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ON INFINITELY
DIVISIBLE ONE-SIDED DISTRIBUTIONS

CARL-GUSTAV ESSEEN

1. Introduction.
The characteristic function f(x) of the distribution function F(u) is for
all real 2 defined by

(1.1) fla) = f ¢inu dF(u) .

The characteristic function f(x) and its distribution are called infinitely
divisible if to every integer n > 1 there corresponds a characteristic func-
tion g,(«) such that f(x)=(g,(x))*. In order for f(x) to be infinitely
divisible it is necessary and sufficient that it have the following canon-
ical representation (Lévy):

0 .
1w
= 201 — L2r2 icu __ ] —
logf(z) = iax — }o% +f(e 1+u‘~’) dM(u) +
(1.2) —
XU
U __ ] — N
+0f(e 1 1+u2)d (u),
where

(i) M(u) and N(u) are defined and non-decreasing on (—o0,0) and
(0, + o), respectively,
(ii) M(—o0)=N(+o0)=0,

0 €
(iii) f u2d M (u) and f'uﬁdN (w) are finite for every &> 0,
—e 0

(iv) the constants a and ¢ are real.

Furthermore, the representation (1.2) is unique.

The characteristic function f(z) defined by (1.1) is called analytic if
there exists an analytic function ¢(z), z=2+ 1y, regular at 2=0, such
that f(z)=¢(x) on —4d<x<A4 for some 4>0. Then it can be shown
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that ¢(z) is regular in a horisontal strip —a<y<b, a, b> 0, containing
the real axis and that ¢(z) in this strip has the representation

(1.3) o(z) = feiw dF(u), —a<y<b.

The integral in (1.3) is absolutely convergent in the strip. On account
of (1.1) and (1.3) we may extend the definition of f(x) to complex values
of the independent variable, setting

f(2) = feiw dF(w), —a<y<b.

—00

If further f(z) is infinitely divisible, it can be shown (see for instance
Lukacs [4, p. 189]) that the Lévy representation (1.2) is valid in the whole
strip of regularity of f(z).

In this paper we shall consider characteristic functions which are
boundary values of analytic functions. This class of functions contains
the analytic characteristic functions but is more extensive. Our starting
point is the following theorem due to Marcinkiewicz [5]:

THEOREM 1. Let f(x) be the characteristic function of the distribution
Sfunction F(u). Then f(x) is the boundary value on —A <z < A of an analytic
Sfunction @(2), z=x+1y, regular in —A<x <4, 0<y<b and continuous on

—Ad<xz<d, 02y<b, if and only if
fe‘”“dF(u) < oo for O0=y<b.

—00

If f(x) is the boundary value of ¢(z) in the sense of Theorem 1 it is
easily seen that ¢(z) is unique and regular in the whole strip 0 <y < b with

the representation
oo

#e) = [emdFw), 0sy<s,
and that f(x)=¢(x) for all real . The definition of f(z) can thus be
extended to complex z by means of
(1.4) f2) = f ¢ dF(u), 0<y<b,

where the integral converges absolutely in the strip. Thus f(z) is regular
in the interior of the strip but not necessarily on the real axis. Let us
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denote by (M) the class of characteristic functions for which a represen-
tation of the form (1.4) is valid for some b>0. The class (M) and the
class of characteristic functions that are boundary values of analytic
functions in the sense of Theorem 1 are obviously identical. Incidentally,
we mention the following property of (M): if f;(z) and f,(z) both belong
to (M) and fi(x)=f,(x) on a set of positive Lebesgue measure situated
on the real axis, then f(z) =f,(2).

While the class of analytic characteristic functions has been exten-
sively studied, the class (M) has been much less often treated. Many
theorems on analytic characteristic functions are still true for the class
(M). It was mentioned that if a characteristic function is analytic and
infinitely divisible, then the Lévy representation (1.2) is valid in the
whole strip of regularity. In Section 2 we shall prove that this theorem
still holds for the class (M). In Section 3 we make an application of this
result giving a new proof of a theorem due to Baxter and Shapiro [1]
on one-sided infinitely divisible distributions.

2. Infinitely divisible characteristic functions belonging to (M).
In this section we shall prove the following theorem.

THEOREM 2. Let f(z) belong to (M) and be regular in 0<y<b and let
f(z) be infinitely divisible. Then the Lévy canonical representation is valid
in the domain 0y <b.

The proof of this theorem will be similar to that of the corresponding
theorem for analytic characteristic functions. The proof is based on two
auxiliary theorems which are known in the analytic case.

By F=F,+F, we denote the convolution of the two distribution func-
tions F, and F,, that is,

Plu) = f Fy(u—v) dFyv) .
Then F(u) is also a distribution function and f(z)=f(x)fs(x) for real
values of z, where f, f; and f, are the characteristic functions of F, F;
and F,, respectively.

Lemma 2.1. Let F, F, and F, be distribution functions, F=F,xF,, and
y a real number. If
fe-W dF(u) < ,

—00

then
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e}

fe‘”“ dF,(u) < o, k=1,2,
and (o] (e <] (o]
fe—”“ dF(u) = fe—W dF(u) fe‘”“ dF,(u) .

For a proof of Lemma 2.1 see Loéve [3, p. 214].

LemwmaA 2.2. Let f(z) belong to (M) and be regular in 0<y<b. If f(x)=
fi(@) fol) for all real values of x where f, and f; are characteristic functions,
then f,, € (M), k=1,2, and f,, has at least the same strip of regularity as f.
Further f(z)=f1(2)f2(2) in the strip 0=y <b.

This lemma corresponds to a result due to Raikov [7] in the analytic
case. Denote by F, F, and F, the distribution functions of f, f; and f,,
respectively. Then F=F,xF,. Since f(z) € (M), the integral

fe*”“ dF(u) < co for 0=y<b.
From Lemma 2.1 it follows that
fe‘”“dFk(u) < oo, k=12 O0=2y<b.

Thus f, belongs to (M) and has at least the same strip of regularity as f.
Further, we get from Lemma 2.1 that

fy) = fi(y) foiy)  for O0=y<b.
Hence, by analytic continuation, f(z)=f,(z)fs(?) in the same strip.

Lemwma 2.3. Let f(2) belong (M) and be regular in 0<y<b. If f(2) is
infinitely divisible, then f(z) has no zeros in the domain 0<y<b.

This lemma is also well known in the analytic case (see for instance
Lukacs [4, p. 187]). Since an infinitely divisible characteristic function
has no real zeros it is sufficient to prove that f(z) has no zeros in the in-
terior of the regularity strip. By the definition of an infinitely divisible
characteristic function there corresponds to every integer n =1 a charac-
teristic function g, (x) such that f(x)=(g,(x))* for all real values of z.
From Lemma 2.2 it follows that g, € (M) and that g,(2) is regular in
0<y<b. If, however, f(z) has a zero at 2=z, 0<y,<b, then g,(z) can
not be regular at z=z, for a sufficiently large n. This is a contradiction
and thus f(z) has no zeros in the regularity strip.
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Proor or TuroreM 2. From Lemma 2.3 it follows that logf(z) is
regular in 0 <y <b and continuous in 0=y <b. Let f(x) have the Lévy
representation (1.2) for real values of x. Set

[ 2w 2% >
(2.1) oi(2) = Of (e —1—1+u2) iN(w), 0.

As is easily seen ¢,(2) is regular in the upper half plane y >0 and con-
tinuous in ¥ 2 0. Consider

(2.2) v(2) = logf(z)—iaz— 40?2 —gy(2) .

The function u(z) is regular in the strip 0<y<b and continuous in
0=y<b. Further, let

12U
14 u?

(2.3) Po(2) = fo (em_ 1-

—00

)dM(u), y<0.

This function is regular in the lower half plane y <0 and continuous in
y=0.

From (1.2) it follows that y(x)=@,(x) for real values of x. Applying
a well-known theorem on analytic continuation we find that y(z) is the
analytic continuation of @,(2) and that g,(z) is regular in y <b. Thus
@, '(z) is regular in y<b. If y<O0 it is easily seen from (2.3) that

0
(2.4) 9, (2) = — f o2 dM(w),  y<O.
Defining the non-decreasing function L(u) by

L(u) = fv2 dM(v), u<0,

0

we can write (2.4) in the form
0
@ (2) = — feiz“ dL(uw), y<0.
It has already been proved, however, that ¢,"’(z) is regular in y<b.

Since L(u) is non-decreasing it follows from a property of the Laplace
integral (see for instance Widder [8, p. 58]) that

J. et dL(u) = f etet y2 d M (u)

—00
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is absolutely convergent in y <b. It is then easily seen that the represen-
tation (2.3) of @,(z) is valid in the half plane y <b. Since (z)=g@,(2) in
the strip 0 <y <b, we find from (2.1), (2.2) and (2.3) that logf(z) has the
Lévy canonical representation in this strip.

3. On infinitely divisible one-sided distribution functions.

A distribution function F(u) is called bounded to the left if there
exists a finite & such that for every ¢> 0,

F(h—e) =0 and F(h+e) > 0.

Following Pélya [6] we shall use the notation lext[F]=h. Boundedness
to the right is defined in a similar way. A distribution function which is
bounded to the left or to the right is called one-sided. If F(u) is bounded
to the left by kb then [ e®* dF(u) converges absolutely in y = 0 and rep-
resents a regular function in y > 0. Obviously the characteristic function
f corresponding to F belongs to (M) and we may set
1@ = [edF@), yzo,
h

where the strip of regularity of f(z) is at least the upper half plane y > 0.

It is known that an infinitely divisible distribution function can not
be bounded both to the left and to the right except when it is degenerate
(see Lukacs [3, p. 188] or, for a different proof, Chatterjee and Pakshi-
rajan [2]). There exist, however, one-sided infinitely divisible distribu-
tions, for instance the Poisson distribution, the I-distribution and the
stable distribution with the characteristic function.

(3.1) exp {— |z|¥(1 —1 signx)}
and the frequency function

0 for u<O
(27m)—% u—% e~1/@  for u>0.

Since an explicit determination of the distribution function or the fre-
quency function corresponding to an infinitely divisible characteristic
function can only seldom be obtained it is of interest to give conditions
which assure the one-sidedness of the distribution function and which
are expressed by quantities and functions present in the canonical rep-
resentation of the characteristic function. The following theorem yields
the desired information; it is, in a slightly different form, due to Baxter
and Shapiro [1].
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THEOREM 3. Let f(x) be the characteristio function of the infinitely divisi-
ble distribution function F(u) with the canonical representation (1.2). In
order that F(u) be bounded to the left it is necessary and sufficient that

(i) o2=0,
(i) M(u)=0 for <O,
(iii) [u dN(u)< oo.

If the conditions (i), (ii) and (iii) are satisfied, then
(iv) lext[F] = a— [3°(u/(1 +u?)) dN(u).

ReEmARK 1. A theorem on boundedness to the right can be stated in
a corresponding way.

REMARK 2. Instead of (iii) Baxter and Shapiro use the condition
J3|N(w)|du < co. These two conditions are equivalent.

REMARK 3. Baxter and Shapiro only proved that lext[F]= the right
hand side of (iv).

The proof of Baxter and Shapiro is based on a theorem, due to Gne-
denko and Kolmogorov, in the theory of limits of sums of independent
infinitesimal random variables. In this section we shall give a new proof
of Theorem 3. In this proof Theorem 2 is fundamental.

Before proceeding to the proof we state some auxiliary theorems which
will be needed later.

Lemma 3.1. Let the characteristic function f(2) belong to (M) and be
regular in the wpper half plane y>0. A necessary and sufficient condition
for the distribution function F(u) of f(z) to be bounded to the left is that

— 1
lim -logf(iy) < +oo.

y—>+oo

If this condition is satisfied, then

lext[F] = — lim —l—logf(iy) .

y—>+oo0

A corresponding theorem was proved by Pélya [6] for distribution func-
tions bounded to the left and to the right. The characteristic functions
are then entire functions. Polya’s method of proof can be used prac-
tically without any change in our case.
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ReEMARK. It can be shown that if ¥ is bounded to the left then

1
lim -logf(iy)

y—>+oo

exists and is finite. Thus lim in Lemma 3.1 can be replaced by lim.
The following lemma is elementary and is stated without proof.

Lemma 3.2. If x is real, then

(a) e—1—-220 for all x,

(b) e*—1—(z/(1+u?)24a® for 20, —co<u< + oo,

(c) (e®—1+x)/x is positive and non-decreasing in (0, + oo).

Proor or THEOREM 3. We recall that the functions M(u) and N(«) in
the Lévy representation are defined and non-decreasing in (— o0,0) and
(0, 4+ o0), respectively, that M(— oo)=DN(+o0)=0, and that

0 €
f w2 dM(u) and f u? AN (u)
—e 0

are finite for every &> 0.

A. Proof of necessity. (i) 62=0. Suppose, on the contrary, that 2> 0.
From (1.2) it follows that

f(x) = exp{—$o%a?g(x),

where g(x) is the characteristic function of a distribution function G(u)
and exp{— 40222} is the characteristic function of the normal distribu-
tion function @(u/s). Then F(u)=D(uw/o)*xG(u), F(u) is absolutely con-
tinuous and

F'(u)

[o<]

f exp{—40-2 (w—v)*}dG(v) > 0

—00

- o(2m)}

for all w. Thus F(u) cannot be bounded to the left, which is contradictory
to the assumption.

(ii) M(u)=0 for uw<0. Since F(u) is supposed bounded to the left its
characteristic function f(z) belongs to (M) and is regular in the upper half
plane. By Lemma 3.1

— 1
(3.2) lim —logf(iy)< +o0.
y—>+00
From Theorem 2 it follows that the Lévy representation of f(z) is valid
in the upper half plane. Thus on account of (i)
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I

logf(iy) = —ay+ f (e 1) b +

+f(—w 1+1+ )dN( )

= —ay+J,+J,, y20,

where J, and J, denote the first and second integral, respectively, of the
right hand side of the first equality.

Suppose that M (u) is not constant for w < 0. We shall show that this
is contradictory to (3.2). Since M(u) is not constant it has a point of
increase £, £<0, such that M(é+e)—M(6—¢e)>0 for any ¢>0. We
choose a fixed &> 0 such that £+e<0. Then

(3.4) p=ME+e)—M(E—e) > 0.

Since yu < 0 in J, we obtain from (3.3), Lemma 3.2 (b), and (3.4), that

&+e

(3.5) Jiz [ et d@) 2 3pE+ery’

—e

We write J, in the following way:

1 1
J, = f (e-vu—1+yu) AN(u) — y f () +
0

1+
(3.6)

+f( e 14 uz)dN(u).

Applying Lemma 3.2 (a) we get

1
(3.7) Joz -y

[ T dN(u) — lf dN(u)

Hence from (3.3), (3.5) and (3.7)

1 oo
1 u 1
Zlogf(iy) = — 2y — —Z | dN(), 0,
” ogf(iy) 2 —a + ip(&+e)y ofHuz ylf (), y>

or

Hm - log/(iy) =

y—>+o0
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This contradicts (3.2) and thus M(u)=0 for u<0.
(iii) [2udN(u)< +oco. Let us suppose that

1
(3.8) f wdN(w) = +oo.
(1]

We shall show that (3.8) and (3.2) are contradictory. Since (i) and (ii)
necessarily hold we get from (3.3) and (3.6)

1

1
logf(iy) = —ay-+ j (e~v%—1+yu) AN (u)—y f
0

0

ud
14 u?

dN(u)+

yu

+ 14+u?

n—lkﬁg

(e—w- 14 ) AN (w)

1 oo
u3
2 —ay+yRE) -y [ dNw) - [aNw),
0 1

where

1
fe""“— 1+yu

R(y) = dN (u)

0

and y>0. Thus if we can show that R(y) > + oo as y > + oo, then we
have a contradiction of (3.2), and the necessity of (iii) is proved.
Let H(u) be defined by

H(u) = fudN(u), u>0,
1

Then H(u) is non-decreasing and by (3.8)

Further, on account of Lemma 3.2 (¢) and for y>1,

fle"”“—l+yu j{e—”—l+v
%

R(y) = dH(vy™)

dH(u) 2

0 1

e Y(H(1)-H(y™).

From (3.9) it follows that R(y) - + oo as y - + oo and the necessity of
(iii) is proved.

v

B. Proof of sufficiency. Let the conditions (i), (ii) and (iii) of Theorem
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3 be satisfied. Then for real « the function logf(x) has the Lévy represen-
tation

12U
14 u?

logf(z) = vax +0f (e““——l— )dN(u) .

Since the integral, with « replaced by z, is a regular function in the upper
half plane y >0 and continuous in ¥ = 0 we find that f(z) belongs to (M)
and is regular in y>0. From Theorem 2 it follows that the Lévy rep-
resentation is valid in 2 0. Thus

Yyu
+u?

1°gf(i?/)=—ay+f(e-w—1+1 )dN(u), yz0.
0

By (iii) we are allowed to write

00

1 . U
JRE ) = —e k[N + 0w, v>0,
where
oo —u_1
Qy) = j ‘ dN(u) .

0

Applying the condition (iii) once more, we find easily that lim,_, , . Q(y)=
0. Thus

1 o
lim -logf(iy) = —a +fi-z—?;~édN(u) < +oo.
0

y—>+00

From Lemma 3.1 it follows that the distribution function F(u) is bounded
to the left and that

u
14u?

lext[F] = a —J‘ dN(u) ,
0

and the sufficiency of (i), (ii) and (iii) is proved.

Finally we make an application of Theorem 3. The characteristic
functions of the stable distributions have the representation (Loéve
(3, p. 327])

. .
logf(x) = mx—b|x]"{l +zcl—x—|w(y,x)}

with real #, —co<a<o0, 520, 0<y=<2, —1=¢<1, and
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tg 3y if p£1,

ly.®) = 2n-1logle| if y=1.

The stable distributions are infinitely divisible. Which stable distribu-
tions are bounded to the left? If 0 <y <2 we know from the theory of
the stable distributions that

M'(u) = Blu|-0+,  N'(u) = p'uw"0+

where 320 and f'Z=0 are constants, §+ >0 and c=(f—8")/(8+5')-
Suppose that f(x) is the characteristic function of a stable distribution
function bounded to the left. Then 0<y <2 since y =2 corresponds to
the normal distribution. From Theorem 3 it follows that =0, thus
c¢=—1, and 0<y<1. Hence

(3.10) logf(x) =40z — b|z|” (1 —¢ tg 3wy signx), O<y<l.

Conversely it is easily found that if f(x) has the representation (3.10)
the conditions of Theorem 3 are satisfied. Thus we have proved that in
order for a stable distribution function to be bounded to the left it is
necessary and sufficient that its characteristic function have the rep-
resentation (3.10). The characteristic function (3.1) is an example of
this kind.
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