MATH. SCAND. 16 (1965), 116—120

ON ENTIRE FUNCTIONS
ALMOST PERIODIC IN SEVERAL DIRECTIONS

HANS TORNEHAVE

1.

An example by R. Petersen [2] proved the existence of entire functions
almost periodic in two directions. H. Tornehave [3] proved by further
examples that the almost periodicity in the two directions may be of very
different type. It was stated without proof in the same paper that an
entire function might be almost periodic in three directions. In all these
cases almost periodicity in a certain direction means almost periodicity
in the whole plane in this direction.

In the present paper we shall present a method for construction of
entire functions almost periodic in an arbitrary finite number of direc-
tions and even in a denumerable everywhere dense set of direction. In
a recent paper P. Asisoff [1] proved that, on the other hand, the set
of directions of non-almost-periodicity must be everywhere dense and,
for a function of finite order, there exists only a finite set of directions
of almost periodicity.

2.

Let w, and w, be complex numbers such that w,'w, is not real. Let
(P1,91)s (P2,95); - - - be a sequence of mutually different pairs of relatively
prime integers, the numbers p, being non negative. We shall assume that
(p1,91) = (1,0) and (p,,q,) =(0,1). Under these assumptions we shall prove
the following statement:

There exists an entire function almost periodic in the complex plane in
each of the directions determined by p,w,+q,w,, v=1,2,... .

The existence will thus be proved for every bundle of directions with
the property that every subset consisting of 4 directions has a rational
cross-ratio. It is an open question yet, whether there exists an entire
function almost periodic in 4 directions with irrational cross ratio.
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It will be convenient first to prove the theorem for a finite sequence

(91,94), - - +»(Pr,9,) and afterwards describe the changes in the procedure
necessary in the general case.

3.

The set 2 of all numbers pw, + qw, is a subgroup of the additive group
of complex numbers. Let m be a natural number. The set m® is then a
subgroup of 2. We shall call two complex numbers equivalent with respect
to mQ2 if they belong to the same coset of m{2 considered as a subgroup
of the additive group of complex numbers. If 4 is a set of complex num-
bers, the set A +m2 is the set of numbers equivalent to elements of 4.
In particular, if 4 is a straight line, the set 4 +m® will be a system of
straight lines parallel to A. If 4 has one of the directions p,w;+q,w,
the set of lines 4 +mQ2 will be discrete.

The parallelogram

P, = {m(tjw,+t,0,) |05t <1, 058, < 1}

is divided by the systems of parallels equivalent with respect to m{2 to
the straight lines through 0 in the directions p,w; +¢,w,, v=1,...,n, into
a finite number of convex polygons. Each parallelogram equivalent to
P,, with respect to m£2 is subdivided by the same system of lines, the sub-
division being congruent to the subdivision of P,. 1f we replace m by
another natural number m’ we obtain a subdivision of P,, homothetic
to the subdivision of P,. These phenomena are illustrated in Fig. 1,
where we have chosen w,=1w, and the directions (1,0), (0,1), (3,2), (1,3)
and (1, —2). The small squares correspond to m=1 and are subdivided
by all the lines. The thin lines do not belong to the subdivision of the
large square corresponding to m =2.

4.

As in the paper [2] our entire function will be constructed as the limit
of a sequence of elliptic functions. We shall now introduce the particular
class of elliptic functions which will be used for our present purpose.

Let a,,,...,a,; be the geometric centers of gravity of the polygons
of the subdivision of P,,. Let v=(v,) be a k by ! complex matrix. We
introduce

Q. (v;2) =v,273+... +v, 272,
In [3, § 2] it was proved that we have for g >0 an estimate

@ (v; 2)| = Klz|~®
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valid for [2| 2. It follows that the function
k
(1) F(v;2) =3 > Q(v;z—a,,—o)

x=1wemQ

is an elliptic function with mQ as its group of periods.

Let 6 denote the smallest distance between the set of points a,,, x=
1,...,k, and the union 8 of the straight lines through 0 with directions
p,w;+¢q,wg, v=1,...,n. The number § will be positive. Let S,, denote
the set of all points with distance <md from the set 8. The set S,, is
the union of = strips, and F,(v; z) is holomorphic and periodic in each
of these strips.

We shall rewrite (1) extending the summation with respect to » over
the 4k points

Oy O + MOy, Qp + My, Ay, +Mwy +Mmewy,  x=1,...,k.

This requires an obvious change of notation, which we indicate by re-
placing a,,, by a,,, and v by v':
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"
Fpv;2) = 3 3 Qv';2-dp,~w).
»=1 we2mQ
For an arbitrary set T=(7,,...,7,) of complex numbers we shall use the
notation ak

Fm(v; T; z) = z z Qx(’vl;z_a;nn—t’x_w)‘
n=1 we2mf
If every a,,, + 7,+w is outside S,, and |7,|<}d, x=1,...,4k, and 7, is a
positive number, we can choose w’ = (w,,)y,; such that

4k
zl(Qx(w' 3 e— a';nu T (D) - Qn(v' 2~ a;mt - (D)) = "7112 - a;nn - w|—3
=

when |z—a,,, —w|20, x=1,...,4k, w € 2mQ. This follows immediately
from [3, § 3, lemma 6], since v’ is fixed in the present case. Hence, there
exists a constant K depending only on m, 2 and % such that

(2) |Fn(w’; 7;2) = Fp(v; 2)] < Ky

for every z€ 8,,_;. Since we have used no properties of the points a,,
except that they and every a,,,+w; o € 2mQ, are outside S,,, we can
repeat the procedure N times, and obtain the inequality (2) with NK#,
instead of K7,; when |7,| < 3}Nd and the segment from a,,,+ to a,,, +
w+ 7, is outside S,, for x=1,...,4k; w € 2mQ.

Each of the numbers a,, ,=2a, , is the geometric center of gravity
of a polygon of the subdivision of P,,,, and this polygon contains finitely
many of the pointsa,, . For each of these we can choose 7, =a,,, ,—,, .-
We can then choose the number N such that (2) is satisfied with N K7,
instead of K#,. Since N and K are independent of 7,, we have proved
that for #>0 we can choose w=(w, ;) ;- such that

|Fom(w; 2)—Fy(v;2)] = for || €8, .

We shall now start with m=2. It does not matter how we choose
v =W except that it should have at least one element +0. We can then
construct the sequence of functions F,u(v™; 2) such that

[Fomia (01D 2) — Fom(v™; 2)| < 2-™¢  for 2€8pm_; .

Here ¢ is an arbitrary positive number. The sequence of functions is
then uniformly convergent in every finite strip in each of the prescribed
directions. This implies that the limit function is entire and that it is
limit periodic in each strip. If ¢ is small enough, the limit function will
obviously not be constant. This completes the proof.

The case where there is a sequence of directions is treated similarly,
except that the periods are not simply multiplied by 2 in each step but
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by an integer » chosen separately for each step. Further, the straight
lines in the directions p,w,+q,w,, v=3,4,. .., are introduced gradually,
one new direction in each step. This has the effect that the number k
increases with each step, and in each step the distance d is replaced by
a smaller distance ¢,. However, if we multiply the periods by a number
greater than 24,719, the width of each of the periodicity strips will be
doubled in each step.

The displacement is carried out according to the same rules as in the
finite case. It may, however, happen that some of the old poles are
situated on sides of polygons in the new subdivision. We may then
choose arbitrarily whether we want to consider them as belonging to one or
the other of the adjoining polygons. Except for the changes mentioned
here, the proof is carried out exactly as in the finite case.
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