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ON A CARTAN FORMULA FOR SECONDARY
COHOMOLOGY OPERATIONS

LEIF KRISTENSEN

1. Introduction.

The purpose of the present paper is to prove a Cartan formula for
secondary cohomology operations. By a Cartan formula we mean an
expansion @(zy)=3P'(x) D" (y), valid for a certain set of pairs of coho-
mology classes {(x,y)}. The existence of such a formula was proved by
Adams [1]. Later Adem [2] gave a formula for certain operations @.

The present paper is a continuation of the paper [3] in which a defini-
tion of secondary operations based on a study of cochain operations was
given.

In Section 2 we continue the study of cochain operations which we
began in [3]. Let us recall that a cochain operation 6 in one variable is
a sequence {0,} of natural transformations 6,: C» —~ C"+{, where i=
deg6. Everywhere we shall assume Z, coefficients. In [3] we proved the
exactness of the sequence

0 - 570)->4— 0,

where @ is the set of cochain operations, 4 is the boundary operator
A60=460+08, Z(0)=Ker(4) and A4 is the Steenrod algebra (mod2).
Here we consider cochain operations @ in two variables satisfying

(1) deg G(z,y) = deg(x)+deg(y)+deg@
and
2) X(z,0) = G(0,y) = 0.

The Z,-module of such operations is denoted by @. In @ there is a
boundary operator V defined by

(V@) (z,y) = 0G(x,y) + Q(dz,y) + G(x,dy) .
We prove that the following sequence is exact (Theorem 2.2):
(L.1) Q-5 Z(Q)— AR4A — 0,
where Z(Q)=Xer (V).
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Sections 3-5 are devoted to the proof of the Cartan formula mentioned
above. The main theorem is Theorem 4.1 (in Section 4). The main tool
in the proof is the sequence (1.1).

Another application of (1.1) is to cohomology operations associated
with Cartan formulas. Operations of this type have been studied by
Schweitzer [4]. This application is the topic of a forthcoming paper.

2. Theorem on cochain operations.

In [3] we have considered cochain operations of the following kind.
A cochain operation of degree ¢ is a sequence 6={0,} of natural trans-
formations of the cochain functor into itself

0,: Cr—(CnHi, —o<n< oo,

preserving the zero element but not in general the additive structure.
The integer ¢ is called the degree of 6. If we define 460 =456+(—1):60,
then 4 is a boundary operator in the graded Z,-module @ of all cochain
operations. Let Z(0) denote the A-cycles, then there is a map
e: Z(0) > A, where A denotes the mod 2 Steenrod algebra. Composition
defines a multiplication in ¢. This multiplication is left distributive but
not right distributive. We shall, however, allow ourselves to say that @
is an algebra. The mapping ¢ is then an algebra mapping. One can also
consider cochain operations in % variables. The set of all these, O®, has
in a similar way a boundary operator

(40)(xy,. . .,x) = 60(xy,. . .,2;) + 0(0xy,...,0x;) .

Later in this section we shall consider cochain operations of a different
kind. Therefore, in what follows we shall denote the above operations
as operations of the first kind. In [3] we proved

THEOREM 2.1. The sequence

0" L Z(OW) 2> ADAD.. . ®A >0, kcopiesof A,
18 exact.

Now let us consider operations of the second kind. These are operations
H={H, .} of two variables with the properties

(2.1)  H,,: C"@C"-Cm+,  H(z,0) = HO,y) =0,

where ¢ is an integer independent of m and n. This integer is called the
degree of H, deg(H)=t. As earlier we do not assume additivity.

Let Q denote the set of all cochain operations of the second kind.
Then @ is a graded module over Z,. If H and K are of degree 7, then
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(Hopyn+ K, n)(@,y) = Hp, o(2,4) + Ky (2,9) -
A boundary operator V in @ is defined by

(VH)(x,y) = 6H(x,y)+ H(dx,y) + H(x,0y) .
It is obvious that VV=0.

Similar to the case of operations of the first kind there is a mapping
from the V-cycles Z(Q) into A®A4,

(2.2) e Z(Q)— ARA .

The mapping ¢ can be defined on a larger class of operations than
Z(Q). This goes as follows.

An operation F(z,y) is in what follows called special if F(x,y)=0 on
each pair (x,y) of cocycles. If dx=0 or dy=0 implies that F(z,y)=0,
then we call F very special. The mapping ¢ can be defined on an opera-
tion @ if V@ is very special. This is done by considering the Eilenberg—
MacLane complexes K(Z,,n) and L(Z,,n). For short we shall denote
these complexes by K, and L,. We recall that in K, (L,) there is a
basic cocycle 2, (cochain c¢,) with the property that to an arbitrary co-
cycle (cochain) a in a css-complex X there is one and only one mapping
f: X-> K, (f: X > L,) such that

f#(zn) =a (f#(cn) = a’) B

f# denoting the induced cochain transformation. The inclusion of K,
in L, is denoted by 7: K, — L, and the projection L, -~ K, ,, is denoted
by p. They have the properties

?’#(cn) =2y and p#(zn-fd) = dc, .

Since V@ is very special, we have for each pair (m,n) of integers that

G(2,,,2,) is a cocycle. This means that for each pair (m,n) we have an
element

{(2n:2,)} € H¥(K,, x K,,) .

We shall examine the connection between these cohomology classes for
various pairs (m,n). First, let us consider the pairs (m,n) and (m+ 1,n).
We have

6G(cm,zn) = G(écm’zn) = (px 1)#(G(zm+1’zn)) )
This implies that
{Gzm20)} = (0@{G(zpm41,20)} 5
where ¢ is the cohomology suspension H¥(X) -~ Hi-1(2X) and
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{G(zm+1!zn)} € H*(Km+1 X Kn) = H*(Km+1)®H*(Km) .
In a similar fashion one sees that

It is now obvious that there are elements «;,3; € A such that

(2.3) {G(zm’zn)} = zo‘i({zm}) ﬁi({zn}) .
The mapping ¢ of (2.2) is defined by
(2.4) §(@) = S, ®p; -

By the Kiinneth formula and the well-known structure of the coho-
mology of K, (see Serre [5]) the element Y x,®p;, € AQA is uniquely
determined.

The object of the present section is to establish a theorem similar to
Theorem 2.1.

THEOREM 2.2, The sequence
Q 5 Z(Q) - A4~ 0
18 exact. Hence the cohomology of @ with respect to V is AQA.

Proor. First, let us show that eocV=0. Let F'=V(@. Then by the defini-
tion of ¢ we must consider {F(z,,z,)}. Since F=VG@, we have

{F(2ms24)} = {0Q(2n,2,) + G(02p,2,) + G2, 02,)} = {0G(20,2,)} = 0.

Next we show that ¢ is onto. Let «,8 € 4 and let a,b be cochain opera-
tions of the first kind representing « and f respectively. It is enough
to show that «®p is in the image of ¢. Define a cochain operation H by

H(z,y) = a(z) b(y) ;

then obviously VH =0 and ¢(H)=x®§.

Finally, we must show that if F € Z(Q) and ¢(F)=0, then there is a
cochain operation @ with V@=F. The construction of G is somewhat
more involved than the first part of the proof.

First, let us note that a cochain operation H defines a system of co-
chains, one cochain H(c,,,¢,) in L, x L, for each pair (m,n). The dimen-
sion of H(c,,c,) i8 m+n+1, where ¢ is the degree of H, and the restric-
tions of the cochain to each of the factors L,, and L, are zero. On the
other hand, if we have given a system of cochains satisfying the above
conditions, then by naturality there is a unique cochain operation de-



ON A CARTAN FORMULA FOR SECONDARY COHOMOLOGY OPERATIONS 101

fined on all pairs of cochains such that the associated system of cochains
is equal to the given system of cochains. These facts are quite obvious.
In what follows we shall go back and forth between the two concepts,
cochain operation and system of cochains, quite freely without mention-
ing so each time.

Before we give the proof, it will be useful to have a look at special
examples of cochain operations. First, let us define a cochain operation
G,=G,™" by

0 for t+n,
G1(ces) = 10 for t=n and ssm,
“(cs)ﬂl(cn) e ﬂv(cn) for t=n and s>n )

where «,8;,...,8,€ Z(0), v=1. Then we get

0 for (8,t)%(m,n),
0‘(603) ﬂl(zn) “ee ﬂv(zn) for (8,t)=(m,n) .

We see that V@, is special, that is, VG,(z,,2) =0 for all (s,t). We there-
fore have that V@,(c,,7) is a cocycle in (L, K,)x (K,*) and hence
determines a cohomology class in that complex. From (2.6) one easily
reads off the cohomology class in question.

Next, let G,=G,™" be defined by

@8)  Voi(onn) = |

Q (G C) — {0 for (8,3)#(1”,%) ’
Bt o‘l(cm) ) o‘y(cm)ﬂl(cﬂ,) LR ﬂv(cn) for (8,t)= (m’n) s
where «,,...,%,,01,...,8,€ Z(0), u>1 and v2 1.
As before, VG, is special and V(Gy(c,,?) determines the following co-
homology classes in (L, K,) x (K, *):

0 for (s,t) #* (m,n),
{Vés(enz} = { Olaen) - - 4y(e)] Brlen) - - - Bulzn) for (s,8)=(m,m) .

Using the facts that V is additive and that H»+{(K,,) is a finite dimensional
vector space and that it is generated by products &,({z,})¥s({z,}) - - -
&,({z.}), we get the following lemma.

Lemma 2.3. For any system {Z, ,} of cohomology classes in H*++((L,, K,)
x (Ky,*)) there is an operation G of degree i —1 with VG special such that
{VG(cs,z‘)} = Zs,t
for each (s,t).

To prove the lemma we of course have to add together a number of
operations G, and G,. Note that although we must add an infinite number
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of operations, only a finite number of them are non zero in a particular
dimension (m,n).

Next, we give examples of operations G with V@(c,,z)=0. Let an
operation G3=G3" be defined by

(2.7) Ga(cs,ct) = {g(cs) ﬂ(ct) ig; ;ZZ ’

where «,f € Z(0). ThenVGy(c,,7)=0 for all (s,). From (2.7) we get
0 for ¢ s

(2.8) (VOs)(zs ) = {(x(z ) B(¢c,,) fzr tiz

Since V(@;(2,,2,) =0 we see that (VG;)(2,,¢;) is a cocycle in (K ,,*) x (L, K,).
The cohomology class determined by VG,(z,c;) in (K,,*)x (L, K;) can
be read off from (2.8).
Let G, be defined by
_ ‘x(cs) ﬂl(cn) .o ﬂv(cn) for t=mn )
Gd(cs’ct) - {0 for t+n ,

where «,f,,...,8, € Z(0), v>1. Then VG,(c,,2)=0 for all (s,t), and the
cohomology classes in (K ,*) x (L, K;) determined by VG,(z,,¢c,) are

56z - | (o) 3s() - Beal) o =m,

As above, we collect this information in a lemma. First, let us intro-
duce the mappings

p: AQH*(L,K) —~ HXK,)QH*(Ly,K,) = H*((K,*)x (L, K}))
which lets the first factor act on the basic class in (K,*).

Lemma 2.4. Let Z,, be a sequence of elements in AQH*(L,,K,), degZ,,=
n +1, with usual grading of AQH*(L,,K,). Then there is an operation G
of degree 1 —1 such that, for each pair (s,t), VG@(c,,%)=0 and

wZy) = {VQ(z,¢)} € H*(K,,*)x (L,K)).
Finally, we shall give examples of operations @ with VG very special,
i.e. with VG(z,,¢;)=0, VG(c,,%)=0 for all (s,t):

q _ |0 fort+n andfort=n,8.<_.m,
s(Cw) = a(c,) O[Ba(Cy) - - - Bo(Cn)] for t=n and s>m,

for s+m and for s=m,t<n,

0
Go8s0) = { O[xy(Cpp) - - - X3(Cp)]1 Ble) fors=mand i>n,
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0 for (s,t) % (m,n) ,
%1(Cm) - - - %2(6m) O[Ba(Cy) - - - B,(cp)] for (s,8)=(m,n),

where 4> 1 and »> 1 in the case of G;. One easily sees that VG,, j=5,6,7,
is very special. It follows that VG,(c,,¢c;) is a cocycle in (L, K ) x (L, K)).
The cohomology classes determined by VG(c;,c,) in the three cases are
{VGy(cg,c)} =0 for (s,8) = (m,n) and

{V@s(cm ca)} = {a(dcy) 0[Ba(cn) - - - Blca)]} 5

{V@o(cm ca)} = {dlxa(cn) . - . ax(en)] B(de,)}

{VG7(cm’cn)} = {6[0‘1(cm) e O‘A(cm)] 6[ﬂl(cn) e ﬂl(cn)]} *

As before, one derives a lemma.

Grlowc) = {

LemmA 2.5. Let {Z,, ,} be a system of cohomology classes,
Zy,n € H™4Y((L,,, Kp) X (Ly, Kp))

m,n

Then there is an operation G of degree i —1 such that

{VG(emsCn)} = Zy,n € H¥((Ly, Kp) % (Ly, K )
for all (m,n).

Now, let us continue the proof of the theorem. We are given F with
VF =0 and ¢(F)=0, and we must determine a G with V@=F.
Since ¢(F)=0, it follows that for each (m,n)

{F(2p:2,)} = 0 € H¥ K, xK,, K, v K,) .
It follows that there are cochains «,, ,, in (K,,x K,,K,vK,) with
00ty n = Fl2y,2,) VY(m,n).

Let B, ., be a cochain in (L, x L,,L,vL,) which restricts to «,, , in
(Kp,xK,,K,vK,). Let H be the cochain operation associated with this
system of cochains. Then the cochain operation F — VH is special, that
is, F(z,,2,) — VH(2,,,2,) =0 for each pair (m,n). This means that to prove
the theorem it is enough to show that special operations in the kernel of ¢
are in the image of V. Therefore, in what follows we shall assume that
VF =0 and that F is special (which implies that &(F)=0).

For each pair (m,n) the cochain F(c,,z,) in L,, x K, restricts to zero
in K,, x K, (since F(z,,,2,)=0). Furthermore, we have that F(c,,z,) is a
cocycle in (L,,, K,,) x (K,,*). This means that F determines a double-
sequence of cohomology classes

(F(em2n)} € H¥(Lp, Kpp) % (K %)) -



104 LEIF KRISTENSEN

By Lemma 2.3 there is a cochain operation H with VH special and with
{VH(cm,2,)} = {F(0:2,)}  V(m,m).
From this we see that besides VF =0 and F special, we can assume that
{F(cm:2,)} = 0 € H¥(Ly, K,) X (K,,%))  V(m,n).
Let, for all pairs (m,n), «,, , be & cochain in (L,,,K,,) x (K,,*) with
00y, = F(Cps2y) -

Let H(cy,,c¢,) be a cochain in L, x L, which restricts to «,, , in L, x K,
and to zero in L,. The cochain operation H defined by this has

(VH)(Cpms2n) = 80+ (2 x 1)H(0) = Flcp,2,) -

This means that in what follows we can assume that VF=0 and
F(c,,2,)=0 for all pairs (m,n). We see that F(z,,c,) is a cocycle in
(K p,*) x (L,,K,). Since

6F(cm!cn) = F(‘scm’cn) = (px l)#F(zmﬂ’cn) ’
it follows that
(ORV){F (2p41,6)} = {F(2,C)} € H*(Kppo*) x (Ly, K,))
It follows that there is a Z, € AQH*((L,, K,)) such that
”(Zn) = {F(zm’cn)} € H*((Km:*)x(Ln,Kn)) vm
(see Lemma 2.4). By Lemma 2.4 there is a G such that
{(F-V@)(2,¢,)} = 0 € H¥(K,,,*) x (L,,K,)) V(m,n).
Therefore, in what follows we can assume that F itself has the properties
VF = 0, F(cps2,) = 0, F(z,.c,) ~ 0,

in (K,,,*)x(L,,K,). Let «, , be a cochain in (K,,,*)x(L,,K,) with
8&p o =F(2n,c,). We extend «, , to a cochain H(c,,c,) in (L,,*)x
(L, K,). Then

VH(cp,2,) =0 and  VH(z,c,) = dxy , = F(zp.c,) .

It follows that F —VH is very special. Therefore, in what follows we
shall assume F itself to be very special. In that case F(c,,c,) is a cocycle
in (L,,,K,,) % (L,,K,). By Lemma 2.5 there is a cochain operation G
such that F—V@ is very special and (F —VG)(c,,,c,)~0 in (L, K,,) x
(L,,K,) for each pair (m,n).

Now we see that to prove Theorem 2.2 we only have to show that, if
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F is very special, VF =0 and F(c,,c,)~0 in (L,,K,)x (L,,K,) for all
(m,n), then F is in the image of V. To see this, let a,, , be a cochain in
(L K ) x (Ly, K,,) with éa,, ,=F(cpy,c,). Define G(c,,c,)=a,, ,. Then
VG=F. This proves the theorem.

3. Some lemmas.

As earlier, let 4 denote the mod 2 Steenrod algebra. It is well known
that A is a Hopf algebra with diagonal y: 4 - AQA. If 4 A and
p(d)=34'®4d"’, then for each pair u,v of cohomology classes

(3.1) d(uv) = Xd'(u) d"(v) .

The Cartan formula for primary cohomology operations can then be
expressed by

»(8¢*) = 38¢'R8¢!, i+j=1k.

In what follows we shall be working both with cohomology operations
and with cochain operations. We shall use letters a, b, ¢ etc. to denote
cochain operations in one variable and commuting with d. If a is a cochain
operation, then d is the corresponding cohomology operation.

First, let us consider the equation (3.1) on the level of cochain opera-
tions.

Let a, @’ and a’’ be cochain operations representing d, 4’ and &'’ re-
spectively. Consider the cochain operation B of the second kind defined
by
(3.2)  Bl@y) = a(xy) + 3a'(z) a"(y) + d(a; dzy,zdy) +

+ n(z) d(a; zdy,xdy) ,

where n(z) is one of the functions n(x)=deg(x) or n(x)=deg(x)+1, and
d is a cochain operation (of the first kind) in two variables defined in [3].
The essential property of d is that it gives the deviation from additivity
of the cochain operation a:

a(u+v) + a(u) + a(v) = dd(a; u,v) + d(a; éu,dv) .
For ¢ variables z,,,. . .,2, we have the property
(3.3) d(a;=y,...,x) + d(a; 6xy,...,01) = a(@,+...+2) + D alz;) .
j=1
The existence of d can be derived from the exact sequence in Theorem 2.1.

The right hand side of (3.3) defines an element of Z((®) in the kernel of &.
Hence there is d'(a) € 0¥ with

(4d'(@))(@y, . . ., 2) = a(Zx;) + ;a(x,) .
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Putting
d(@,xy,...,%) = d'(@)(xy,. ..,5) + Zd’(a)(O,. ..,0,2;,0,...,0),
J

d satisfies (3.3) and has the property
d(a;0,...,0,x;...,0) = 0.
This property we shall make use of later in this paper.

It is easy to see that B is a cochain operation of the second kind and
that VB=0. We can therefore ask about the image of B under the
mapping ¢: Z(Q) - AQA, discussed in Section 2. We can determine
¢(B) by evaluating B on pairs (x,y) of cocycles. Since by (3.1)

B(x,y) = a(xy) + Za'(x)a"(y) ~ 0,
we see that ¢(B)=0. By Theorem 2.2 there is a cochain operation 7' € @
with
VT = B.
We formulate this in the following lemma.

LemMA 3.1. Let d € A and let p(d)=34d'Q4"'. Let a, a' and o'’ be co-
chain operations representing d, @' and @' respectively. Then there is a
cochatn operation T of the second kind with

(VT)(x,y) = a(zxy) + Za'(x)a"(y) + d(a; dxy,xdy) +
+ n(x) d(a; xdy,xdy)
for each pair (x,y) of cochains.

For the next lemma we need the following setup which shall also be
used in Section 4 of this paper. This algebraic machinery was used by
Adams [1] in his description of secondary cohomology operations.

Let C, be a free (graded) A-module on one generator ¢y, and let C,
be a free A-module on a finite set of generators {c,* | i € I}. Let a mapping

(3.4) d: 0,0,

of graded A-modules be given. We recall that a secondary cohomology
operation is determined by an element of the kernel of d.

Let us assume that besides the mapping d of (3.4) we have in the same
fagshion two other mappings

(3.5) d: C,>C), d': C/>C)

such that degc,=degc,+degc,. The tensor product Co®C, (over Z,)
is an A®A-module. Using the diagonal mapping in 4, we obtain an
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induced A-module structure in C(;®C;. There is a unique mapping
¥o: Co ~ C,®C, with the property v(c,)=c,®cy. Assume that there is
a mapping o (o Y

v O~ Co®C7 + 0100,
such that the following diagram is commutative:

C, "*—d*"‘-’ Co

Y1 | Yo
4 U4 ’ " ® ’ s
Co®C1C1QC, — C,®C, ,

(3.6)

where d® =1®d" +d'®1. Let us consider an element z € Ker(d) such
that

(3.7) ¥a(z) = 38, 00@2, + 22,Q5,¢ ,
where 2, € Ker(d'), 2, € Ker(d"’) and «,,,a, € A. Let
z = Xd;ef, d;e4d,
and let a; be a cochain operation representing d;. Also, let
d(c,?) = Eico, 31 = {b}led,

where b, € Z(0). Then (by Theorem 2.1) there is a cochain operation 0
with 40 = Yab;, = 1.
In a similar fashion we put

() = bje,,  d(e") = Byep
where {c{ |j eJ} and {c* | ke K} are generators for C; and CY re-
spectively, and b;={b;} € 4, by ={by} € A. Also,

2 = Slpcl, 2y = St
Corresponding to these cycles we have

A6, = Sapb; =1, A6, = Taby =1, .

nj~y 'm

’

Finally, we need notation for ;: C; -~ C;®@C;®C;®C;. Let us put

wilerd) = Seco®fney® + Ify; ey .
Let us consider the cochain operation H defined by
(3.8) H(x,y) = 0(0xzy+ady) + 0(oxy) + O(xdy) +
+ d(r; dxy,xdy) + n(x) d(r; xdy,xdy) .
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Then VH =0 and &(H)=0 as is easily seen. Hence there is a cochain
operation D=D(0) with
(3.9) VD =H.

Let us consider a cochain operation £ defined by

(3.10)  E(x,y) = 0(zy) + Z0,(x) an(y) + Tom(®) Op(y) +
+ T(r)(x,y) + D(0)(x,y),

where T'(r) is a cochain operation given by Lemma 3.1 with a replaced
by r, and

Alr

Y(F) = StQ&, +36.,Qfm

(#, ¥, and #,, are equal to zero, but the cochain operations r etc. are usu-
ally not zero). Since

(3.11)  VT(r)(=m,y) = r(@y) + Zrn(x) an(y) + o, (x) rm(y) +
+ d(r; dxy,xdy) + n(x)d(r; x0y,xdy)

it follows that VE=0. Hence there are cochain operations g; and §;
in Z(®) such that

§(E) = 3B;08B; .
Applying Theorem 2.3 we get

LemMma 3.2. Let notation be as above. There are cochain operations ﬁ;-
and ﬂ;’ in Z(0) such that for each pair (x,y) of cocycles

b(zy) + ZO,@)on(Y) + Zo@)0n(y) + D(O)(x,y) + T(r)(z,y)
~ ZBi) B (y) -

This lemma is designed for proving the Cartan formula for secondary
cohomology operations. This will be done in Section 4.

4. The Cartan formula.

In this section we shall prove a Cartan formula for secondary opera-
tions. This formula gives an expansion of @(zy), where @ is a secondary
operation and x and y are cohomology classes, in a sum of terms
?'(x) D''(y), where @’ and @'’ are cohomology operations. This formula
was first treated by Adams [1]. He proved the existence of such an ex-
pansion but did not give the actual form of the terms @’ and @’’. Later
Adem [2] proved that for certain @ we have @(zy)=D(x)y+z D(y).

THEOREM 4.1. Let d, d' and d'' be A-module mappings as described tn
(3.4) and (3.5) and, as described by (3.8), let @ commutative diagram
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G — . Co

Y1 ® Yo
Co®C, ®0180; — Co®Cq
be given. Let z € Ker(d) such that
¥1(2) = 38, 00®2% + Z2,DE, ¢y

with z, € Kerd' and z,, € Kerd”. Then there are primary operations
B B such that modulo the total indeterminacy

D) = SPL@)5,(H) + ZEn@) Pn(d) + ZBLE)BL@),
where D, @, and D,, are secondary operations associated with z, z, and z,,

respectively, and where ¥ and § are arbitrary cohomology classes satisfying
that d'-operations are defined on & and d'’-operations are defined on {.

REMARK. Before the proof, let us remark, that in [3] we defined
secondary operations associated with relations Yx,a,+b=0 in 4 con-
taining an unfactorized term b. These operations are only defined in
dimensions less than the excess of b. Hence they are not stable in the
usual sense. They are, however, very close to being stable. In the state-
ment of Theorem 4.1 we have only considered stable operations. Minor
additions to the proof of Theorem 4.1, however, give a Cartan formula
for the almost stable operations mentioned. I believe that in certain
applications it will be useful (if not necessary) to take the almost stable
operations into consideration.

We hope that the unknown stable primary operations §; and B} can
be determined by methods similar to the ones used in this paper.
A simple example where the theorem applies is as follows. Let

p; = 8g%%-V {1 zeroes,
be an element in the Milnor basis for the Steenrod algebra. Then
PiP;+PiPs = 0,

D(p;) = 1Qp;+p,®1.

Let +4j. Let C, be generated by c,* and ¢,?, and C, by ¢,. The mapping
d: C;—~0C,
is given by d(c,*)=p;c, and d(c,’)=p;c,. Then
v O~ C®C, @080,
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is given by
p1(c*) = co®c*+c,*Rcy,  k=tory.
The element z=p,c,’ + p;c,* determines the operation @. Since

Y1(2) = 2@¢p+¢p®2
the theorem applies.

Proor oF THEOREM 4.1. We shall use the algebraic setup from Sec-

tion 3. If Z = {z} and § = {y}, then bj(x)~0 and b} (y) ~0. Let us choose
bounding cochains

ow; = bi(x),  owy = by(y).
Since y,: C; — C,@C; ®C®C, is given by

; YA Are g R PN
pi(e)) = Zépco®f i + ZJici ®écq
we get

bu39) = 2ou @) fubi @) + SFbE @) = 0.
On the cochain level we get

ow; = b;(xy)
with w,; given by

(4.1) w; = Teg(a) fwy) + Zfiw)) egy) + Tylz,y)
where T'; is a cochain operation given by Lemma 3.1,

(4.2)  VTy(u,v) = by(uv) + Tey(w) fi b (v) + Zf;;bj(u) e(v) +
+ d(b;; duv,udv) + n(u)d(b;; udv,udv) .
Since 40=3a,;b;, a cocycle representing @(2§) is given by
O(xy) + Za(w,) .
To prove the theorem we must examine the expression
Z = O(xy) + Zayw) + 2, [0,(@) + Zay(w;)]en(y) +

+ i (@) [0n(y) + Tz (wp)] -
By Lemma 3.2

(4.3) Z ~ Zajw) + Zani(w))on(y) + Topm(@)ami(wy) +
+ D(O)(@,y) + T(r)z,y) + ZF (@) B @) .

By the expression (4.1) for w; we get
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(4.4) afw;) ~ ZaPey(x) al? fi(wy) +
ZaS‘)fW(w, “(@2)%'( ) + aTy(x,y) + Dyx,y) +
+ zSi(e;Ik(x)’f;I;bZ(y)) + zSi(filj b;-(x),e;;(y)) )
where Y(4,)=Yd,Y®d,® and S; the corresponding cochain operation
given by Lemma 3.1,
(4.5) V8i(u,v) = a(wv) — YaVu) aP@) + d(a;; duv,udv) +
+ n(u)d(a;; wdv,udv) .

Also,
Dy(x,y) = d(as; - . .,e(@) firby @), . - ..f5; b5®) €5(y),
. -,bi(xy)+2€1k(w fabi(y +2fz, () €5(Y)) »
where d(a;; . . .) is deviation from additivity of a, as defined in Section 3.

Next, we shall compare some of the terms in (4.3) and (4.4). It is
clear that

1 2 r” lllc al? Ilk
Z“( é; kco®a( )flccl = Z“m 0® mkC1

If we keep k fixed, this equation is still true. Hence, for each k there is
a cochain operation U, such that

(4.6) (VUR(w,9) = SaPe(u) aPfv) — Som(u) apv),  kfixed
where (u,v) is an arbitrary pair of cochains. Similarly,

(4.7) (VV)(w,v) = ZaPfi;(w) aPe(v) — Taniu) «,(v), jtixed.
This and (4.4) simplify (4.3). We get

(4.8) Z ~ K(z,y),
where
(49  K(z,y) = TU=,b;(») + ZV,;(b;(*),9) + Za;Ty(x,y) +
+ DO)(@y) + Tr)(ey) + ZS:(cal@). fubi®) +
+ Z8,(fi; (), i5(y)) + ZDy(x,y) + Zp'(x)B"(y) +
+ S d(a;; 6T (=, y) T (6x,y), T (x,0y)) +
+ d(ai; VT, (x,y),d(b;; xy,x dy),n(x)d(b;; xéy,x&y)).

The terms D(0) and T(r) are defined in (3.9) and (3.11), respectively.
The last two terms we have added for convenience. They are, of course,
zero when x and y are cocycles.

It will be convenient to consider x and y as variable cochains. Then
the expression (4.9) defines a cochain operation K in . We shall exa-
mine VK. A straightforward compution shows that VK is a sum of two
terms: a very special operation (i.e. an operation which is zero on (z,y)
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if 6x=0 or dy=0) and the following special operation (i.e. zero on (z,y)
if =0 and dy=0):

n(z) [Sa,x(b,) (xdy) + T (a;)(en(®) by (9y) + Zxlay) (fy;b5(=) € (8y))] ,

where we have denoted the deviation from additivity d(a; z,z) by x(a)(z)
as it was done in [3], and n(x)=deg(x). It is now very easy to complete
the proof of the theorem. Before doing so we shall, however, give a few
relevant remarks about x. These things are proved in the following sec-
tion. The reason for treating » in a special section is the feeling that »
is of general interest not only in usual cohomology theory but also in
connection with general cohomology theories based on (general) cochain
functors.

The defining property of the deviation from additivity at once gives
that

dx(a)(z) = x(a)(d2) ,

or x(a) € Z(0). We therefore get an element ¢(x(a))€ 4. It turns out
that &(x(a)) depends only on &(a) and not on the choices of representatives
a for &(a) and derivation d(a; —,—). Hence we have a mapping
%x: A> A,

%(d) = ¢(x(a)) € 4,
where d =¢(a). Furthermore, it follows that % is a derivation in 4 of
degree —1

%(@b) = %(@)b+ax=(®),
and that

%(Sq®) = S¢-1, +=0,1,....

This last property is not needed in the proof of the theorem, but is added
here just to show that % is not zero.

To complete the proof of Theorem 4.1 we must determine K on a pair
of cocycles. Since VK is special, that is, (VK)(z,y)=0 if dz=0 and
by =0, it follows that K(z,y) is a cocycle if 6x=0 and dy=0. The K(z,,2,)
therefore determines an element in H*(K(Z,,s) x K (Zy,1)) for each pair
(s,2). As in Section 2 when we defined the mapping ¢ on very special
operations, we shall here compare the classes {K(z,2)} for different
pairs (s,#). This, however, is quite easy. First, let us compare {K(z,,2)}
and {K(z,,1,%)}. Since (VK)(c,,2)=0in L, x K,, we have

6K(63,z,) = (px 1)#K(Zs+lszl) s
where p is the projection L(Z,,s) -~ K(Zg,s+1). It follows that
{K(25,2)} = (0®1){K(2541,2)} »
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where ¢ is the cohomology suspension HYX) -~ H*»1(QX). To compare
{K(2g,21)} and {K(2,,2,,,)} we note that
(VK)(zs’ct) = 8[2%”(6@')(235%) +
+ Z”(%)(";’k(%) J. zfl::b;c’(éct)) + Z"(ai)(f;jb;'(zs) e;'(éc,))]

or
O[K(z5,) + s[za’i"(bi)(zsct)+Z”(ai)(e;k(za)fill::blk,(ct)) +
+ (@) (fi05(2,) (€7 (c))] = (I x D) K (24,24,) -
It follows that

(1Q0){ K (252.41)} = {K(2e2)}+8[Zd;%(b,){z 2} +
+ SR ER) () Frnbr () + ZR@)bi( e (=]
= {K(z52)} + s[zdi’?(gi)({zszt}) + zﬁ(di)(ai{zszt})]
= (K(zo)} + s %(2d,;b,)({z,2))
= {K(zs,z,)} .

This follows from the properties of » and the fact that Zd13i=0. Now,
of course, it follows easily that there are cochain operations 8, and g}
in Z(0) such that for each pair (z,y) of cocycles K(z,y)~3 fi(x) b5 (¥).
This completes the proof of the theorem.

5. A derivation in the Steenrod algebra.

As in Section 4, let a € Z(0) and d(a; —, —) be an operation giving the
deviation from additivity of a, satisfying d(a; 2,0)=0 and d(a; 0,y)=0.
Then, as before, a cochain operation x(a,d) € Z(0) is defined by x(a,d)(x)
=d(a; x,x). We shall show that &(x(a,d)) € A depends only on ¢(a). Let
d'(a; z,y) be another deviation from additivity associated with a. Then

D(x’y) = d(a’; x:y)—d'(a; x:y)

belongs to Z(0®). Since D(z,0)=D(0,y)=0, it follows that &D)=
0e A@A. Therefore (Theorem 2.1) there is a Be 6® with AB=D.
Since

0B(z,x) + B(0x,0x) = x(a,d)(x) — »(a,d’)(x),

it follows that &(x(a,d))=s(x(a,d')). Because of that we shall use the
notation x(a)=x(a,d). Now, let a,be Z(0) with ¢(a)=¢(b) and let
d(a; —, —) be associated with a. Since &(@ —b)=0, there is an operation
6 € 0 with 40=a—b. Let us define

d(b; z,y) = d(a; z,y)+ 0(x+y)— 0(x) - 0(y) -

Math. Scand. 16 — 8
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Then it is easy to see that d(b; —, —) gives the deviation from additivity
for b. Using this, we get

%(b)(x) = x(a)(x)

and therefore so much more &(x(b))=&(x(a)). We define #(d)=¢(x(a)),
where ¢(a)=d € A. It is obvious that % preserves addition in 4 and that
it decreases degrees by one. To see that % is a derivation, we proceed as
follows: Let a,b € Z(0) and let d(a; —, —) and d(b; —, —) be associated
with these; then we define a deviation from additivity for ba by

d(ba; x,y) = bd(a; z,y)+d(b; a(x),a(y)) +
+ d(b; 8d(a; x,y),d(a; ox,dy)) +
+ d(b; a(x+y),a(x) +a(y)) +
+ d(b; a(x),a(x)) + d(b; a(y),a(y)) .

One easily checks that d(ba; —, —) has the desired properties. Putting
z=y and éx=0, we get

x(ba)(x) = b(x(a)(x))+ x(b)(a(x))

which shows that % is a derivation.
To show that #(S¢?)=8¢*-1, we simply refer to the explicit formula
for d(sq?, —, ~) given on p. 60 in [3]:

d(sg’; 2,Y) = P(en—111@%Y +e,41,@0cy), degr =mn.
If dx=0, this shows that
%(8¢")({x}) = {plen—s11®2%)} = Sg*-({z}) .

It is curious that one can obtain information about the multiplicative
structure in the Steenrod algebra in this way. It is, for instance, possible
to derive all the Adem relations from the relations Sg%*-18¢*=0 by
iterated application of %; for example

Sg38¢2 = 0 = #(S¢38¢?) = Sg®Sq®>+8¢38¢2 = 0.

Using the structure of the dual Hopf algebra A* of A we can obtain
% in a different way. Let & € A* be the non-zero element of degree one.
Multiplication with &, defines a mapping of 4* into itself of degree one.
Since £, is primitive, it follows that the dual of this mapping is a deriva-
tion. This mapping is of degree —1 and it sends S¢’ into Sg¢i-1, It is
therefore equal to .
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