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CONVEX SETS AND CHEBYSHEV SETS

ARNE BRONDSTED

Introduction.

A subset M of a normed linear space E is called a Chebyshev set if
each point in £ has a unique nearest point in M. We shall deal with the
relationship between the closed convex sets and the Chebyshev sets in
certain finite dimensional Banach spaces. All spaces are taken as linear
spaces over the reals; i.e. every complex space is identified with its
underlying real space.

The following results are well known:

(I) A finite dimensional Banach space E is rotund if and only if every
non-empty closed convex set in E is a Chebyshev set.

(IT) A4 finite dimensional Banach space E is rotund and smooth if and
only if the Chebyshev sets in E are identical with the non-empty closed convex
sets in B.

(ITI) A 2-dimensional Banach space K is smooth if and only if every
Chebyshev set in E is convex.

(IV) If E is a finite dimensional smooth Banach space, then every
Chebyshev set in E is convew.

We note that (IV) is an extension of the only if part of (III). It has
been believed (e.g. V. Klee [7]) that the if part be true, too, for spaces
of any finite dimension. The purpose of the present note is to prove
that this is not the case. In fact, one can find counter-examples for any
dimension 2 3.

For proofs of (I)-(III) and other related results, see for instance
L. N. H. Bunt [1], H. Busemann [2], N. V. Efimov and S. B. Steckin [3],
B. Jessen [6], Th. Motzkin [8], [9], and F. A. Valentine [10].

For proofs of (IV), see V. Klee [7, Theorem 2.2] and L. P. Vlasov [11].
The proofs use the Brouwer-Tychonov fixed point theorem; no elemen-
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tary proof of (IV) seems to be known, except for 2-dimensional spaces.
Both in [7] and [11], theorem (IV) is actually obtained as a special case
of a more general result concerning convexity of Chebyshev sets in spaces
of arbitrary dimension. Other such results can be found in N. V. Efimov
and S. B. Stec¢kin [4], [5], and V. Klee [7].

The author thanks Micha Perles for some valuable comments.

Terminology.

The real number field is denoted by R.
A ball in a normed linear space Z is a set of the form

wel: lp—y| < 1},

where y € £ and r > 0. The unit ball of £ is the ball with y =0 (where o
is the zero element in ) and r=1.

A point x contained in the boundary of a closed convex subset M of a
space F is said to be an exposed point of M if there exists a closed sup-
porting hyperplane H of M such that HnM = {z}. A point x € bd M is
said to be a smooth point of M if M has a unique supporting hyperplane
at #. The space £ is said to be rotund (or strictly convex) if all points
in the boundary of the unit ball K are exposed. If all points in bd K
are smooth, then ¥ is said to be smooth.

The supporting cone of a closed convex set M at a point x € bd M is
the intersection of all closed halfspaces containing M and bounded by
supporting hyperplanes of M at =.

A flat in E is a translate of a subspace. A convex body in Z is a bounded
closed convex set with a non-empty interior.

A point z € E is said to be separated from a set M by a closed hyper-
plane H if z is contained in one of the two open halfspaces determined
by H, and M is contained in the complement of this open halfspace.

Preliminaries.

Clearly, any Chebyshev set is a closed set. A subset M of a normed
linear space E is said to be boundedly compact if every ball in £ has a
compact (possibly empty) intersection with M. It is easy to verify
that if M is a boundedly compact Chebyshev set in any normed linear
space E, then the metric projection of E onto M (i.e. the mapping which
carries each point in # onto the unique nearest point on M) is continuous.
Hence, ¢n a finite dimensional space every Chebyshev set has a continuous
metric projection.
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Let M be a Chebyshev set in a space E, and let  be the metric projec-
tion of £ onto M. Then M is said to be a sun if z(z)=n(x) for every
xz € EN\M and every z on the halfline emanating from =(x) and passing
through x. In a finite dimensional space every Chebyshev set is a sun.
In fact, V. Klee [7, Lemma 2.1] has proved that if M is a Chebyshev set
in a reflexive Banach space E, and if each point in £\ M has a neigh-
bourhood on which the restriction of the metric projection is continuous
and weakly continuous, then M is a sun. Alternatively, L. P. Vlasov [11]
has proved that in any Banach space every boundedly compact Cheby-
shev set is a sun.

No example seems to be known of a Chebyshev set which is not a sun
or does not have a continuous metric projection. It is unknown whether
there exist any infinite dimentional spaces in which every Chebyshev set
is convex. However, it follows from proposition 1 below that in any
smooth space every sun is convex. In particular, by either of the two
theorems quoted above, every Chebyshev set in a finite dimensional
smooth space is convex.

ProposiTioN 1. Let E be a normed linear space with unit ball K. Let
M be a Chebyshev set in E which is a sun, and let 7 be the metric projection
of B onto M. For xe€ ENM, let

K, =z + |n(x)—2| K
and let T',, be the supporting cone of K, at the point nu(x). Then

(intT)nM =0
Jor every x € ENM.

Proor. Let x € EN\M, and let z€intT,. We claim that
zeintK,
for some y contained in the open halfline

L = {(1-t)x+in(x): te]—oo,1[}.
Since trivially
(intK)nM =0,

this will prove the proposition. Suppose that z is not in int K, for any
y € L, that is,

llz—((1 —8)z + ta())l| 2 |la((1—1)x +tn(x))-((1 —t)z +tn(@))|
for every t € ]—oo0,1[. Since M is a sun,

a((1—t)z + tn(x)) = n()
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for every ¢ € ]— oo, 1[, whence

2 |ln(z)—=|

“ 1-3° +—_—— n(x))

for every ¢t € ]—oo,1[. But this says that the halfline emanating from
n(x) and passing through z is disjoint from int K,. Therefore the whole
line determined by z(x) and z is disjoint from int K,, whence, by the
Hahn-Banach theorem, some supporting hyperplane of K, at w(z) con-
tains z. This, however, contradicts that z € int 7.

Main result.
We are going to prove:

THEOREM. For every integer n=3 there exists a non-smooth n-dimen-
stonal Banach space E with the property that every Chebyshev set in E is
convex.

The proof is divided into two parts. We first construct a symmetric
convex body K in R, n>3, and establish some properties of K. Then
secondly we prove that if we let £ be the Banach space obtained by at-
taching to R™ the norm in which K is the unit ball, then £ has the proper-
ties stated in the theorem.

The elements of R™ will be denoted either by symbols like z or like («,),
the latter being an abbreviation for (xy,&,,...,4,). We denote
(0,0,...,0,1) by e,, and (0,0,...,0) by o. Furthermore, we let

Rn—-z = {(‘xi) € R™: ‘xn—1=o‘n=0} s
R, , = {(x;) € R": «,=0},
and n
C = {(oc,-)eR": Sals1y.
i=1

By horizontal we mean parallel to R,_;, and by vertical we mean parallel
to the line Re,,.
Now, letting
-Kn._2 = 0 n Rn_z, Kn—l = C n Rn—l Py

and, for te[—1,1],

t) = (1;t2)‘+ 1,  Bt) = -3 -3+4,
we define
K = Ufte, +a(t)K,_og+Bt)K,—y: te[~1,11},

and
S =bdK.
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ProrosiTion 2. With K and S as above, we have:

(1) The set K is a symmetric convex body in R™.

(ii) The projection in vertical direction of R™ onto R,_; maps K onto
KnR, ;. If H is a supporting hyperplane of K at a point in R,_,, then
H is vertical.

(iii) The hyperplanes

H, = {(x;) € R": «,=1}, H, = {(x;) € R": a,=—1}
are supporting hyperplanes of K, and
HnK =e,+K,_,, HnK = —e,+K,_,.

(iv) All points in S\((e,+ K, _,)U(—e,+ K, _,)) are smooth points of K.
(v) All points in (e, + K, _5)U(—e, + K, _,) are non-smooth points of K.
(vi) If H is a supporting hyperplane of K, and

Hﬂ (en+Kn—2) =i: g»
then
HnK =e,+K,_,.

The union of all closed halfspaces bounded by such hyperplanes and not
containing K is the union of just two of the halfspaces in question. Similarly
for —e,+K, .

(vil) If H is a supporting hyperplane of K, and H is not parallel to R,,_,,
then HnK contains just one point.

Proor or ProrositioN 2. (i). It is obvious that K as a subset of R
is a symmetric bounded set with a non-empty interior. Using the con-
cavity of the functions « and 8, and the convexity of K, , and K, _,,
it is easy to prove that K is convex. Finally, let the mapping f from

[-1,1]1x K, ,x K, 4
into R* be defined by

J(ty,2) = te, +x(t)y+p(t)z .

Since the domain is compact, and f is continuous, the image K is compact,
and hence closed.
(ii) and (iii) are obvious.

(iv). Let
x e S\((en’f'Kn—z) U(—e,+ Kn—ﬂ)) .
Then
x = tye, +a(t) Yo+ B(to) 2o
for some

toe]-1,1[, y,eK,,, and z,eK,,.
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It is easy to verify that the curve

(1) {te, +ax(t)yy+B(t)ze: te[—1,1]}

lies in S and has a non-horizontal tangent at the point z. Since every
supporting hyperplane of K at x contains this tangent, it follows that if
H' and H" are two different supporting hyperplanes of K at x, then
H'nH" is non-horizontal. The intersection of K with the horizontal
hyperplane H through x is smooth in H, for a non-smooth point in HnK
would be a non-smooth point in a translate of f(¢y)K, _,. But this implies
that H'nH'' must be horizontal. Hence we conclude that x is a smooth
point.

(v) and (vi). Let « be a point in the relative boundary of K,,_,, and let
G be the subspace spanned by x and e,. It is easy to see that SnG con-
sists of two curves of the form (1) with y,=2z,=« and y,=z,= —w=,
respectively, and the two horizontal segments determined by the end-
points of the curves. Since the curves have horizontal tangents at the
endpoints, it follows that KNG is smooth in @. This implies that if H
is a supporting hyperplane of K such that

Hn(en+Kn—2) * @:
then
e,+K, , < H.

But then it is easy to see that H is of the form
(2) {(;) € R™: o, _10+0,=1}

for some 8 € R. Furthermore, a 6 € R determines such a hyperplane if
and only if
(3) +B@t)d+t <1 forall te[-1,1].

An elementary calculation shows that (3) is equivalent to
de [—'3_};3_*] ’

and that we only have equality in (3) for £=1. This proves (v) and (vi).
(vii). Let

H = }(x;) € B": izx,«ﬂi=l}

t=1

be a supporting hyperplane of K, and assume that ;0 for at least one
je{1,2,...n—2}. We want to prove that the expression

F(t,(y,),(2;)) = B, +(t) ilyiﬂt + lg(t)é:lztﬁt
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attains its maximum value at just one point (t Y:) ,)) for

( yz) 1,)) € [ 1 l]XKn—-2XKn-—1

The maximum value is actually attained, and by (vi) we havete ]—1,1[
at any point (¢,(y;), (2;)) where it is attained. Now, let ¢, € ]—1,1[ be fixed.
Since oc(to) >0, B(ty) >0, and f; %0 for at least one j <n —2, it follows that
F(t, (9), (2;)) is maximum for

n—2 -3
(4) (yi) = (.glﬂiz) (ﬁl’ﬁm . .Bn—m O, 0) )
and -
]
(5) @ = (3 gl B2)" (Bubo- - Prsbars0),

and that any other choice of (y;) and (z;) yields a smaller value of
F(ty, (), ,)) Let y, be the point (y;) in (4), and z, the point (2;) in (5).
Then F(t (v3), (2; )) can only attain its maximum for

te ]— 1, 1[! (yz) = Yo and (zi) =2p-
Since

Fiaom) = o +a0) ('3 52) 0 (3 82)

it is now easy to verify that F(t,(y,),(2;)) attains its maximum at just
one point.

We next pass to:

Proor or THE THEOREM. By proposition 2(i), the set K is the unit ball
of a norm on R”. Let E be the n-dimensional Banach space thus obtained.
By proposition 2(v), E is non-smooth. We want to prove that every
Chebyshev set in £ is convex. So, let M <E be a Chebyshev set, and
assume that M is not convex.

If, for x € E\ M, the point n(z) is a smooth point of the ball

K, =z + |n(x)-2| K,

then « is said to be a point of type 1; and if #(x) is a non-smooth point,
 is said to be of type 2. No type is ascribed to points in M. If z is a
point of type 2, we let L, be the flat n(x)+ R, _,. For any point x € &
we let H, be the vertical hyperplane through z which is parallel to
R,_,. Hence, if zis a point of type 2, then H, is the hyperplane spanned
by xz and L,.

Since M is a sun, proposition 1 yields:
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For each . € E\ M of type 1, the set M is contained in the closed half-
space bounded by the supporting hyperplane of K, at #(x) and not con-
taining . (We shall call such a halfspace a set of type 1). For each
x € EN\M of type 2, the set M is contained in the union U of all closed
halfspaces bounded by supporting hyperplanes of K, at 7z(x) and not con-
taining . By proposition 2(vi), the set U is in fact the union of just two
of the halfspaces in question. (We shall call such a set U a set of type 2).

Now, by means of these observations we shall prove the following two
statements:

(A) The set M is not contained in any hyperplane.
(B) The set M is contained in some hyperplane.

The contradiction expressed by (A) and (B) proves the theorem.

The proof of (A) goes as follows. Suppose that M is contained in a
hyperplane H. Let x € H\ M be a point of type 2; we are going to prove
that x can be separated from M in H by an (n—2)-dimensional flat.
Without loss of generality we may assume that z=o0 and |jz(z)|=1,
whence K, =K. Then n(z)isine,+ K, ,orin —e,+ K, ,; let us assume
n(x)ee,+ K, ,. If all of e,+ K, _, is contained in H, then H=H_ . In
this case x can be separated from M in H by the (n—2)-dimensional
flat L,; this follows from the fact that L, is the intersection of the
bounding hyperplanes of the two halfspaces whose union is the set of
type 2 belonging to «. If ¢, + K, _, is not contained in H, then H is not
parallel to R, ,. Let H' be one of the two supporting hyperplanes of K
parallel to H. By proposition 2(vii), H'nK contains just one point z,
and clearly z is a smooth point of K. It is easy to see that for a suf-
ficiently large positive real number £, the point —¢z is of type 1. Hence,
the sets K_, and M are separated by the supporting hyperplane
J of K_,, at n(—1tz). Since z is the only point which is nearest to —iz
in H, it follows that z is an interior point of K_,. From this we deduce
that J intersects H in a (n — 2)-dimensional flat which separates x from M.
Thus, we have proved that every point in H of type 2 can be separated
from M by a (n—2)-dimensional flat. Since clearly every point in H of
type 1 has this property, we conclude that M must be convex. This
contradicts our assumption on M, and so we have proved (A).

The proof of (B) is divided into three steps.
Since M is closed and non-convex, there exist two different points p
and ¢ in M such that
! IpgloM=0.

As the first step in the proof of (B) we shall prove:
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(B,) For every x € 1p,q[, we have M nH, = {n(x)}.

Let z € ]p,q[. Then x e (convM)\M, whence clearly x is a point of
type 2. Let H' and H" be the bounding hyperplanes of the two closed
halfspaces whose union is the set of type 2 belonging to x. Then
H'nH'" =L,, and hence z is separated from M nH, in H, by L,. Further-
more, MnL,={n(x)}. For if y were a point in M nL, different from
7(z), then some points in H, situated on the same side of L, as x, would
have both y and z(x) as nearest points in M. Finally, suppose that some
point 2z € H,, situated on the opposite side of L, as x belongs to M. The
complement of H'UH'' consists of four disjoint open connected sets
A;, ©=1,2,3,4. From the fact that the triangle spanned by p,q, and 2
is contained in conv M it follows that

(6) (convM)n A; + 9, 1=1,2,3,4.

Let M, denote the intersection of all sets of type 1; then M, is a closed
convex set containing M. Hence, (6) yields

(7) M,n4; +0, i=1,234.

Since furthermore, by (A), M, is not contained in any hyperplane, we
deduce from (7) that M,n L, contains more than one point. Thus, the set

(M 0 L)\ {r(x)}

is non-empty; let y be some point in this set. Then clearly y is of type 2,
and so L, is contained in the complement of the set of type 2 belonging
to y. In particular, the sets L, and M are disjoint. This is obviously a
contradiction, and the proof of (B,) is completed.

Let
P = int conv(H,U H,),

where H, and H, are the vertical hyperplanes through p and g, respec-
tively, parallel to R, _,. It follows from (B,) that H,, and H are different,

and that
Mn P = a(lp,ql) .

Since 7 is continuous, we may describe the set

(M nP)u{p,q}

as a continuous curve from p to ¢g. As the next step in the proof of (B)
we shall prove:

(B,) The set MnP is contained in every vertical hyperplane through p
and q.
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Let H be a vertical hyperplane containing p and ¢, and suppose that
MnP is not contained in H. Let ¢ denote the projection in vertical
direction of E onto R,_,. Then there exists a point z € M nP such that
o(z) ¢ (H). Let G be the 2-dimensional flat spanned by ¢(p), ¢(q), and
¢(x). The hyperplane H, intersects @ in a line through (), and this
line intersects the segment [¢(p),¢(¢)] in an interior point y. Now, let z
be a point in Jy, ()] so close to ¢(z) that for some ¢>0 we have

(8) plx)ez+eK < P
and
9) (+eK)nH =0.
The set

#(M n P)u {p,q))

is compact, being the image of the compact set [p,q] under the continuous
mapping pon. Hence, z has at least one nearest point in this set. Let w
be such a point; then by (8) and (9)

we oM nP)NH.

Let « be the point in MNP which by ¢ is mapped onto w. Then, by
proposition 2(ii),

U = n(u+z—w)
and the supporting hyperplane J of K, ,, at u is vertical. But then the
(n — 2)-dimensional flat ¢(J) separates the point

z2 = @put+z—w)

from (M) in R,,_,. This is, however, impossible, since ¢(p), ¢(q), and p(x)
belong to (M), and z is an interior point of the triangle spanned by
o(p), (q), and @(z). Hence, (B,) is proved.

We shall complete the proof of (B)—and the proof of the theorem—
by proving:

(Bs) The set M is contained in every vertical hyperplane through p and q.
Let H be a vertical hyperplane containing p and ¢g. It follows from (B,)
that H is not parallel to R, ,. Let x € M nP; then, by (B,), « is in H.
From proposition 2(vii) we deduce that the set of points y € £ with the
property that H is a supporting hyperplane of the ball

y+lz—ylK

at the point z is a horizontal line N through z. Clearly, if ze N and 2
is close to z, then n(x)=2. But then n(z)=x for all ze N, since M is a
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sun. And since z is a smooth point in K, for z€ N, we conclude by
proposition 1 that M < H.

Final remarks.

REMARK 1. The theorems in the introduction labelled (I) and (II) sug-
gest the following two problems (which should be compared to (III),
(IV), and the Theorem on p. 8):

1) Is it possible to characterize those finite dimensional spaces in which
every Chebyshev set is convex,—in terms of geomelrical properties of the
wnit ball?

2) Is it possible to characterize those finite dimensional spaces which are
smooth, —tn terms of the Chebyshev sets?

Remark 2. The notion of a Chebyshev set may be extended in the
following manner. Let E be a topological vector space, C' a convex body
in £ with the zero element o contained in intC, and M a non-empty
subset of £. For any x € E we let

0, = sup{o20: (2+00)nM=0},

where ¢,=0 if (x+0C)nM +0 for every 620. Then M is called a
Chebyshev set (with respect to C) if for every x € E the set

(x+0,C)n M
contains exactly one point.

If C is the unit ball of a Banach space, we get the previous definition
of a Chebyshev set. We note that if C is a convex body containing o
in its interior, and —y €intC, then y+ C produces the same Chebyshev
sets as C'; thus, we may speak of the Chebyshev sets produced by any
convex body.

An inspection of the proofs of (I)-(IV) shows that these results are
still valid when we, so to say, allow non-symmetric unit balls.
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