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ON GENERAL TAUBERIAN REMAINDER THEOREMS

LENNART FRENNEMO

Introduction.

In this paper we will consider two general Tauberian remainder theo-
rems of the following kind:

Let K belong to some class of integrable functions and ¢ be a bounded
measurable function satisfying a Tauberian condition. Furthermore sup-
pose H is a mon-increasing function such that lim,  H(x)=0. Then

Kxplx) = f K(@—t) g(t) dt = O(H(z)), 2>,

tmplies an estimation of ¢,
‘P(x) = O(Hl(x)): X —> oo,
for some non-increasing function H,, with lim,_  H,(x)=0.

As a consequence of Wiener’s general Tauberian theorem [8, p. 25] a
necessary condition for the existence of such a function H, is that K
fulfills the Wiener condition, that is the Fourier transform

Rty = f exp (—ixt) K(z) de
must be different from zero for all real t. Here the class of functions will
be further restricted by conditions on the Fourier transform of K.

Problems of this kind were treated first by Beurling [1, p. 22] and
later by Lyttkens [6], [7] and Ganelius [2], [3]. The results in this paper
will generalize those of Beurling and also generalize and even sharpen
some of the results of Lyttkens. It also includes most of Ganelius’ results
in [2].

I will use non-decreasing, submultiplicative functions p defined for
positive arguments, which I for convenience suppose equal to one for
negative arguments. Thus

p) 2 p(0) =1, plr+y) < p@)ply), ploz) 2 pr) Hozl.
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Such functions are sometimes called weight-functions, cf. [1, p. 9]. Some
interesting examples are p,, p, and p; defined for positive arguments by

pi(x) = (log(e+2))e, ¢20,
Pe(2) = (1+2)4, q20,
ps(x) = exp(qx), q20,

and naturally also their products. I will also use the fact that for each
such function there exists an m such that

p(x) = O(exp(mx)), x> oo.

In the two theorems I first use a Tauberian condition which is strong
and easy to work with and such that it doesn’t hide the idea of the proofs.
Later in section 4 this condition will be weakened.

We only attack Tauberian problems for slowly decreasing remainders,
since otherwise we must use more specific properties of the kernels than
those considered here, to get best possible results in the interesting spe-
cial cases. For some results of this kind see e.g. Ganelius [3], [4].

1. A lemma.

The proofs of the theorems are based on a lemma, which is a small
modification of an inequality used by Ganelius in proving Tauberian
theorems. (Cf. [2, p. 9] or [3, p. 214]. A proof of this inequality in the
periodic case is published in [5].) Since the modifications are essential
for my proofs, I include a proof of the lemma.

Lemma. If w is an integrable function, then there exists a numerical
constant C such that

14
f exp (1£7)(1 — || V—l)«z(é)d«,b“

sup |u(z)| < C-I —inf (u(t)—u(z)) + su
® -V

rstsz+V-1 T

Jor all positive V.
Proor. We will use the fact that

(o8] (o]

Q) = f w(z—1) 8,(t) dt = f exp (izt) A,(t) (t) dt
with 8(t) = (227)1(4)2 (sin V)
and

_ (A= [¢|V-1)(27)* when [t|<V,
4y(t) = {O when [t|2V,

which is true since 3, =2rA Ve
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Suppose that sup,|u(t)] =8 =sup,u(t) (The case S= —sup,u(t) can be
treated in an analogous way). Then for an arbitrary ¢>0 there exists
an R such that u(R)>S—e.

Write

G(R+7) = fa,,(t)u(R+r—t)dt+ f&,,-(t) w(R +r—t) dt

[tlzr

with r=16(zxV)-1. Then it is easy to see that

—rsi=sr

G(R+r) 2 {S — ¢+ inf (u(R+r-—t)—u(R))}% - 18,
if not
S — &+ inf (w(R+r—t)—u(R)) <0,

—r<isr
When the last inequality is true, then
8 <e— inf (w(R+r—t)—u(R)),

—rstsr
and otherwise

S £ $e—4- inf (w(R+r—t)—u(R))+2G(R+r).

—rstsr
Thus in both cases
14
8<3e— 3 inf (ut)—u(@) + su f exp (i£7) (1 — £ V1) 4(£) dE |,
rStSe+2r T v

and since ¢ is arbitrary the lemma is true if, for example, C'=18.

2. The first theorem.

Let us start by introducing two classes of functions 7' and E(P,,«,f),
defined as follows.

T: all bounded an measurable functions ¢, for which there exists a
constant C such that the function defined by ¢(z)+ Cx is non-decreasing.

E(P,,a,B8): all integrable functions K, which fulfills the Wiener con-
dition, and for which the function g, such that

g(t) = K@),

can be analytically continued in a strip —x<Im ¢<§p, in the complex
¢-plane including the real axis, and where

(2.1) lg(t)| = const- Py([¢])

for some weight-function P, and all ¢ in the strip.
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Let R, be the inverse function of that given by z#P(z) for all positive
values of z. If now p is a weight-function with

lim -1 logp(x) = v ,

&r—>00
we have the following theorem.
TreEOREM 1. If K € E(Py,x,p) with $>v and if ¢ € T then
(2.2) Explz) = O(p(a) ), oo,
tmplies
¢(z) = O(R(p(@)?), z-oo.

Proor. Let y be an arbitrary positive number, and apply the lemma to
the function % given by u(x)=exp(—}(z— ¥)?) p(x). For convenience let
C stand for positive numerical constants independent of y. Since
|u(y)| < sup, |u(x)| we have by the lemma

14
o) 5 O} —inf (ut)=u(w))+sup) [ exp(ifr)(l—IEIV‘I)ﬁ(S)df}
2Zt<x+ V-1 T v

for all positive values of V. Writing

u(t) —u(z) = exp(—4(t—y)?) {p(t) —p(@)} +
+ p(@){exp(—3(t—y)?) —exp(— 3z —y)?)}
we see that for t>z
u(t) —u(z) 2 —C(t—z) — C(t—2) sup, |t exp(— 3t2)]
and hence

To get an expression for % depending on g we observe the following:
If both 2 and @ are integrable, where

14

[ explign)1 - gV -2yac) ¢

.

(2.3) le) = C

V-1+sup

(2.4) Q(z) = (2m)1 f exp (izv) A(v) g(v) dv
then ~
(2.5) hap@) = pQ)  with () = Kep(@),

cf. [2, p. 7]. Now

a(§) = exp(~ity) [ exp(iéy—2) — Hy—2)) ple) do



ON GENERAL TAUBERIAN REMAINDER THEOREMS 81

and hence we can use (2.4) with
h(+) = exp(—4()*+1&(+)),

since in this case h and @ are integrable. This can be seen if we translate
the line of integration in (2.4) using Cauchy’s integral theorem. Hence

(2.6) exp(i&y) f) = [ ply—) Q(«) du
with - —
2.7) Q) = (2m)- f exp(izv — }(v—£)?) g(v) dv .

Let r and s be positive numbers, 0<r<« and y<s<p. Now we use
Cauchy’s integral theorem and translate the line of integration in (2.7)
by a distance s upwards when z is positive and by a distance r downwards
when z is negative. Thus we make the substitutions »=¢+ & +14s when x
is positive and v=t+ & —ir when x is negative. Hence

Q) = (27)-t exp (—sx +iéx) f exp(ixt — }(t+1s)?) g(t + & +is) dt

—00

for >0, and

Q(z) = (2n)* exp (rx +1éx) f exp (it — }(t —ir)?) g(t + & —1ir) dt

for x < 0. By aid of this formula, (2.6) and by Fubini’s theorem the last
term in (2.3) can be transformed. Thus we have

14
(28) (2n) [ exp(ign)(1—16]7-1)il) d
-V .

]

—00

exp(— b=} I,(0) dt + [ exp(—(t+i2)?) L0 dt

where
0

I, = fgu(y——w) exp (re +iat) «
v

. ( fexP(iE(x—y+ 7)) (1- lElV“)g(Hf—ir)df) de
-V

I(t) = f y(y —x) exp (—sx +ixt) -
0 v

. ( feXP(iE(x—y+ 7)) (14| V")g(t+§+is)d§) de .
-

Math. Scand. 17 — 6
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By Schwarz’s inequality

0 ¥
1A ( [ wy-2) eXP(rx)de) -
- 14

[ exp(it@—y+2) (- 16Vt + £~ ir) dt
-

0 2 ¥
Since ¢ is bounded in (2.2) we see that [y(x)| < Cp(x)~! for all z, and then
by the property of weight-functions we have

[w(y—=x)| £ Cp(x)p(y)?,
that is

0 i
( [ wiy—) exp(m)de) < Oply)*.

2 i
dx)
|4
[ expiea)1— (g1 g+ & —ir) e

-V

Furthermore

0

U

14
[exp(it@—y+m) (1 €1V g6+ & —ir) ds

-V

o0

s(J

—00

2 i
dx)

and using Parseval’s relation we find that this is equal to
14 ¥
(2u [la-167= g+ —imp ds) :
-V
By (2.1) and the weight-function property this is less than or equal to
.4 ¥
OPy(r) Po(lt) (4n [ Puere df) :
0

Estimates of the same kind hold for I,. Hence

14

[ expena - 1617 ae) de

-V

14 t o
S Cp)*- ( | Poere da) [ Pott exp(— 47 at,
0 —00

which we put into (2.3), and then
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4 i
lp(y)| = C{V-1+p(y)? (f Py&)? dé) ]
0

Thus we have
lp)l = C{V2+p(y)* V¥ Py(V)} .

Using the function R, to put ¥ =R,(p(y)) this results in
lp)l = ORy(p(y))™,
and the proof of Theorem 1 is complete.

RemARK. This case was treated by Beurling [1] and Lyttkens [6], [7]
with
Pyt) = (1+[¢))2, ¢=20,
where Beurling had p(x)=exp(yxz) and Lyttkens in [6] had p(z)=
exp(yx) while in [7] she used a general weight-function. Theorem 1
even sharpens some of the results of Lyttkens and it also covers the case
Py(t) = exp(mt), m>0,

treated by Ganelius in [2].

3. The second theorem.
Here we will deal with the classes of functions 7, as in section 2, and
E(P,,P,y.«.8) where

E(P,,P,y,«,p8): all integrable functions K, which fulfills the Wiener
condition, and for which the function g, such that

g(t) = K@),

can be analytically continued in a strip —« <Imt<pg, in the complex
t-plane including the real axis, where both

(3.1) lg(t)] < const. Py(J¢])
and
(3.2) lg'(t)] £ const. Py([¢])

for some weight-functions P, and P, and all ¢ in the strip.

Let R, be the inverse function of that given by a¥(P;(z)Py(x))* for all
positive values of z, and let p be a weight-function with

Limz-1logp(zx) = y,

—>00

then we have the following theorem.
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THEOREM 2. If K € E(P,, Py, «,0) with B> and if p € T, then
(3.3) Kxp(x) = O(p(x)‘l), x> oo,
implies
#(e) = O(B{p(@)), w—oo.
Proor. The proof is the same as that of theorem 1 up to the estimation
of (2.8). This time we make a direct estimation of 7,:
14

f exp (s£z)(1 — |£|V-1)g(t + £ —ir) dE

-V

dzx.

1| = Oply)* suplp(e) exp r2)] |

Now we use the following property: if f is integrable and if the right hand
member exists then

oo oo oo }
(3.4) [ @)z < [ [ 1@ da | xf'(x>12dx] :

(cf. [1, p. 5].) By putting
0
f@) = [explign)(L+EV-1) gle+&—ir) di+
i

14
+ f exp (i€z)(1 — EV-1) gt + £ —ir) dE
0

we see after two partial integrations that f is integrable, hence we can
apply (3.4), and

v

f exp (iéz)(1— €| V-Y)g(t + & —ir) dE

-V

[oo]

Ll s Op) |

—00

dx

14
< Op(w-l{ J 10— tevnge+e—inp de-
-V

4 i
. f(|(1 —|E|V-Y)g ¢+ & —r)| + V2 |g(t+ & —r)|)? df] .
v

By (3.1) and (3.2) and since obviously

lgt+&—2r)| = C(1+[¢|+|&1) Po(lt] + €] +7)
we have

14 |4 b3
Ll = Cpy)™ [ [ Puerae [ Pyer df] {Pu1t) P+ 1D} -
0 0
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Estimations of the same kind also hold for I,. This time
14

[ exp(ige)1 - 167D e

.

14

|4 }

< Op)~ [ [RZGEIRZGS d;-] [+ 1ePy1) oo}t exp(— 4% .
0 0 —o0
If we put this into (2.3) we obtain

v v 3
lp()| = C{V1+p(y)? (f Py(&)>d¢ f Py(£)? df) ]
0 0

which gives us
lp)l £ C{V2+p(y)=* VH(Py(V) Py(V))}},
and if we put V=Ry(p(y)), then
lp(¥)l < CR(p(y))™ -
This completes the proof of Theorem 2.

REMARK. This theorem generalizes the case where Beurling [1], Lytt-
kens [6], [7] and Ganelius [2] only suppose that

lg'@®] = C(L+]ehet,  if ¢g=21,
since then
lg®)] = C(A+[E)?,
and thus by theorem 2 it is true that

o(y) = O(p(y)~1a+b), gy > co.

4. Generalizations and comments.

The Tauberian condition can be weakened in the two theorems. For
example in theorem 1 we can suppose that instead of ¢ € 7 we only
know that ¢ is bounded and measurable, and that there exists an z,
such that

(41)  g()—p(@) = —CR(p@)* i wySzSt<a+Ry(p@)

To prove this we observe that if we put ¥V =R;(p(y)) from the beginning
of the proof of theorem 1, the only difference this weaker Tauberian
condition will make in the proof, is in the estimation of u(¢) —u(x). Now
it remains to prove that for large values of y
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A = —inf exp(—1(t—y)*) (p(t) - () < ORy(p(y))*.
rstse+ V-1
We will use the fact that
(4.2) R,(mx) < mR,(x), mz21,
which follows from the definition of R,. If y is sufficiently large then
A4 = —inf exp(—it*)(p(t+y)—p(x+y))
r<tsa+ V-1
S Cexp(—ey?)—  inf  exp(—#)(pt+y)—p(=+y)),

—}yszst<z+V-1

for some £> 0, and by (4.1)
A4 = Cexp(—ey?) +C sup exp(— §t%) By(p(x +y))~! —

~—fysestse+V-15V-1

— inf  exp(— ) (plt+y)— Pz +Y)),

Oszstsz+V—1

Using the weight function property and (4.2) we have
Ry(plx+y))™? < p(—=2) By(p(y))? for —y=z=0
and since by (4.2) we also know that R,(x) < Cz and hence
exp(—ey?) < Op(y)™ = CRy(p(y))™,

it only remains us to estimate the last term. This cannot be done directly
from (4.1), since the interval x<t<x+ V! is larger than that allowed
in (4.1) if > 0. But since by (4.2)

p(t) By(p(t+y))™ 2 By(p(y))* it t20,
we may choose an n such that
px+V-1) <n < 2p(x+ V1),

split the interval x<t<z+ V-1, 20, in n equal parts by x=¢,<¢,... <
t,=x+ V-1 and put

B = plt+9)-9lo+9) = 3 (plt+ 1)~ pllsr+1).
Now by (4.1)

Bz —CkﬁlRl(pwwk-l))-l > _OnR(py)" 2 —Cp() By(pw)*,

and we see that
A = CR(p(y)) for large values of y .

Hence we are through. The same reasoning applies in theorem 2.
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For certain combinations of P, and p in theorem 1 the condition 8>y
is superfluous. A sufficient condition is that

(4.3) Ry(p(nx)) £ OnR(p(x)), =nzl.

In the interesting case Py(x)=exp (mz), which covers the situation when
K is the convolution kernel associated with the Laplace or Stieltjes trans-
form, this is true for all weight functions p. In the other cases it is, for
example, true for all p such that

p(nx) = Cnp(x), n21,

since then (4.3) follows from (4.2). To prove this let us consider K, and
@, Where
K@) = Knz) and  g,(x) = g(na)

with n so large that »8>y. Since

R0 = nt Rny),
it is easy to see that

K e E(Py,n,f) implies K, € E(Py,nx,np)
and that ¢, e 7. If now

Kxp(x) = O(p(2)7), x> o0,
then
Kn*(Pn(x) = O(P(x)_l)’ r—> o0,
and by theorem 1
p(nz) = O(By(p(2))), oo,

and if (4.3) is fulfilled
9(z) = O(R(p(x)), @ oo.

Even in this case the same holds for theorem 2. As might be seen from
above, this is also true with the weaker Tauberian condition (4.1).

For certain p it also possible to weaken the conditions in another way.
If for example p(x) =exp (yx) we only need to suppose analyticity above
the real axis in the definition of the class E (cf. [2, p. 5], [7, p. 317]).
In theorem 1 we only translate the line of integration in (2.7) a distance
¢ upwards when z is positive, where y <s <, and do nothing when x
is negative. Similar estimations as in section 2 hold for (2.8).

In theorem 2 the same weakening of the conditions could be made for
all p, with the same arguments as above, (cf. [7, p. 321]). Naturally this
even holds with the other generalisations discussed in this section,
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