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A GENERALIZATION OF A THEOREM
OF SYLVESTER ON THE LINES DETERMINED
BY A FINITE POINT SET

STEN HANSEN

In 1893 Sylvester stated without proof: Given any finite set of non-
collinear points in the real projective plane, there exists at least one line
which contains exactly two of the given points.

This theorem remained unproved for nearly 40 years. In 1933 T. Gal-
lai (Griinwald) gave a proof, and later on several other proofs have been
found (for references cf. [3, p. 451] and [2, p. 65]). Here we mention
R. Steinberg’s (1944, cf. [1, p. 30]) because related ideas are used in the
present paper.

In general it is not true that, given a finite point set in a projective
space of dimension d>2 which is not contained in a hyperplane, there
exists a hyperplane containing exactly d of the given points. A counter-
example in 3-space is a set of 6 points, 3 on each of two skew lines. An-
other one is the Desargues configuration in 3-space [3, p. 452].

The following generalization of Sylvester’s theorem has been proved
by Th. Motzkin (3] for d=3:

Given a finite point set Iy in the d-dimensional real projective space which
s not contained in a hyperplane. Then among the hyperplanes determined by
points of I'y there is at least one with the property that the points of I'y which
it contains, with the exception of precisely one of them, lie in a (d—2)-
dimensional projective subspace.

It is the aim of this paper to give a proof of this theorem for arbitrary
dimension d.

Let I'),, p=0,1,...,d, denote the set of the projective subspaces of
dimension p which are spanned by the points of the given set I,. Since
I, spans the whole d-dimensional space P, considered, none of these sets
is empty, and I'; consists of P, only. The elements of I, will be denoted
4,,...,P,,.... The union

o Lp,.
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will be called the configuration I

A subspace A, € I, will be called elementary if it contains exactly
p+1 points of I, If I'y consists of d+ 1 points, then I" consists of the
subspaces spanned by the vertices of a simplex, and thus all elements
of I' are elementary. In this case the configuration I" will be called ele-
mentary.

If a subspace A4, is spanned by a point B, and a subspace C,_;, we
shall write

4, = BC,_, .

Obviously, Bye Iy and C,_,eT,_, imply 4, I',. If in this case B,
is the only point of I'y,n4,, outside C,_;, then the subspace 4, is called
ordinary. (This makes also sense for p=0, if, as usuval, the (—1)-dimen-
sional projective space is defined to be the empty set.) It is clear that
every elementary subspace is ordinary. In this terminology the theorem
above states the existence of an ordinary hyperplane.

Every A, eI, p>0, is divided into polyhedral domains by the sub-
spaces A,_, € I',_; contained in 4,,. The closures of these domains will
be called the p-dimensional cells of the configuration I'. Each cell §,, in
4, is obviously convex in the sense that, for any two points of it, that
segment joining these points which does not intersect an 4, <4,
belongs entirely to §,,.

We shall prove the following theorem which is slightly stronger than
the statement above:

TurorREM. Suppose that the configuration I' in the real projective space
of dimension d is not elementary, and let 8; be a d-dimensional cell of I'.
Then there exists an ordinary hyperplane A;_, = ByCy_,, where By I'y and

Ay N T\N\{By} © Cy5 € Ty,
such that
Ag4nd; < Cyy.

We start by proving two lemmas.

LemMA 1. Let 64, d>0, denote a closed d-dimensional simplex whose
vertices belong to Iy, and suppose that the point Ay e I'y is not contained
in o4. Then there is a (d — 2)-dimensional face o,_, of o4 such that the hyper-
plane B;_; € I';_, spanned by A, and o,_, satisfies

By 1Nnog=04.
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Proor. Consider the hyperplanes which contain the (d—1)-dimen-
sional faces of o5 Every pair of distinct such hyperplanes divides the
space P, into two ‘“wedges”. The closure of one of these contains o,.
Since g, is the intersection of such closed wedges, there must be at least
one which does not contain 4,. The hyperplane spanned by 4, and the
intersection of the hyperplanes bounding such a wedge satisfies the
requirement of the lemma.

Lemma 2. Let A be a point of Iy, and let Cy_, € I'y_, be a hyperplane
which does not contain A,. Let further 8,;_,<C;_, be a (d—1)-dimensional
cell of I'. If P, s a point such that the line A P does not meet 65_, and Q,
18 an interior point of d,_,, then each of the two segments PyQ), intersects at
least one of the hyperplanes, belonging to I'y_,, which are spanned by A,
and the (d — 2)-dimensional faces of 5,_;.

Proor. The union of the lines joining A, with the points of §,_; is a
polyhedral convex cone. Since P, is an exterior point and @, an interior
point of this cone, each of the segments Py @, intersects its boundary.
The statement now follows from the fact that every boundary point of
the cone is contained in at least one of the hyperplanes spanned by 4,
and the (d—2)-dimensional faces of d,_;.

Proor or THE THEOREM. We proceed by induction on the dimension
of the space. For d=1 the Theorem is obvious. Let d>1 be given. We
assume the Theorem to be true for spaces of dimension d — 1.

Let a d-dimensional cell §; of I" be given. Obviously, 4, is contained
in some closed simplex with vertices belonging to I',. If this simplex
contains a point of I'; different from its vertices, the hyperplanes spanned
by this point and the vertices divide the simplex into smaller simplexes
one of which contains 6;. If this simplex contains a point of I different
from its vertices, the procedure can be repeated. After finitely many steps
a simplex o, is obtained which contains d; but no point of I'y other than
its vertices.

Since I'is not elementary, there is a point of I'j outside o;. By Lemma
1, there exists a hyperplane B,_, € I';_, through this point for which

By 1ndg = Bgynog < S84,

where S;_, € I';_, is the (d—2)-dimensional subspace containing one of
the (d— 2)-dimensional faces of o,
If B,_, is elementary, it clearly satisfies the requirement of the Theo-
rem. Hence, in the sequel we may assume that B,_, is not elementary.
We consider a point P, € I'y which does not lie in B; ;. We choose a
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line L; which joins P, with an interior point of ; and which has no point
different from P, in common with any of the (d — 2)-dimensional subspaces
in which two hyperplanes belonging to I';_; intersect. (In particular,
L, does then not meet any subspace belonging to I';_, at a point different
from P,.)

By assumption I';_, contains non-elementary hyperplanes, for instance
B;_;. Since these hyperplanes do not intersect the interior of d,, there
is at least one among them, Q,_, say, such that the point ¢, at which it
intersects L, satisfies the following condition: One of the open segments
of L, determined by P, and ¢, intersects neither the interior of §,; nor
any of the non-elementary hyperplanes. In other words, traversing L,
from P, in that sense, or one of the senses, in which one meets non-ele-
mentary hyperplanes before meeting d,, @, is the first point of intersec-
tion with a non-elementary hyperplane.

The point @, belongs to the interior of exactly one of the (d—1)-
dimensional cells of I"into which @;_, is divided. The polyhedral cone y,
consisting of the lines joining P, with the points of this cell §;_, contains
8, because the hyperplanes which contribute to the boundary of y, be-
long to I';_, and the line L, <y, intersects J;. By the induction hypo-
thesis, there exists in @;_, an ordinary (d—2)-dimensional subspace
CySq_s € I'y_5, Where

Coely,  CpSasnI\{Co} = 835 € I'qs,
such that
Co83-3N831 < S435-
Putting
82 =PySs3€lyq,,

we consider the hyperplane

CoSg2€Tly,.
Obviously,
(1) CoSa—2nNyq < Sa_y,
hence
(2) CoS3-2N 05 < 84

since 8;< ;.

We distinguish now between two cases:

1°. In Cy8;_, there is outside §;_, no other point of Iy than C,.
Then C,S;_, is ordinary, and because of (2) this hyperplane satisfies the
requirements of the Theorem.

2°. In Cy S;_, there is a point 4, € I') which does not lie in S,;_,. From
the facts that
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Qa1

CoS4-2N Q41 = CySy3,

Cy84-3 is ordinary, and S; 3<=8;_, we can conclude that A4,¢ Q;_;.
Further, from (1) and 4, ¢ S;_, it follows that 4, ¢ y4. Consequently,
Py A, does not meet d;_;. By Lemma 2, there exists therefore a hyper-
plane 4,7, _, € I';_, (see fig.) such that T';_, contains a (d — 2)-dimensio-
nal face of 8;_,;, and A,T;_, intersects that open segment P,@, which
does not meet §;. From the way in which @, was determined it fol-
lows that 4,7;_, is elementary, thus ordinary.
It remains to be shown that

(3) AgT42ndy < Tyy.

The hyperplanes @;_, and P,T;_, intersect in 7;_,. They belong to
I';_, and, thus, do not meet the interior of §;. Consequently, the closure
of one of the two wedges into which they divide the space contains §,.
Since the hyperplane 4,7';_, intersects that open segment P,@, which
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does not meet d;, it can only have 7';_, in common with the wedge con-
taining J;, and hence (3) holds.
This completes the proof of the Theorem.
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