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SOME REMARKS ON
CONTINUOUS ORTHOGONAL EXPANSIONS,
AND EIGENFUNCTION EXPANSIONS FOR POSITIVE
SELF-ADJOINT ELLIPTIC OPERATORS WITH
VARIABLE COEFFICIENTS

JAAK PEETRE

0. Introduction.

Let 4 be a positive self-adjoint realization in the Hilbert space L,({2)
of a formally positive self-adjoint elliptic operator

(0.1) ; )
a=a(xD)= 3 a (x)D*, == (2,...,2,), D= (—’i——,. . —i———)

[al=m 0, ox

with smooth coefficients a, defined in a domain 2 of R». If
4= f 1 dE,
0

is the corresponding spectral resolution we introduce Riesz means of
order « by the formula

A

(0.2) BR« — f (1—pfA)* dE,
0

and Abel-Laplace means by the formula

(0.3) BE = f e dE, .
0

We shall study the convergence of EFsf and ELf as A — oo when
feL,(2), 1=p<2. Our main results read as follows:

1° For any feL,(Q), 1sp<2, holds ELf(x) > f(x) a.e. (Abel sum-
mability).
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2° For any fe LyRQ) holds EFsf(x) — f(x) a.e. for any «>0 (Riesz
summability). (An auxiliary rather incomplete result in the case
feL,(2), 1=p=2 is also indicated.)

A few comments are necessary. At least if p=2, 1° is strictly speaking
a consequence of 2°, in view of known results relating Riesz and Abel
summability. However, the point is that we need 1° first for the proof of
2°. Again 1° depends on known estimates for the fundamental solution
of the associated ‘“‘heat’” operator 9/ot—a. We also want to emphasize
that 2° belongs properly to the theory of continuous orthogonal expansions.
While the theory of discrete orthogonal expamsions (i.e. the theory of
orthogonal series) has been given a great attention by many mathemati-
cians (see the books by Kacmarcz—Steinhaus [4] and Alexits [1] as well
as the recent survey article by Uljanov [12]), we do not know any single
reference dealing with (the summability of) continuous orthogonal ex-
pansions. It now turns out that 2° depends essentially on a straight
forward extension of results for discrete orthogonal expansions which are
due to Kacmarcz and Zygmund (see [1, pp. 101-103]). Indeed our proofs
are even somewhat simpler than the ones given in [1]. (Also other similar
results can be easily extended to the continuous case, e.g. Kolmogorov’s
well-known theorem of the convergence of partial sequences (see [1],
pp. 111-113), but we shall not enter into details.)

We start in Section 1 by some preliminaries on general means of a
function locally of bounded variation. Then we study (Section 2) the
summability of general continuous orthogonal expensions, establishing
what is necessary for the proof of 2°. Next we specialize (Section 3) to
the case of eigenfunction expansions, giving the proof of 1° and complet-
ing thus the one of 2°. Finally in Section 4 we discuss briefly Riesz
summability in L,(R2), 1<p<2; here our results are most uncomplete.

1. Preliminaries on general means.

Let s, be a (possibly vector valued) function locally of bounded varia-
tion with ;=0 if 10.

Let ¢ =¢(t) be a Borel function at least continuous at 0, always nor-
malized by ¢(0)=1.

We set (whenever the integral exists)

(L1) 8% = ftp(y/l) ds, (the gp-mean of s;) .
0

If ¢ has a continuous derivative ¢’ and s, satisfies a proper growth
condition, we may integrate by parts and obtain
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(1.2) 8] = —l‘lf @' (u/2) s, du .
0

ExampLE 1.1. We mention the following special cases

_ _ (1-t)* if t<1 (Riesz mean of order «),
o = 20 = {07 415

p(t) = L(t) = e (Abel-Laplace mean) ,
P(t) = S,(8) = (1+¢)e (Stieltjes mean of order p) .
It is clear what is meant by saying that s; is convergent as A — oo.
We say now that s, is g-summable if s is convergent as 1 — oo i.e. if,

for some s,
[sf—s] >0 as A —>o0.

We say also that s, is square @-summable if, for some s,
A
l‘lf |sh—s|?du -0 as A - oco.
0

It is clear that g-summability implies square @-summability.

We recall the following result, although strictly speaking it is not
needed here.

ProrositioN 1.1. If s, is convergent then s, is @-summable provided

[ec]

(1.3) f ' (6)|dt < oo

0

Proor. We write s,=s)+s} where

o _ |8 if A<o, sl = 0 if i<ow,
81 = 0 if lzw, AT s if lZw.

It is clear that ¢ converges to 0 as 4 — oo; indeed, by (1.3) we have
@(1/A) - 0 uniformly as 4 — oo in u<w. It sufficies thus to show that
(s})?—s can be made arbitrarily small. Now by (1.2)

(s)P—s = —271 f @' (uf2) (s,—8) du

and again by (1.3) the statement readily follows.

CoroLLARY 1.1. If s, 18 convergent then s, is R -summable for any « = 0.
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We need, however, a more precise result relating Riesz means of dif-
ferent order and also square and ‘ordinary’ summability.

Prorosition 1.2. If s, is B,-summable for some o> —1 then s; is Ry
summable for any B>«. If s, is square R -summable for some «> —}
then s, 18 Rg-summable for any f>x+ 4.

Proor. The following formula is well-known (see Chandrasekharan-
Minakshisundaram [4] p. 3)
A
s = caﬂl'lf (L= /271 (uf2)* s5= du
with °
. __ T@+y
¥ IB-o)(x+1)

The first part of the proposition follows now as in the proof of the pre-
ceeding one. Therefore we may concentrate upon the second part. By
Schwarz’ inequality we get
A a
680 —sf? < 221 [ (125D (uf2)* dpu 37 [ Isfx=sf2 dp,
0 0
where the first integral is finite and independent of 1 if 8>+ %, > — 4,

and the second one tends to 0 as 4 > oo by assumption. This concludes
the proof.

2. Summability of continuous orthogonal expansions.

Let E, be any positive spectral family in the Hilbert space L,({2)
where 2 is any domain of R™ (or, more generally, even an abstract
measure space). Positive means that ;=0 if 1<0. If fe Ly(2) we take
s,=F,f and denote the corresponding ¢-means by s{=EfJf. Under
suitable assumptions on E,, that will be always fulfilled in the case of

eigenfunction expansions—therefore we shall not make them precise—
holds

Eif @) = [ pu/h) dE,f@) ae.
0

that is, E{f(x) is a.e. the p-mean of E,f(x). Also Eff(x) is a measurable
function of 4 and . The L, norm is, by Parseval’s formula, given by

1R = [ gl dESIP
0
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Integrating with respect to 1-1dA we get

[ 1B 372 a2 = [ [ tptuiniz 1B, f12 -2 d.
0 00

Applying next Fubini’s theorem to each member this yields:

[ ( [ 1Bzt @) 2 dz> de = |11 [ ol ¢+ dt
0

2 %

It follows that the following result holds, upon which all the following
considerations are based.

ProrositioN 2.1. Suppose that

(2.1) f|(p(t)|2t—1 dt < .
Then for any f € Ly(£2) ho(l)ds
(2.2) f[E’}’f(a:)Pt—l dt < o ae.
0
Taking

@(t) = L(t)— R,(?)
we see that (2.1) holds if « > —}. Therefore we have

THEOREM 2.1 (Kacmarcz). Suppose that E,f(x) is a.e. square L-sum-
mable. Then E,f(x) is a.e. square R, -summable for any «> —4%. Also
E,f(x) is a.e. Ry-summable for any > 0.

Proor. Indeed by (2.2) we get
sx;pl-lfmf"ff(x)—E’ff(x)]‘-‘ du < oo ae.
But by assumption ’
A1 f |ELf ()~ f(2)2dp > 0 a.e.
0
Therefore it follows that

2
:sup}rlj[].Z'ff“f(ac)l2 du < o ae.
2
0
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and, in view of a well-known density argument (Saks’ theorem ; see Calde-
ron-Zygmund [3] or Cotlar [5]), this implies

1
At f \BFs f(z)—f(@)[2du 0 ace.
0

proving thus the first part of the proposition. The second part follows
at once from Proposition 1.2.

REMARK 2.1. A similar result holds with Abel-Laplace means replaced
by Stieltjes means of any order g >0 (see Example 1.1).
Next, to give another example of the same technique, taking

p(t) = R,(t)— R, (f)
we see that (2.1) holds if &,y > — }. Therefore the same argument yields

THEOREM 2.2 (Zygmund). Suppose that E,f(x) is a.e. R, -summable for
some x> —%. Then E,f(x) is a.e. square R -summable for any o> —}§.
Also E,f(x) is a.e. Rz;-summable for any > 0.

3. Summability of eigenfunction expansions.

We now shall prove the results 1° and 2° stated in the Introduction.
Thus E, will be the spectral family associated with a positive selfadjoint
realization of the elliptic operator ¢ (0.1). We may concentrate on
proving 1° for then 2° will be an immediate consequence of Theorem 2.1.

We write

Ff = Ff = EL.f, feL,(Q), 1sps2.

(This has obviously a sense even if p=2, see Section 4.) Then holds, as
is readily seen,

oF

nan—aFf=0 as >0, Ff=f ast=0
(at least) in distribution sense; in other words, ¥ is a fundamental solution
of the associated “heat’ operator 0/of—a. Let now F’ be any other
fundamental solution and consider the difference @=F — F’. Then holds

e

a—tf—aG’f=0 ag >0, Qf=0 asit=0
again in distribution sense. From the hypoellipticity of the operator
0/ot—a (see e.g. Eidelman [6], Chap. IT) follows now that

Gf(x)—>0 ae. as t—>0.
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Therefore the proof of 1° is reduced to shows that

(3.1) F/f(x) > f(x) ae. ast—>0,.
But F’ can be choosen (see e.g. Eidelman [6, Chap. I]) of the form
(3.1) (Fif)w) = [ F/@y) @) dy

2

where the kernel satisfies (at least locally) the estimate
(3 /@) S Ctmmexp(—Clo—ymon-ng1on-n)

where C is a constant and m the order of a. It follows readily from (3.2)
and (3.3) that

(3.4) |Fif (@) = C(AfP(x))t/P
with a different C, where

Ag(x) = sup r= f l9(y)! dy
r
je—yl=r
(the Hardy-Littlewood maximal operator). By the Hardy-Littlewood
maximal theorem (see [3] or [5]), the inequality (3.4) implies that

sup, | F/f(x)] <  a.e.

from which (3.1) follows by a density argument, as in the proof of Theo-
rem 2.1. Thus we have established 1° and 2° of the Introduction.

REMARK 3.1. A result similar to 1° holds probably also with Abel-
Laplace means replaced by Stieltjes means of sufficiently large order o
(depending on m).

4. Remarks on Riesz summability in the L, case.

First we say a few words about the definition of Riesz and Abel-
Laplace means (as well as of other means) when p=2. By a form of
“Sobolev’s imbedding theorem” we see that fe L,({2) implies that
fe D(A-*), the domain of the k’th (fractional) power of A, provided
k> (1/p—3)n/m. But in D(A-*) integrals as (0.2) and (0.3) make sense
so that EFef and ELf are now well-defined, indeed they will even belong
to Ly(). (See also Nilsson [9].)

The same idea combined with the technique of Section 2 conveniently
adapted leads also to the following estimate for Riesz means
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+ /|ERx 2d3
(4 1) f (\—**i{‘c@) 7 < oo a.e., fe Lp(.Q) ,
e 0

1sp<2, k>(/p-Hn/m, o>-%.

However, we shall omit the details since this is, as we see below, a very
crude result.

It is about only in the quite simple special case of constant coefficients
that any more precise results are known (see Bergendal [2] and the
references given there; see also Peetre [10]). Let us here just consider
the still more special case 2= R" or £2=T" (=the n-dimensional torus),
i.e. non-spherical summability of multiple Fourier integrals and Fourier
series. Then holds the following formula (cf. (3.4)).

(4.2) |Eff(x)| = C(Afr@))/p,  feL,(R"), 1sp<2, a>(m-1)/p.
Therefore, as in Section 3, holds
(4.3) EF+f(x) > f(x) ae., felLy(R"), 1=p<2, a>(n-1)p.

In (4.2) the bound &> (n—1)/p is about the best one (see [10]) but in
(4.3) the bound «>(n—1)/p can be replaced by a better one, namely
o> (1/p—4%) (n—1) (see Stein [11]). (Note that asin (4.1) appears the factor
1/p—3.) It would be very interesting to see to what extent these results
can be generalized to the case of variable coefficients and arbitrary £.

We conclude by mentioning the work of Levitan [8] who obtains quite
complete results in the special case a= —4+¢(x), 2=R3 (thus n=3).
His methods are quite complicated and seem to be bounded, essentially,
to that case.
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