tuples
(7.1) 8 = [&y | {w,q,}: {roti}: {ri}]
tisfyi
satisfying =0,
(7.2) awv = av(xy) + qﬂ )
Ory = by(x) +1¢;,
By 8,(X) we denote the set of the tuples
(7.3) 8y = [2.y | {w,,}: {rads {ryti}]
satisfyin
yine ox =0,
6wp = av(xy) + qr >
or; = by(),

We define é;: S; - S;, 1=1,2, by
6,8, = [0,y | {4,,0}, {0}, {r;}],
0y8, = [2,0y | {g,,0}, {rs} {t;,0}1.

Note that the set S(X) of systems from Definition 4.4 can be considered
as a subset of both 8,(X) and S,(X).

DeriniTION 7.1, Let 8; € 8y(X), ¢=1,2, be as in (7.1) or (7.3). We put
c(8;) = T(xy) + T (w,) + Trice(y) + Thy(x)r; +
+ Zd(x,; a,(xy).q,) + Zx(x,)g,) -

This is an extension of the natural transformation ¢ defined in Defini-
tion 4.4. An easy computation yields
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ProrosITION 7.2. Let 8; € Sy(X) be as in (7.1) or (7.3). Then
dc(s;) + ¢(dy8;) = e(xy) + g(x) x(a)(xdy) .

We remark that in case s; € § (Definition 4.4), then the proposition
gives dc(s;) =e(xy) as already seen in Section 4.
Let Y be a subcomplex of X and call the injection i: ¥ - X. We

shall consider 5% Hm(Y) > Hm(X,Y).
TaEOREM 7.3. Modulo the total indeterminacy
240y = 0*(i*24g) + g(@)x(8)(20*)) ,
provided both sides are defined. Similarly for the equation
5*24g = o*(24i*g) .

Proor. If both sides are defined in the first equation, there is a
generalized system s in Sy(X),

§ = [x,y I {wv’Qv}’ {7’,,;}, {r]"tf}] ’

g,,t; € C(X,Y) such that 246*) is represented by c(d,8) and i*24y) is re-
presented by c(i¥s) =t*c(s). Since e(xy)=0 for reasons of degree, Propo-
sition 7.3 immediately yields the first equation. The proof of the second
is similar, using a generalized system in §,(X). We remark that the lack
of symmetry is to be found in Lemma 2.2.

We next prove an analogue of the fact that cup products in a suspen-
sion 8X vanish.

THEOREM 7.4. Let 24§ < H*(SX) be defined. Then it is zero modulo
tndeterminacy.

Proor. In H*(SX), 2§=0. So, if 247 is defined, then so is 247, where
A’ is the ,,degenerate’ relation for & obtained from A4 by replacing
@=3&,8,+¢é by @=a-1+0. Furthermore, & has less indeterminacy
than &, so it suffices to prove the theorem for &,. Let dw==zy, ér;=by(x),
or;=c;(y). Let CX denote the cone on X with the inclusion map
t: X - OX and pinching map p: CX - SX. The desuspension isomorph-
e ol: H"(8X) > HYX)
may be defined by means of the additive relation i¥6-p* on cochain
stage. Since CX is acyclic, there is a cochain » with du=p*z. Obviously,
b,(u) + p*r, is a cocycle so that we may find 7; € C-(CX) with dr;=>b,(u)+
p*r;. Similarly, we can find % e C-(CX) with
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(7.6) 0w = upty + ptw .

Modifying w with a cocycle in ¢{i*w}, it is easily seen that a % satisfying
(7.6) may be chosen with the further property :*&=0. Now, consider
the system s e 8;(CX)

s = [wp'y | {@.phw}, {rop'rd, ()] -
The operation 244 is represented by ¢(s,), where
so = [wy | {w}{r:}, {r;}]
Using Proposition 7.2, we get
p¥o(sy) = c(0,8) = de(s)

so that o-1{c(s,)} is represented by i¥c(s) =c(i¥s). But this is easily seen
to be zero.

The last theorem in this section deals with the spectral sequence for a
fibration p
F—->E-’>B

with H*(H,*)=0. The content of the theorem is indicated in the dia-
gram below.

THEOREM 7.5. Let 2,)€ H¥(B) and let 2§=0. Let die E.(p) with
d,(i)={&}. Then there is a class ® € H*(F) with

did} = {a{g}}, ¢ = glay)-r.
Further, 4(®) € H*(F) is transgressive, and modulo total indeterminacy
(D)) = 249
where A is the relation 8=8-1+0, w=23i®6i+231®6j.
an

) 9 ) 249
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Proor. Let xy=0b and p*xr=0du, where w represents 4 e E,. Since
C+(LX) is acyclic, there is a cochain w with dw=wup*y+ p*b. Let
@ € H*(F) be the class represented by i*w. Obviously d{®}={i-{§}},
t=g(xy)—r. There are systems s, € S(B) and s € S;(#) of the form

8o = [y | {0} {rsh: {r;}]
s = [wpby | {wp), {70t (pr)] -
Then &(®) is represented by c(i*s) =4%¢(s). Since
do(s) = c(d,8) = p¥o(sy) ,
we get the theorem.

8. Two relations between secondary products.

Let

(8‘1) A: ‘ Aa - 20‘1?,” Al Al S Al ’ "

'l/)(a) = Zl’ai®ai +21na,;®ai > I UI = I Py

a~ _ 5

(82) B: { ~ ZB”’V” N4 PN ’ 1

p(b) = 3;.0;0b; +3;40,®b;, J'UJ" =J,
be relations for @,b € . The Cartan formula for /@ may be expressed
(8.3) p(ba) = Zb;&;®bj'.'@;', (jr)ed xI.

In Lemma 3.7 we have given a construction of d(ba). Using this and
operations 7',,T, satisfying 2.12, we shall here construct an operation
T,, € Q4.

Lemma 8.1. The following formula defines an operation T, satisfying
2.12 with respect to ba and (8.3)

Tba(x’y) = bTa(x’y) + ZITb(a;'x’a;Iy) + ER(%?/) >

where R(x,y), R=XIXII,... XV, are the operations defined in Lemmas
3.11-3.15. In XIII the operation A is replaced by T,.

Proor. The proof is straightforward using Lemmas 3.11-3.15 and
Lemma 3.7.

If z and y are cocycles, the operation T,, simplifies to
(8.4) Toolxy) = bTo(xy) + 2, To(ai(2).0; (¥)) +
+ d(b; alzy),. . . .axay,. .. )+
+ 3ydeg (a;)g(y) x(b) (4;xa;y) .

Math. Scand. — 10
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Consider the relation

ba = 3 (68,8, ,
w68) = 35, 0H 0] + 3, 0B i8]
for ba. For this relation we have

THEOREM 8.2. Let 2, be cohomology classes. If 244 is defined with A
as in (8.1), then with BA as in (8.5), 2849 is defined and

bedg) = 2899 .

(8.5) BA:

Proor. Let
O(u) = d(b;...,xa(u),...);
then
T(x.y) = Tyelz.y) + O(xy) + d(6; dwy,xdy) + g(x)%(6)(xdy) ,
where T, is as in Lemma 8.1 and d(0) as in (2.8) satisfies

VT(z,y) = Tba,a,(xy)+Tbjai(x) b &' (y) +
+d(zb0‘vav; 6xy,x6y) +g(x) ”(zb“vav)(xay) M
Hence a cocycle representing 284§ may be constructed using this 7'.

The theorem now easily follows.

Now, let

38,6,

yp(ba) = EJ'ng}@:@’;}’ @;"'*'EJ"xlg}ﬁ;@z}'@;’ .
Note the difference between (8.5) and (8.6).

(8.6) BA:

THEOREM 8.3. Let 2,§ be cohomology classes with both 2844y and
a;2B4.") defined, B and BA as in (8.2) and (8.6) and &,4; as in (8.1).
Then modulo the total indeterminacy

%49 = 3,888 9 +3; deg (@) 9(9) x(b) (2(2) &/ (®)) -

Proor. By assumption there are systems

8; = [azaly | {w, 3, {rj, {rj,31,
8 = [y | {@,} {rj,:} {rj,:}]
with
W, = Tw, s + b,To(xy) + d(b,; a(zy),...a(x)ay),...).
Then, using 7',, as in Lemma 8.1, a representative for
249 + 2, @88 () + 3 deg (@) 9(9) #(B) (8:(2) & (1))

is given by
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(8.7)
o(s) + To(s;) + 3 deg(a;)9(y)#(b) (ai(x) a;'(y))
=2p,(®@,) + ZP,(w,;) + ZP,b,To(xy)+
+3d(B,b,; a(xy),. . .,a(x) a(¥),...)
~ 3d(B,b,; alzy),...,axaly,...)+
+3d(B,; baxy),. .. blaxay),. .. blazy)+Saix a'y)) +
+3B,4(b,; alxy),. . ..axay,. .. )+
+Zd(ﬁ”; ad(b,; a(zy),. . ..z aj'y,...),
d(b,; da(zy),. .. ,0(a;z a;'y),. . )) .
Replacing in this expression a(zy) by » and ajza;y by w, we get an
operation in (¥, where ¢ is one plus the cardinal of 7. This operation is
easily seen to be in Z((®"). By e it is mapped into

Z,.4B,) b,(w) +Z,, #(B,) b,(u;) .

Hence (8.7) is cohomologous to
Zx(ﬂ,u) bya(xy) + z"(ﬂy) by(agx a;,,?/) ~ 0 .

This proves the theorem.

9. Peterson-Stein formulas.

The two theorems in this section are analogous to the theorems 2.3
and 2.4 in [6]. We shall need the following generalization of the well-
known functionalized cup product operation. Let f: ¥ — X be a map of
CSS-complexes, and let 3 € &/. Let 2 and § be cohomology classes on X
with the properties

f*@ =0,
@) =0.

Then one may define a set 74(2,7) of cohomology classes in H*(Y), namely
the set represented by cocycles of the form

y(u fry) +fHw) ,

where z €2, yef), du=f*x, dw=y(ry). One easily sees that y/(29) is
a coset of the subgroup P(H*(Y)f*(§))+f*(H*(X)) in H*(Y). Simi-
larly, if f*(§) = 0 and $(24) = 0, one may define a set (2,9), of cohomology
classes in H*(Y). If =1 e s, then p,(2,§) is the usual left-functional-
ized cup product, which we denote 2,u§. Similarly, if =1, (2,9), is
the right-functionalized cup product 2u§. Finally, if §=1e HY(X),
then $,(2,§) is the usual primary functionalized operation y4z).
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Let A be the following relation for @

0.1) 4 ?': = zézv&,;i- e, o t.excess.é=N+l ,

W=zb1®ci+zb3®cj’ 'LEI,jEJ.

THEOREM 9.1. Let f: Y > X be a map of CSS-complexes and let
2, H¥X). Let A be as in (9.1). Then the following equation holds
modulo indeterminacy, provided every term is defined
(9-2) f*@49) = 38,a,.),) + Z,,*(5,@) @)@ +

+ g(@)f*x(a) (29) -
Similarly, for the equation
(9.3) fH@49) = 38,8,,/29) + Z1(0)/®) f4(:9)) -

Proor. We shall prove (9.2) only. The proof of (9.3) is similar. By
assumption, there is a system s e S(X)

8§ = [x’y I {wv}’ {’ri}’ {rf}] ’

and a cochain z € C*(Y) with dz=f*y. Then 244 is represented by c(s),
a,(2,9), is represented by a,(f*(z) z)+f*w,, and (¢;),(§) is represented by
¢;(z)+f*r;. Using these representatives, (2.12) easily gives (9.2).

THEOREM 9.2, Let f: Y > X be a map of CSS-complexes and let
2,0 € H*(X). Let A be asin (9.1). Then the following equation holds modulo
indeterminacy, provided every term is defined

f*RAf*) = 33,(4,29 ) + ZzgﬂfUéi? + 2 31@Uf61?? .
Proor. By assumption, there is a system s € S(Y)
8 = [ffa.foy | {w,} fr, {rs}].
Also, there are cochains u; € C+(X) with
ouy, = by(x)eily), kelud.
Finally, there are cochains ¢, € C*(X) with

6tv = (xvav(xy) *
For ¢, we may use
by = Zyuat, + Zrysw + T(,y) .

Using these cochains to construct representatives, the theorem easily
follows.
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