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LINEAR RECURRING SEQUENCES OVER
FINITE FIELDS

DAN LAKSOV

In recent years, the interest in linear recurring sequences over finite
fields has increased considerably because of their importance in the
mathematical treatment of linear shift registers.

The aim of Part I of this paper is to show how most of the earlier
general results concerning linear recurring sequences may be proved by
a method due to W. W. Peterson.

Part II of the paper is devoted to the study of multigrams. This term
(as used here) is due to E. S. Selmer. The object is to study the behaviour
of the vector (a,, s @p,4is- - - s@y,4) TOr 1=0,1,2,.. ., where ay,a,,a,,. ..
is a solution of a linear recurrence relation, and n,,n,,...,n,, are arbi-
trary, fixed, non-negative integers.

The only previous result in this direction is a theorem by N. Zierler
concerning bigrams (m =2), and some of the results of this paper repre-
sent a generalisation of his investigations.

I wish to express my gratitude to Professor Ernst S. Selmer, whose
lectures at the University of Bergen inspired me to work in this field,
and who has helped me with the manuscript. Some of the results in
Part IT are also due to him.

PART I
1. Notation and definitions.

We consider the linear recurrence relation

n
ey =0, i=nn+l,. .., co=1, ¢, +0,
J=0
where all the elements are taken from a finite field GF[g]. Here g=17p",
p a prime and 7 a positive integer.
The (shortest) period of a periodic sequence (a;)=a,,a,,@s,... Will be
denoted by per(a;). If f(z) is a polynomial, and r is the least positive
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integer such that f(x)| (2" — 1), we shall call  the period of f(z) and write
perf(z)=r.
We frequently use the isomorphism
(@) = ag,09,a5,... 2= a(x) = agxt1+a,2524+ ... +a,,,

where per(a;)=r and r|s, and we shall not distinguish between a se-
quence and the isomorphic polynomial. For instance, we write {a(z)} €
G(f) whenever (a;) € G(f), where the residue class {a(x)} is defined
below, and where G(f) denotes the vector space consisting of all the solu-
tions of the linear recurrence relation with characteristic polynomial

J(@) = cx+c@am 4 ... +¢,, =1, ¢, $0.

We call G(f) the solution space of f(x).

The residue class determined by the polynomial a(x) in the polynomial
ring modulo a polynomial F(z) will be denoted by {a(z)}, and the ideal
generated by {a(z)} in this ring will be denoted by ({a(z)}).

We will sometimes consider two sequences as identical if they are trans-
lates of each other. In this case, we shall speak of unordered sequences.

2. The theorem of Peterson, and comparisons with other methods.
The method used in this paper is based on the following theorem given
by Peterson [3]:

THEOREM 1. Let f(x)=ca™+ca™ 1+ ... +c, with perf(x)=r and
f*@)=(z"—=1)[f(x). Then r is the shortest common period of the solutions
of the recurrence relation

n
> =0, t=n,n+1,...,
j=0
and the solutions considered as polynomials by the isomorphism
(@) = Qg @y,89,... 2= a(x) = ag@™ 1 +ax"2+...+a,_,

make up the ideal generated by {f*(x)} in the polynomial ring modulo x"— 1.
This theorem is closely connected with methods used by Zierler, Ward
and Hall.

In Zierler [7], a sequence ay,a,,a,,... is identified with the infinite
series @y+a,x+a,22+ . ... His main tool is the result (Lemma 1) that
g9(x)
o) = [ deggta) <nf,  fie) = #f(1Jo).
f1(@)

If we formally have
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9(=)
m = Qy+a,x+ ... +a, " taxT+axti ...,
then
(1—27) 9(@) = ay+a,x+ +a, xm1
f,(@) (s U R S S
1

which gives the connection between the two methods.
In papers by Morgan Ward and Marshall Hall (see particularly [6]
and [2]), the isomorphism

(a;) = A(z) ,
where
(a;) = ag,ay,a,,. ..,
A(x) = agr" 1+ (@ +61a)x" 2+ . ..+ (@1 010yt . - +Cuyay)
between the sequences satisfying the recurrence relation and the ring of
polynomials modulo the characteristic polynomial f(z), is fundamental.

If now perf(x)=r, and a(x) and f*(z) are defined as in Theorem 1,
it is easily verified by direct computation that

o) = A(x)f*() .

3. Relations between the solution spaces of different polynomials.
We first prove Lemma 3 of Zierler [7]:

THEOREM 2. G(f)<@G(g) if and only if f(x)|g(x).

Proor. When g(z)=0, the theorem is trivial (if G(0) denotes the set
of all periodic sequences). When g(x) <0, perf(x)=r,, perg(z)=r,, and
Lem. (ry,75) =7, it is easily verified that

an - (lroi)) o= (jre5=]) meaw-y,

-1 —1

where f(z)f*(x)=2"—1 and g(z)g*(x)=2"2—1. Hence

fra) S

zr—1
G = Glo) <= 9*@) 77 1@

< f(@)

g(@) -
The following easily proved lemmas will be needed:

Lemma 1. If w, and v, i=1,2,.. . k, are polynomials satisfying u,v, =
Uy = . .. =UVy, then

(ul,uz, o ,uk) I.C.m. (vl, 1]2, e ,?)k) = u{vi .
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Lemma 2. If fi(x)|f(x), i=1,2,. ...k, then (modf(x))
({f1(x)})+({f2(f’3)})+ ce +({fk(x)}) = ({(fl(x),fz(x)y- . :fk(x))})
({fl(x)}) n ({fz(x)}) n...N ({fk(x)}) = ({I.C.m.(fl(x),fz(x),. . ’fk(x))}) .
We now prove two more theorems from Zierler [7]:
TaEoREM 3. If f(x)=1lc.m.(f(x),fo(2),. . ..fi(®)), then
G(f)+G(f)+ ... +G(f) = G(f) .
Proor. If perf,(x)=r; and
f?.(x)ft**(x) =z"— 1= f(x)f*(x)’ 1: = 1?2y' . ~7k ’

where r=1.c.m.(ry,7,,...,7,) and consequently perf(z)=r, then we have
by Lemmas 1 and 2:

Gf)+G(f)+ ... +6(f) = (@) + ({2 @) + - . - +({fi**@)})
= ({(fi**@).f2**@),. . .. [i**(@))})
= ({f*@)}) = G(f) (mod a"—1).

TaEOREM 4. If f(2)=(fi(x).fo(),. . ..[x(x)), then
G nG(f)n...nG(f) = G(f).

The proof is analogous to the previous one, using instead the second
formula of Lemma 2.

4. Recurrence relations with a given finite set of periodic sequences as
solutions.

DEerFiNiTION. A polynomial f(x) is called the minimum polynomial of
a finite set A of periodic sequences if and only if f(z) is monic and

4 = Gg) <= f(@)lg(x).
LemMma 3. If
(@) = ag,a1,09,... 2 a(x) = a@x™+ax™2+...+a,,

18 @ sequence of period r, then f(x) is the minimum polynomial of (a;) if
and only if
(1) flx) =

' —1
(x'—l,a(;)_)'

Proor. If (1) holds, then perf(x)=r, since perf(x)=s implies s|r and
accordingly
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¥ —1 ar—1 xr—1
r—1, = . , h
( a(x)) TR ence  ——
which shows that r=s. We now have f*(x)=(2"— L,a(x)), so that

f*@)|a(x) and {a(x)} € ({f*(x)})=G(f), which together with Theorem 2
implies that

a(z) ,

if  f(z)|g(x) then (a;)€G(f) < G(g).

Conversely, given (@;) € G(g) with perg(x)=t, then r|f and

} ({ (;)1}) G(g) (mod af—1),

and accordingly
x—1

g(x)

since

-1 x’
"1 f*

)
(%)

-1 a(x) (%)
(7o o) = (70 o) =
fH@) fHe [*@)
The ,,only if”” of Lemma 3 follows because the minimum polynomial of
a set is obviously unique.

a(®)

~f(

z) = f(@)lg(x),

CoroLLARY 1. (Zierler [7], lemma 9.) If f(x) is the minimum poly-
nomial of the sequence (a;), then per(a,)=perf ().

CoroLLARY 2. If perf(z)=r and

-1
f*x) = = dgr " +dxr "1+ ... +d

r—n>
then f(x) is the minimum polynomial of the sequence
{f*@)} = {02714+ 0”2+ ... +0x" " pdxr—"+dam"14 ... +d,_,}.

Proor. If per{f*(x)}=s<r, we would get

axr—1

-1
f*( )—T = f@)|(@*-1),

contradicting perf(x)=r. With a(z)=f*(z) in Lemma 3, we have

xr—1 _ zr—1
(z'~1Lf*®)  f*=)

The following theorem represents an extension of Lemma 3:

= f(@) .
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THEOREM 5. If A is a finite set of periodic sequences, then the minimum
polynomial of A is f(x) if and only if this 18 the least common multiple of
the minimum polynomials of the sequences in A.

Proor. Let the sequences in 4 be denoted by (a,);,(a;)s- - -,(@)k
with the minimum polynomials f,(x),fs(),. . .,fi(%) respectively, and take

f(x) = I'c'm°(f1(x)’f2(x)" . ’fk(x)) .

By Theorem 2, we have (a;); € G(f;) =G(f) and consequently 4 <Q(f)<
G(g) when f(z)|g(x).

Conversely, by the definition of the minimum polynomial, 4 <@G(g)
implies f;(x)|g(x), j=1,2,...,k, and so f(x)|g(x).

The ,,only if”’ of Theorem 5 is again guaranteed by the fact that there
is at most one minimum polynomial.

CoroLLARY 1. If f(x) 18 the minimum polynomial of the set A, then
perf(x) is the least common multiple of the periods of the sequences in A.

CoroLLARY 2. (Zierler [7], Theorem 2.) Every finite set of periodic
sequences has a minimum polynomial.

We shall now investigate the conditions that a set A must satisfy in
order to be the solution space G(f) of some f(x). Theorem 1 immediately
gives the following necessary conditions: A is closed under

1° addition of its sequences;

2° multiplication of the sequences by an element of GF[q¢];

3° translations of the sequences.

That these conditions are also sufficient is easily seen from the fact that
A then constitutes an ideal in the ring of polynomials modulo z"—1.
where 7 is the least common multiple of the periods of the sequences in 4,
As this is a principal ideal ring, there exists a g**(z) such that

4 = ({g**@)}) (mod 27-1),
and so
A = G(g) where g(x) = (2"—1)[g**().

(This is Theorem 3 in Zierler [7].)

5. Blocks and multipliers.

In this section, we shall see how the method of Peterson applies to the
theory of blocks and multipliers of sequences generated by linear
recurrence relations with irreducible characteristic polynomials.
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DeriniTION. If & sequence, after multiplication of each of its terms by
an element of GF'[q], gives a translate of the original sequence, this ele-
ment is called a multiplier of the sequence.

If the sequence is translated M steps forward then the multiplier is
said to be of span.

If {a(x)} € G(f) and ¢ is a multiplier of {a(x)}={A(x)f*(x)} of span M,
then we have

{cH{a(x)} = {ca(z)} = {xMa(x)}  (mod 27-1),

and consequently A(z)(@™—c)=0 (modf(r)). Here and in the following
[*(x) is as usual given by f*(x)f(x)=2"—1, where r=perf(z).
By the concluding remark of § 2, the polynomials A(x) given by

{o(@)} = {A@)f*@)} e ((f*@)}) = &)
for every {a(x)} in the ideal ({f*(x)}) comprise exactly the polynomial
ring modulo f(x).
When (and only when) f(x) is irreducible, this ring is in fact a field, and
the residue class « is a root of the polynomial f(y).
Taking f(x) to be irreducible and perf(x)=r, we can always find a

polynomial 7(z) which is a primitive element of the finite field modulo
f(x) and which satisfies

@)@V =z (mod f(2)) .
With this choice, we want to make

{xMA(x)f*(x)} = {cA(2)f*(x)} (mod zr—1),
or
aM = p(x)d"-VMr = ¢ (mod f(x)),

where ¢ € GF[g]. But the elements y 40 of the field modulo f(x) which
belong to GF[g] are just the roots of y?-'=1 (modf(x)), which shows
that M must be a multiple of r/e, where e=(r,g—1). The number u=r/e
is called the restricted or reduced period of the sequences of G(f).

Thus we have the result (cf. Ward [4, Theorems 9.2, 9.3, 9.4 and 9.6]
and Hall [2, Lemma 1, p. 215]):

THEOREM 6. The multipliers of the sequences of G(f), where f(x) is
irreducible, perf(x)=r, e=(r,q—1) and u=r/e, are exactly the elements of
GF[q] satisfying x°=1, and they are of spanO,u,2u,...,(e—1)u.

DEriniTION. The set of different unordered sequences obtained when

a sequence is multiplied by all the non-zero elements of GF[q] is called
a block.
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We write
q-—1 1g"—-1

t="", x=-

b

e h pnqg—1 )
These numbers are both seen to be integers. The following result is
easily proved as in Ward [5, p. 169]:

If f(z) 18 irreducible, then there are t unordered sequences in each block
and there are x blocks.

With f(x) still irreducible and perf(x)=r, we have
{n(x)@" D@D A(2)f*(z)} = {cA(z)f*()} (modar—1),
where ¢ € GF[q], and
{n(x)@"-virr A(z)f*(x)} = {&/A(x)f*(@x)} (mod z"—1),
which represents a translation of {4(z)f*(x)} j steps. We conclude
(cf. the methods used in Hall [2], p. 216) that

I) All the non-zero polynomials of ({f*(z)}) are represented by
{n(x)f*(x)}, where 1=0,1,...,q"—2.

II) All the translates of the sequence {a(x)} e G(f) are given by
{n(x)@"-Virrq(z)}, where i=0,1,...,7—1.

IIT) If {n(x)@"-Vira-Dg(x)} = {a,(x)}, then {ay/(x)} and {ay(z)} represent
the same unordered sequence in the block containing {a(x)} if and only
if M=N (modi).

IV) If {n(x)b(x)}={b;(x)} € G(f), then {by(x)} and {by(x)} belong to
the same block if and only if M =N (modx), and represent the same
unordered sequence if and only if M =N (modat).

PART 11
6. Some lemmas.

The following result is classical:

LemMa 4. If deg f(x)=n and {a(z)} € Q(f)=({f*@)}), then the poly-

nomials
{al@)}, wa(@)},. . ., @)}

span the ideal ({f*(x)}) if and only if f(x) is the minimum polynomial of
{a()}.

Proor. Suppose that the polynomials span({f*(x)}). Then evidently
per{a(x)}=perf(z)=r, and we can find a polynomial c(x) of degree <=
such that
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fe@a@} = {*@)} (moder—1).
This implies

c(@)a(@) +q(x) (@ —1) = f*x),

and as f*(x)|a(x) and f*(x)|(2"—1) we then have f*(z)=(z"—1,a(x)).
Consequently f(x) is the minimum polynomial of {a(x)} by Lemma 3.
Conversely, take f(x) as the minimum polynomial of {a(x)}, then
Corollary 1 of Lemma 3 implies that per{a(x)}=r. If {a(z)}, {za(x)},...,
{z"ta(x)} do not span the ideal ({f*(x)}), there exists a relation
{¢(x)a(x)}= {0} (mod x"—1) with ¢(x)+0 and degc(x)<n. Then

a(x)
f*@)’

zr—1

[*(@)

¢(x)

but since (by Lemma 3)

z'—1 a(x) _ zr—1
(f* " Fr@) ) =1 and degm =mn,

this is a contradiction.

The following notation will be used in the rest of the paper: Given a
polynomial f(x) of degree » and period r, and

{a(x)} = {ag@@™1+a2" 2+ ... +a,,} € G(f),

then we write

Oy, Mgy v o3 Ty) = (Bpy By« +5Bp,)
l a’nl anz a’nm l
Aa(nl’nz’ . ’nm) — a"n1+1 an2+1 a’nm+1 ,
an1+n—1 an3+n—1 cre a’nm+n—1
where it is assumed that 0Sn, <n,< ... <n, <n, +7.

LemMmA 5. Given {a(x)} € G(f) with f(x) as the minimum polynomial,
then the set of vectors

{‘xb(nl’n.".’ e 1nm); (b’l,) € G(f)}

is identical with the row space of A,(ny,n,,...,n,).

Proor. By Lemma 4, the sequences {a(x)}, {za(z)},. .., {z"ta(x)} will
span G(f). The rows of 4,(ny,n,,...,n,) represent the elements at the
positions n,,7,,...,n, of these sequences, and consequently the row
space of this matrix is the set of the lemma.
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CoroLLARY. (Hall [2, Theorem 13.3].) For every linear recurrence rela-
tion of order n, there is a non-trivial solution with zero at n—1 arbitrarily
given positions.

Proor. Suppose that the positions are ny,n,,...,n,_;, where we may
assume n,_; —n,<r. Then A4, (ny,n,,...,n,_;)is an x (n—1) matrix with
rank at most n—1, and the row space contains the zero vector non-
trivially.

Lemma 6. When (b;) runs through the q* sequences of G(f), the different
vectors o (ny, Mg, . - -, Nyy,) Will all occur with the same multiplicity.

Proor. Let {b(z)} run through the polynomials of ({f*(z)}). Those
polynomials which have coefficients zero for a set of prescribed powers
of z clearly constitute a subgroup of the ideal ({f*(x)}). The lemma
follows directly by decomposition of ({f*(z)}) modulo a suitable subgroup
of this kind, corresponding to the powers 2™ 1™, 1=1,2,...,m.

7. Multigrams.
DeriniTION. Given the integers n,,n,,. . .,n,, with
0Zn <ny< ... <mn, <n+perf(z).

The multigram of order m, corresponding to n,,n,,...,n,,, of a linear
recurrence relation with characteristic polynomial f(x) of degree =, is

the family of vectors
My(ng,m,,. . .,0y) = all ay(ny,m,,...,10,), (a;) e Q(f),
taken over the ¢ sequences of G(f).

In contrast to the set-theoretical formulation of Lemma 5, the term
“family”’ of the multigram definition indicates that repetitions of vec-
tors are counted.

It is clear from the definition that

My(ny,m,...,n,) = M{0,ny—mn,,...,0,—n).

We note that a multigram contains ¢» vectors, where n=degf(x).
From Lemmas 5 and 6, the following conclusion is immediate:

We consider a linear recurrence relation with characteristic polynomial
f(x) of degree n, where the set

{a(x)}, {za(x)},. .., {z"a(z)}
spans ({f*(x)}). Then the vectors of the row space of A4,(ny,n,,...,ny,)
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and only these will appear in My(n,,n,,...,n,,), all with the same multi-
plicity.

If the matrix 4, has rank g, its row space will contain g¢¢ different
vectors, so the multiplicity of each vector is gn—e.

We shall say that a multigram belongs to the class k if it contains g*
different vectors. A multigram M(n,,n,,. . .,n,,) will be called skew if it
contains less than ¢™ different vectors, that is, if its class k<m. The
above argument then gives the useful criterion:

The multigram M (ny,n,,...,n,) s skew if and only if the matriz
A (ny,ng,...,n,) has a rank less than m, when (a;) € G(f) is a sequence
which has f(x) as its minimum polynomial.

In particular, the multigram is always skew if m >n=degf(z).

8. The distribution of skew multigrams.

By Corollary 2 to Lemma 3, we can always find a sequence (a,) € G(f)
with f(z) as its minimum polynomial. According to the above criterion,
the multigram M(n,,n,,...,n,,) is skew if and only if there exists at
least one linear relation between the m columns of the matrix
A (ny,n,. . . Nyt

dlan1+i+d2a’ns+i+ cee +dma'nm+i =0,
t=0,1,...,n—1;notalld; = 0.
Let (b;)=bg,b1,b,,... be a sequence of G(f), and let k be any integer

2 —n,;. Because of Lemma 5, we can find numbers ege,,.
depending on the choice of k, such that

.« ey e,n_l,

bk = €yt 10piat oo F ey 1Opipn g, ¢ =12,....m.
Using the above relation between the columns of 4,, we find easily that
dlbnl+k+d2bn2+k+ o +dmbnm+lc =0.

This holds for all k, and consequently represents a recurrence relation
satisfied by (b;), with characteristic polynomial

g(x) = dx™+da"t+ ... +dx"m.

Since (b;) is any sequence of G(f), we have G(f)<=G(g) and so f(x)|g(x)
by Theorem 2. If conversely f(x)|g(z), then G(f)<=G(g) by the same
theorem, and all the sequences of G(f) satisfy the recurrence relation
corresponding to g(x). In particular, this recurrence implies the above
relation between the columns of the matrix A4,(ny,ng,. .., Ny,).

We have consequently proved the following
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TaHEOREM 7. (Selmer). The multigram My(ny,n,,...,n,) of a linear
recurrence relation with characteristic polynomial f(x) is skew if and only
if there exist elements dy,d,,. . .,d, of GF[q], not all zero, satisfying

f@) | (dx™+dya™+ ... +d,z™m) .

9. The structure of multigrams.

We shall apply the results of sections 7 and 8 to a closer analysis of
the structure of multigrams of order m and class k <m.

We know that the different vectors of a multigram constitute a vector
space over GF[q], that the dimension k of this space is <min(m,n),
and that every vector appears ¢®* times, when the given recurrence
relation is of order n.

In order to investigate the structure of Mq(n,,n,,...,n,) for given
Ny, N, . - -, Ny, We first find the polynomials which f(x) divides. Knowing
these, we have all the linear relations between the columns of
A (ny,n,,. . .,n,), where (a;) € G(f) and has f(x) as its minimum poly-
nomial. The rank g of this matrix, which equals the class k of the multi-
gram, can then easily be found.

Moreover, we can find p linearly independent columns of

Aa(nl’n2" .. ’nm) H
say the columns ¢,y,...,4,. Then the multigram M(n,,... sMy,) is not
skew, and the components i,,1,,. . .,1, of the vectors of M(n,n,,...,n,,)

form all the g-dimensional vectors over GF[q], each appearing the same
number of times. The remaining m —p components are then obtained,
using the linear relations found by the method described above.

Consequently we may, given f(x), m and n,,n,,...,n,,, completely
determine M(n,,n,,. . .,n,,) without knowing the solutions of the linear
recurrence relation with characteristic polynomial f(x).

To illustrate the above remarks, we shall now give some results on
special multigrams.

Obviously the multigram Mg(n,,n,+1,...,7,+n—1) belongs to the

class n, and this implies that Mq(n,,n,,...,n,,) belongs to the class m
(is not skew) whenever n,, —n, <n.
For arbitrary n;,n,,...,n,, we shall consider now the cases m=1

(single elements), m =2 (bigrams) and m =3 (trigrams). It is assumed
throughout that the coefficients d are elements +0 of GF[¢].

In the case m=1, M(n,) trivially consists of all the elements of GF[g],
each taken ¢»-! times.
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In the case m =2, there are two different classes to which the multi-
grams may belong.

I) If f(z)|(2"*™ —d), then My(n,,n,) consists of the vectors a;(1,d),
where a; runs through all the elements of GF[q¢], and each vector occurs
g™ ! times.

This case illustrates the fact that multigrams belonging to the same
(skew) class are not necessarily equal, but may consist of different vector
spaces.

II) If no d € GF[q] exists for which f(x)|(x"*™ —d), then M(n,,n,)
is not skew, and hence consists of all the ¢2 different vectors over GF[q]
with two components, and each vector occurs ¢"—2 times.

If f(x) is rreducible and perf(x)=r is known, it is easy to decide which
of the two cases above will occur. As in the proof of Theorem 6, we see
that we can find d € GF[q] such that f(z)|(z"*™—d) if and only if
u|(ng—mn,), where, as before, e=(r,g—1) and pu=rfle. This gives the
following result, which is a generalization of Theorem 12 of Zierler [7]:

THEOREM 8. Let f(x) be irreducible of degree n and period r, and take
e=(q—1,r) and p=rfe.

If ny=n, (modp), then My(ny,ny) consists of all the g* different vectors
over GF[q] with two components, each vector with multiplicity g»—2.

If ny=n, (modu), then M (ny,m,) consists of the vectors a;(1,d), each
with multiplicity q"~, where a; runs through all the elements of GF[q],
and d € GF[q] is uniquely determined by f(x)|(x"* ™ —d).

When m =3, we have 3 possible classes:

I) If f(x)|(@™ ™ —d) and f(x)|(x"*™ —d’), then M(n,,nyn;) con-
sists of the vectors a;(1,d,d’), where a; runs through all the elements of
GF[q], and each vector occurs ¢g"~! times.

ITa) If f(x)|(x"*™—d) but f(z){f(x" ™ —d') for every d’, then
M(ny,ny,ms) consists of the vectors (a;,da;,a;), where a; and a; inde-
pendently run through all the elements of GF[¢], and each vector occurs
Q™2 times.

We get similar cases by permutations of n,, n, and z;.

IIb) If f(x)|(da™ +dyax™ +ds2™), and we do not have case I, then
M,(ny,my,m3) consists of the vectors (a;,a;, —(da;+dya;)/d;), Where a;
and a; independently run through all the elements of GF[q], and each
vector occurs ¢g"~2 times.

III) If we have none of the above cases, then M(n,,n,,n;) consists
of all the ¢® vectors over GF[gq] with 3 components, each vector with
multiplicity ¢»-3.

Math. Scand. 16 — 13
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When f(x) is irreducible, then as in Theorem 8 case I will occur if
and only if n, =n,=n,5 (mody); case Ila if and only if n, =n,=n, (mody);
and a necessary condition for IIb or III is that n,%=n,%=nz%=n, (modu).

10. Multigrams for primitive characteristic polynomials.

We shall now consider the following question: Given m and a primitive
polynomial f(x) of degree n, and let n,,n,,. . .,n, vary under the restric-
tions 0<n,<ny<...<n, and n,—n,<perf(r)=9"—1. How many of
the multigrams M(n,,n,,. . .,n,,) will then belong to each of the multi-
gram classes?

This problem will, however, be simplified if one of the »,’s is kept
fixed, since

My(ny,ny,. .., 0,) = Mn;+8,n5+s,...,0,+8)

for arbitrary s. Which n, is kept fixed and at which value it is fixed is
of no importance. In the following we keep n, fixed.

Having a primitive characteristic polynomial with a single non-zero
unordered solution (a;)=a,,a,,a,,. .., the set

{(@ @415« Wiyn—1); 1=0,1,. .., perf(x)—1}

contains all the non-zero vectors of the n-dimensional vector space over
GF[q]. Consequently the collection of all

A (ng,ng,..,n,); 0SSR <M< ...<ny,, n,—n,<perf(x), mn,fixed,

is composed of all the matrices obtainable from the vector space of
dimension n over GF[q], by choosing in every possible way m different
non-zero vectors from this vector space and taking these as the columns
of n xm matrices, with the restrictions that a particular given vector
shall occur as a column of every matrix, and that permutations of the
columns within each matrix are not counted.

Among the matrices thus obtained, we now ask for the number of those
with a given rank k. From the arguments of § 7, we see that this number
is exactly the number of multigrams M (n,n,,. . .,n,,), with the restric-
tions imposed above, belonging to the class %.

This number is given by the following theorem, to be proved in the
next section:

THEOREM 9. Let f(x) be a primitive polynomial over GF [q], of degree n,
and let m be a positive integer. The number of different multigrams
M (ny,m,,...,n,) satisfying the conditions
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0Sm <m<...<mn, N,—n <perf(x), n, fixed,
and belonging to the class m —1, is then given by
@ -1¢"—9)..-(@"—g"") 4,,

(m—1)! gn—1

Here
Ay = (@ =m)Ay g1 a+ A
with
4, 0=1; A,;=0 forl=morl<0.

The fraction in Theorem 9 is not reduced by ¢”—1, to allow also for
the case m—I=1.

11. Proof of Theorem 9.
LemMma 7. In the expansion

-1 ("—-1)(q"—q) ... (g"—q™)
( m >= m! Ao +
(@—-1)...("—q™?) q"—1
+ Am,l+"'+ m,m—1 >

m! m!

where q¢,—12m2z1 and 4, ; is independent of n for 1=0,1,...,m—1, the
coefficients are uniquely determined as in Theorem 9.

Proor. By considering the expansion as a function of n and letting n
increase, it is immediately seen that there is at most one set of coefficients
(for given m) satisfying the expansion.

It is then easily seen, by induction with respect to m, that the relations
given in Theorem 9 provide such a set of coefficients.

Suppose now [+1<m=<qg”—1. To prove Theorem 9, we saw in § 10
that we must determine the number of n xm matrices of rank m—1I,
subject to some further restrictions.

We first choose m —1 linearly independent n-dimensional vectors over
GF[q]. It is well known (cf. Dickson [1, pp. 49-50]) that this can be
done in

W, = (*-1)(¢" -9 ... (¢"—¢ Y

different ways, when permutations are counted.

The remaining ! column vectors of each matrix must be chosen from
the vector space spanned by the m —I independent vectors. This implies
that the number of these choices only depends on I and m, but not on =n.
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We next group together those matrices which contain the same (per-
muted) columns, and choose one representative from each set thus ob-
tained. Again, this reduction in number will depend on ! and m only.
Consequently, the number of # x m matrices of rank m —1, when permuta-
tions of columns are not counted, must be of the form Q% B, ;, where
B,, ; is independent of n.

Summing these numbers, we get the total number of combinations
(without repetitions) of m vectors out of g —1:

n__ m—1
(q 1) =3 @ -D@"~9)- - (g"~g"") B,

m i=0

This is an expansion of the form in Lemma 7, and since this is unique,
we have 4, ;=m! B,, ;. The number of n x m matrices of non-zero column
vectors with rank m —1 is consequently

("—=1(g"—9q)...("—g™?)
m!

A

m,l ?

when permutations of the columns are not counted. Here the coeffi-
cients 4, ; are determined as in Theorem 9.

We must finally impose the condition that one column vector of each
matrix shall be kept fixed. Because of the symmetry in the choice of
columns, we get the corresponding reduced number of matrices if we
multiply the above number by m (the number of columns in each ma-
trix) and divide by ¢®»—1 (the number of different column vectors at
our disposal). The result is the number of matrices given in Theorem 9,
which is thus proved.
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