SOME REMARKS ON CONTINUOUS ORTHOGONAL EXPANSIONS, AND EIGENFUNCTION EXPANSIONS FOR POSITIVE SELF-ADJOINT ELLIPTIC OPERATORS WITH VARIABLE COEFFICIENTS

JAAK PEETRE

0. Introduction.

Let A be a positive self-adjoint realization in the Hilbert space $L_2(\Omega)$ of a formally positive self-adjoint elliptic operator

$$(0.1)$$

$$a = a(x, D) = \sum_{|\alpha| \le m} a_{\alpha}(x) D^{\alpha}, \quad x = (x_1, \dots, x_n), \quad D = \left(-i\frac{\partial}{\partial x_1}, \dots, -i\frac{\partial}{\partial x_n}\right)$$

with smooth coefficients a_{α} defined in a domain Ω of \mathbb{R}^{n} . If

$$A = \int_{0}^{\infty} \lambda \, dE_{\lambda}$$

is the corresponding spectral resolution we introduce Riesz means of order α by the formula

(0.2)
$$E_{\lambda}^{R_{\alpha}} = \int_{0}^{\lambda} (1 - \mu/\lambda)^{\alpha} dE_{\mu}$$

and Abel-Laplace means by the formula

(0.3)
$$E_{\lambda}^{L} = \int_{0}^{\infty} e^{-\mu/\lambda} dE_{\mu}.$$

We shall study the convergence of $E_{\lambda}^{R_{\alpha}}f$ and $E_{\lambda}^{L}f$ as $\lambda \to \infty$ when $f \in L_{p}(\Omega)$, $1 \le p \le 2$. Our main results read as follows:

1° For any $f \in L_p(\Omega)$, $1 \le p \le 2$, holds $E_{\lambda}^L f(x) \to f(x)$ a.e. (Abel summability).

Received March 19, 1965.

2° For any $f \in L_2(\Omega)$ holds $E_{\lambda}^{R_{\alpha}}f(x) \to f(x)$ a.e. for any $\alpha > 0$ (Riesz summability). (An auxiliary rather incomplete result in the case $f \in L_p(\Omega)$, $1 \le p \le 2$ is also indicated.)

A few comments are necessary. At least if p=2, 1° is strictly speaking a consequence of 2°, in view of known results relating Riesz and Abel summability. However, the point is that we need 1° first for the proof of 2°. Again 1° depends on known estimates for the fundamental solution of the associated "heat" operator $\partial/\partial t - a$. We also want to emphasize that 2° belongs properly to the theory of continuous orthogonal expansions. While the theory of discrete orthogonal expansions (i.e. the theory of orthogonal series) has been given a great attention by many mathematicians (see the books by Kacmarcz-Steinhaus [4] and Alexits [1] as well as the recent survey article by Uljanov [12]), we do not know any single reference dealing with (the summability of) continuous orthogonal expansions. It now turns out that 2° depends essentially on a straight forward extension of results for discrete orthogonal expansions which are due to Kacmarcz and Zygmund (see [1, pp. 101-103]). Indeed our proofs are even somewhat simpler than the ones given in [1]. (Also other similar results can be easily extended to the continuous case, e.g. Kolmogorov's well-known theorem of the convergence of partial sequences (see [1], pp. 111-113), but we shall not enter into details.)

We start in Section 1 by some preliminaries on general means of a function locally of bounded variation. Then we study (Section 2) the summability of general continuous orthogonal expensions, establishing what is necessary for the proof of 2° . Next we specialize (Section 3) to the case of eigenfunction expansions, giving the proof of 1° and completing thus the one of 2° . Finally in Section 4 we discuss briefly Riesz summability in $L_p(\Omega)$, $1 \le p \le 2$; here our results are most uncomplete.

1. Preliminaries on general means.

Let s_{λ} be a (possibly vector valued) function locally of bounded variation with $s_{\lambda} = 0$ if $\lambda \leq 0$.

Let $\varphi = \varphi(t)$ be a Borel function at least continuous at 0, always normalized by $\varphi(0) = 1$.

We set (whenever the integral exists)

(1.1)
$$s_{\lambda}^{\varphi} = \int_{0}^{\infty} \varphi(\mu/\lambda) \ ds_{\mu} \quad \text{(the φ-mean of s_{λ})}.$$

If φ has a continuous derivative φ' and s_{λ} satisfies a proper growth condition, we may integrate by parts and obtain

$$s_{\lambda}^{\varphi} = -\lambda^{-1} \int_{0}^{\infty} \varphi'(\mu/\lambda) \, s_{\mu} \, d\mu .$$

Example 1.1. We mention the following special cases

$$\begin{split} \varphi(t) &= \, R_{\scriptscriptstyle \alpha}(t) = \begin{cases} (1-t)^{\alpha} & \text{if } t \leq 1 \\ 0 & \text{if } t > 1 \end{cases}, & \text{(Riesz mean of order α)} \,, \\ \varphi(t) &= \, L(t) = \, e^{-t} & \text{(Abel-Laplace mean)} \,, \\ \varphi(t) &= \, S_{\varrho}(t) = \, (1+t)^{-\varrho} & \text{(Stieltjes mean of order ϱ)} \,. \end{split}$$

It is clear what is meant by saying that s_{λ} is convergent as $\lambda \to \infty$. We say now that s_{λ} is φ -summable if s_{λ}^{φ} is convergent as $\lambda \to \infty$ i.e. if, for some s,

$$|s_{\lambda}^{\varphi} - s| \to 0$$
 as $\lambda \to \infty$.

We say also that s_1 is square φ -summable if, for some s,

$$\lambda^{-1} \int\limits_0^\lambda |s_\mu^\varphi - s|^2 \, d\mu \to 0 \quad \text{as } \lambda \to \infty \; .$$

It is clear that φ -summability implies square φ -summability.

We recall the following result, although strictly speaking it is not needed here.

Proposition 1.1. If s_{λ} is convergent then s_{λ} is φ -summable provided

(1.3)
$$\int_{0}^{\infty} |\varphi'(t)| dt < \infty.$$

PROOF. We write $s_{\lambda} = s_{\lambda}^{0} + s_{\lambda}^{1}$ where

$$s^0_{\lambda} = \begin{cases} s_{\lambda} & \text{if } \lambda < \omega, \\ 0 & \text{if } \lambda \geqq \omega, \end{cases} \qquad s^1_{\lambda} = \begin{cases} 0 & \text{if } \lambda < \omega, \\ s_{\lambda} & \text{if } \lambda \geqq \omega. \end{cases}$$

It is clear that s_{λ}^{0} converges to 0 as $\lambda \to \infty$; indeed, by (1.3) we have $\varphi(\mu/\lambda) \to 0$ uniformly as $\lambda \to \infty$ in $\mu < \omega$. It sufficies thus to show that $(s_{\lambda}^{1})^{\varphi} - s$ can be made arbitrarily small. Now by (1.2)

$$(s_{\lambda}^{1})^{\varphi}-s = -\lambda^{-1}\int_{-\infty}^{\infty} \varphi'(\mu/\lambda) (s_{\mu}^{1}-s) d\mu$$

and again by (1.3) the statement readily follows.

COROLLARY 1.1. If s_{λ} is convergent then s_{λ} is R_{α} -summable for any $\alpha \ge 0$.

We need, however, a more precise result relating Riesz means of different order and also square and 'ordinary' summability.

Proposition 1.2. If s_{λ} is R_{α} -summable for some $\alpha > -1$ then s_{λ} is R_{β} -summable for any $\beta > \alpha$. If s_{λ} is square R_{α} -summable for some $\alpha > -\frac{1}{2}$ then s_{λ} is R_{β} -summable for any $\beta > \alpha + \frac{1}{2}$.

PROOF. The following formula is well-known (see Chandrasekharan-Minakshisundaram [4] p. 3)

$$s_{\lambda}^{R_{\beta}} = c_{\alpha\beta}\lambda^{-1} \int_{0}^{\lambda} (1 - \mu/\lambda)^{\beta - \alpha - 1} (\mu/\lambda)^{\alpha} s_{\mu}^{R_{\alpha}} d\mu$$

with

$$c_{\alpha\beta} = \frac{\varGamma(\beta+1)}{\varGamma(\beta-\alpha)\varGamma(\alpha+1)}.$$

The first part of the proposition follows now as in the proof of the preceding one. Therefore we may concentrate upon the second part. By Schwarz' inequality we get

$$|s_{\alpha}^{R\beta} - s|^2 \leq c_{\alpha\beta}^2 \lambda^{-1} \int_{0}^{\lambda} (1 - \mu/\lambda)^{2(\beta - \alpha - 1)} (\mu/\lambda)^{2\alpha} d\mu \lambda^{-1} \int_{0}^{\lambda} |s_{\mu}^{R_{\alpha}} - s|^2 d\mu ,$$

where the first integral is finite and independent of λ if $\beta > \alpha + \frac{1}{2}$, $\alpha > -\frac{1}{2}$, and the second one tends to 0 as $\lambda \to \infty$ by assumption. This concludes the proof.

2. Summability of continuous orthogonal expansions.

Let E_{λ} be any positive spectral family in the Hilbert space $L_2(\Omega)$ where Ω is any domain of R^n (or, more generally, even an abstract measure space). Positive means that $E_{\lambda}=0$ if $\lambda \leq 0$. If $f \in L_2(\Omega)$ we take $s_{\lambda}=E_{\lambda}f$ and denote the corresponding φ -means by $s_{\lambda}^{\varphi}=E_{\lambda}^{\varphi}f$. Under suitable assumptions on E_{λ} , that will be always fulfilled in the case of eigenfunction expansions—therefore we shall not make them precise—holds

$$E_{\lambda}^{\varphi}f(x) = \int\limits_{0}^{\infty} arphi(\mu/\lambda) \; dE_{\mu}f(x) \;\;\; ext{a.e.}$$

that is, $E_{\lambda}^{\varphi}f(x)$ is a.e. the φ -mean of $E_{\lambda}f(x)$. Also $E_{\lambda}^{\varphi}f(x)$ is a measurable function of λ and x. The L_2 norm is, by Parseval's formula, given by

$$||E_\lambda^\varphi f||^2 = \int\limits_0^\infty |\varphi(\mu/\lambda)|^2\, d||E_\mu f||^2 \ .$$

Integrating with respect to $\lambda^{-1}d\lambda$ we get

$$\int\limits_0^\infty \|E_\lambda^\varphi f\|^2 \; \lambda^{-1} \; d\lambda \, = \int\limits_0^\infty \int\limits_0^\infty |\varphi(\mu/\lambda)|^2 \; \|E_\mu f\|^2 \; \lambda^{-1} \; d\lambda \; .$$

Applying next Fubini's theorem to each member this yields:

$$\int\limits_{\Omega} \left(\int\limits_{0}^{\infty} |E_{\lambda}^{\varphi} f(x)|^2 \; \lambda^{-1} \; d\lambda \right) dx \; = \; ||f||^2 \int\limits_{0}^{\infty} |\varphi(t)|^2 \; t^{-1} \; dt \; .$$

It follows that the following result holds, upon which all the following considerations are based.

Proposition 2.1. Suppose that

(2.1)
$$\int_{0}^{\infty} |\varphi(t)|^{2} t^{-1} dt < \infty.$$

Then for any $f \in L_2(\Omega)$ holds

(2.2)
$$\int_{0}^{\infty} |E_{\lambda}^{\varphi}f(x)|^{2} t^{-1} dt < \infty \quad \text{a.e.}$$

Taking

$$\varphi(t) = L(t) - R_{\alpha}(t)$$

we see that (2.1) holds if $\alpha > -\frac{1}{2}$. Therefore we have

THEOREM 2.1 (Kacmarcz). Suppose that $E_{\lambda}f(x)$ is a.e. square L-summable. Then $E_{\lambda}f(x)$ is a.e. square R_{α} -summable for any $\alpha > -\frac{1}{2}$. Also $E_{\lambda}f(x)$ is a.e. R_{β} -summable for any $\beta > 0$.

Proof. Indeed by (2.2) we get

$$\sup_{\lambda} \lambda^{-1} \int_{0}^{\lambda} |E_{\mu}^{R\alpha} f(x) - E_{\mu}^{L} f(x)|^{2} d\mu < \infty \quad \text{a.e.}$$

But by assumption

$$\lambda^{-1}\int\limits_0^\lambda |E_\mu^L f(x)-f(x)|^2\,d\mu o 0 \quad {
m a.e.}$$

Therefore it follows that

$$\sup_{\lambda} \lambda^{-1} \int_{0}^{\lambda} |E_{\mu}^{R_{\alpha}} f(x)|^{2} d\mu < \infty \quad \text{a.e.}$$

and, in view of a well-known density argument (Saks' theorem; see Calderòn-Zygmund [3] or Cotlar [5]), this implies

$$\lambda^{-1}\int\limits_0^{\lambda}|E^{R_{lpha}}_{\mu}f(x)-f(x)|^2~d\mu
ightarrow 0$$
 a.e.

proving thus the first part of the proposition. The second part follows at once from Proposition 1.2.

Remark 2.1. A similar result holds with Abel-Laplace means replaced by Stieltjes means of any order $\varrho > 0$ (see Example 1.1).

Next, to give another example of the same technique, taking

$$\varphi(t) = R_{\alpha}(t) - R_{\alpha_0}(t)$$

we see that (2.1) holds if $\alpha, \alpha_0 > -\frac{1}{2}$. Therefore the same argument yields

Theorem 2.2 (Zygmund). Suppose that $E_{\lambda}f(x)$ is a.e. R_{α_0} -summable for some $\alpha_0 > -\frac{1}{2}$. Then $E_{\lambda}f(x)$ is a.e. square R_{α} -summable for any $\alpha > -\frac{1}{2}$. Also $E_{\lambda}f(x)$ is a.e. R_{β} -summable for any $\beta > 0$.

3. Summability of eigenfunction expansions.

We now shall prove the results 1° and 2° stated in the Introduction. Thus E_{λ} will be the spectral family associated with a positive selfadjoint realization of the elliptic operator a (0.1). We may concentrate on proving 1° for then 2° will be an immediate consequence of Theorem 2.1.

We write

$$Ff = F_{\iota}f = E_{\iota^{-1}}^{L}f, \quad f \in L_{p}(\Omega), \quad 1 \leq p \leq 2.$$

(This has obviously a sense even if $p \neq 2$, see Section 4.) Then holds, as is readily seen,

$$\frac{\partial Ff}{\partial t} - aFf = 0$$
 as $t > 0$, $Ff = f$ as $t = 0$

(at least) in distribution sense; in other words, F is a fundamental solution of the associated "heat" operator $\partial/\partial t - a$. Let now F' be any other fundamental solution and consider the difference G = F - F'. Then holds

$$\frac{\partial Gf}{\partial t} - aGf = 0$$
 as $t > 0$, $Gf = 0$ as $t = 0$

again in distribution sense. From the hypoellipticity of the operator $\partial/\partial t - a$ (see e.g. Eidelman [6], Chap. II) follows now that

$$G_t f(x) \to 0$$
 a.e. as $t \to 0$.

Therefore the proof of 1° is reduced to shows that

(3.1)
$$F'_t f(x) \to f(x) \quad \text{a.e.} \quad \text{as } t \to 0.$$

But F' can be choosen (see e.g. Eidelman [6, Chap. I]) of the form

(3.1)
$$(F_t'f)(x) = \int_{\Omega} F_t'(x,y) f(y) dy$$

where the kernel satisfies (at least locally) the estimate

$$|F_t'(x,y)| \le C t^{-n/m} \exp\left(-C|x-y|^{m/(m-1)}t^{-1/(m-1)}\right),$$

where C is a constant and m the order of a. It follows readily from (3.2) and (3.3) that

$$(3.4) |F_t'f(x)| \leq C(\Lambda f^p(x))^{1/p}$$

with a different C, where

$$\Lambda g(x) = \sup_{r} r^{-n} \int_{|x-y| \le r} |g(y)| \ dy$$

(the Hardy-Littlewood maximal operator). By the Hardy-Littlewood maximal theorem (see [3] or [5]), the inequality (3.4) implies that

$$\sup_{t} |F_t'f(x)| < \infty$$
 a.e.

from which (3.1) follows by a density argument, as in the proof of Theorem 2.1. Thus we have established 1° and 2° of the Introduction.

Remark 3.1. A result similar to 1° holds probably also with Abel–Laplace means replaced by Stieltjes means of sufficiently large order ϱ (depending on m).

4. Remarks on Riesz summability in the $\boldsymbol{L_p}$ case.

First we say a few words about the definition of Riesz and Abel–Laplace means (as well as of other means) when p=2. By a form of "Sobolev's imbedding theorem" we see that $f \in L_p(\Omega)$ implies that $f \in D(A^{-k})$, the domain of the k'th (fractional) power of A, provided $k > (1/p - \frac{1}{2})n/m$. But in $D(A^{-k})$ integrals as (0.2) and (0.3) make sense so that E_{λ}^{R} and E_{λ}^{L} are now well-defined, indeed they will even belong to $L_2(\Omega)$. (See also Nilsson [9].)

The same idea combined with the technique of Section 2 conveniently adapted leads also to the following estimate for Riesz means

$$\begin{aligned} \int\limits_0^\infty \left(\frac{|E_\lambda^{R_\alpha} f(x)|}{\lambda^k}\right)^2 \frac{d\lambda}{\lambda} < & \text{a.e.,} \quad f \in L_p(\Omega) \ , \\ 1 \leq p < 2, \quad k > (1/p - \frac{1}{2}) \, n/m, \quad \alpha > -\frac{1}{2} \ . \end{aligned}$$

However, we shall omit the details since this is, as we see below, a very crude result.

It is about only in the quite simple special case of constant coefficients that any more precise results are known (see Bergendal [2] and the references given there; see also Peetre [10]). Let us here just consider the still more special case $\Omega = \mathbb{R}^n$ or $\Omega = \mathbb{T}^n$ (= the *n*-dimensional torus), i.e. non-spherical summability of multiple Fourier integrals and Fourier series. Then holds the following formula (cf. (3.4)).

$$(4.2) \quad |E_{\lambda}^{R_{\alpha}}f(x)| \, \leq \, C \big(\Lambda f^{p}(x) \big)^{1/p}, \qquad f \in L_{p}(R^{n}), \quad 1 \leq p < 2, \quad \alpha > (n-1)/p \, \, .$$

Therefore, as in Section 3, holds

(4.3)
$$E_{\lambda}^{R\alpha}f(x) \rightarrow f(x)$$
 a.e., $f \in L_p(\mathbb{R}^n)$, $1 \leq p < 2$, $\alpha > (n-1)/p$.

In (4.2) the bound $\alpha > (n-1)/p$ is about the best one (see [10]) but in (4.3) the bound $\alpha > (n-1)/p$ can be replaced by a better one, namely $\alpha > (1/p - \frac{1}{2})$ (n-1) (see Stein [11]). (Note that as in (4.1) appears the factor $1/p - \frac{1}{2}$.) It would be very interesting to see to what extent these results can be generalized to the case of variable coefficients and arbitrary Ω .

We conclude by mentioning the work of Levitan [8] who obtains quite complete results in the special case $a = -\Delta + q(x)$, $\Omega = R^3$ (thus n = 3). His methods are quite complicated and seem to be bounded, essentially, to that case.

REFERENCES

- 1. G. Alexits, Konvergenzprobleme der Orthogonalreihen, Berlin, 1960.
- G. Bergendal, Convergence and summability of eigenfunction expansions connected with elliptic differential operators, Thesis, Lund, 1959 (= Medd. Lunds Univ. Mat. Sem. 14 (1959), 1-63).
- 3. A. Calderòn and A. Zygmund, On singular integrals, Acta Math. 88 (1952), 85-139.
- 4. K. Chandrasekharan and S. Minakshisundaram, Typical means, Bombay, 1952.
- M. Cotlar, Condiciones de continuidad de operadores potenciales y de Hilbert, Buenos Aires, 1959.
- 6. S. D. Eidelman, Parabolic systems, Moscow, 1964. (Russian.)
- 7. S. Kaczmarz and H. Steinhaus, Theorie der Orthogonalreihen, Warshaw, 1935.
- 8. B. M. Levitan, On the asymptotic behavior of the spestral function and on eigenfunction expansions for the equation $\Delta u + (\lambda q(x_1, x_2, x_3))u = 0$, Trudy Moskov. Mat. Obšč. 4 (1955), 237–290. (Russian.)

- 9. N. Nilsson, Some estimates for eigenfunction expansions and spectral functions corresponding to elliptic differential operators, Math. Scand. 9 (1961), 107-121.
- J. Peetre, Remark on eigenfunction expansions for elliptic operators with constant coefficients, Math. Scand. 15 (1964), 83-92.
- 11. E. M. Stein, Localization and summability of multiple Fourier series, Acta Math. 100 (1958), 93-147.
- 12. P. L. Uljanov, Solved and unsolved problems in the theory of trigonometric and orthogonal series, Usp. Mat. Nauk 19:1 (1964), 3-70. (Russian.)

LUND INSTITUTE OF TECHNOLOGY, LUND, SWEDEN