ON CERTAIN INTERPOLATION SPACES RELATED TO GENERALIZED SEMI-GROUPS

JÖRGEN LÖFSTRÖM

Introduction.

Let D(A) be the domain of the infinitesimal generator A of a strongly continuous semi-group $G(\sigma)$ of bounded linear operators in a Banach-space E (see [2], [3]). In [4] Lions has described interpolation spaces between E and D(A). Later these results were extended to interpolation spaces between E and $D(A^m)$ ($m \ge 1$), (see [6], [7]). The description was made by means of the first order difference $G(\sigma)-1$ and the m-th order difference

 $(G(\sigma)-1)^m$, respectively.

The purpose of this paper is to describe interpolation spaces between $D(A^{m-1})$ and $D(A^m)$ $(m \ge 1)$, where now A is the infinitesimal generator of a generalized semi-group of a certain class (see [8]; see also [5], [9]). Since differences are not bounded operators they cannot be used any

Since differences are not bounded operators they cannot be used any longer. We use instead the remainder of order m in Taylor's formula, i.e.

$$\frac{1}{(m-1)!}\int\limits_0^s (s-\sigma)^{m-1}G(\sigma)A^m\ d\sigma.$$

The precise result will be found in section 3.

The first two sections are devoted to a brief presentation of definitions and results in the theory of interpolation spaces and generalized semigroups, based on [6] and [7] and [8] (cf. also [5], [9]), respectively. In section 4 the result obtained in section 3 is used to extend theorems of Butzer and Tillmann [1] to generalized semi-groups. Finally, section 5 contains a further generalization of the results of the preceding sections.

The subject of this paper was suggested to me by professor Jaak Peetre. I thank him for valuable advice and great interest in my work.

1. Preliminaries; interpolation spaces.

Let X_0 and X_1 be Banach spaces, continuously embedded in a Banach space E. The corresponding norms are denoted by

Received April 9, 1965.

$$a \to ||a||_{X_0}$$

and

$$a \rightarrow ||a||_{X_1}$$

respectively. In $X_0 + X_1$ we consider the family of norms

$$K(s,a) = \inf_{a=a_0+a_1} (\|a_0\|_{X_0} + s \|a_1\|_{X_1}), \qquad 0 < s < \infty.$$

Further, let Φ be a function norm, i.e. a positive functional defined on the set of positive functions on $(0, \infty)$ which are measurable with respect to the measure dt/t such that:

(1.1)
$$\Phi(\varphi) = 0$$
 if and only if $\varphi = 0$ a.e.

(1.2)
$$\Phi(\varphi) < \infty \text{ implies } \varphi < \infty \text{ a.e.}$$

(1.3)
$$\Phi(\alpha\varphi) = \alpha\Phi(\varphi) \quad \text{if} \quad \alpha \ge 0.$$

(1.4)
$$\varphi \leq \sum_{n=1}^{\infty} \varphi_n \text{ a.e. implies } \Phi(\varphi) \leq \sum_{n=1}^{\infty} \Phi(\varphi_n).$$

Then

$$K(\Phi) = K(\Phi; X_0, X_1) = \{a \mid a \in X_0 + X_1, \Phi(K(s, a)) < \infty \}$$

is a Banach space with the norm

$$a \to \Phi(K(s,a))$$
.

It can be shown that $K(\Phi)$ is an interpolation space (see [6], [7]).

If

$$\Phi(\min(1,s)) < \infty,$$

then

$$X_0 \cap X_1 \subset \mathsf{K}(\Phi) \subset X_0 + X_1$$
,

(see [7]). On the other hand, if (1.5) does not hold, then $K(\Phi) = \{0\}$. In the sequel we will therefore assume (1.5).

In the special case that we will consider, we have

$$||a||_{X_0} \leq ||a||_{X_1},$$

so that $X_0 \supset X_1$.

From (1.6) it follows that

(1.7)
$$K(s,a) = ||a||_{X_0} \text{ if } s \ge 1.$$

Indeed, obviously $K(s,a) \leq ||a||_{X_0}$ for all s > 0, and

$$||a||_{X_0} \le ||a_0||_{X_0} + ||a_1||_{X_1} \le ||a_0||_{X_0} + s ||a_1||_{X_1}$$

if $a = a_0 + a_1$, $s \ge 1$. From the first inequality we also get

$$s ||a||_{X_0} \leq K(s,a) \quad \text{if } s < 1 ,$$

and thus

(1.8)
$$K(s,a) \geq \min(1,s) \|a\|_{X_0}.$$

REMARK 1.1. This formula also shows that $K(\Phi) = \{0\}$ if (1.5) does not hold.

2. Preliminaries; generalized semi-groups.

Let \mathscr{D}_+ be the space of infinitely differentiable complex-valued functions with compact supports contained in $R_+ = \{t \mid t > 0\}$. Moreover, let $\mathscr{L}(E)$ be the algebra of bounded linear operators in E. A generalized semi-group on E is a linear mapping G from \mathscr{D}_+ into $\mathscr{L}(E)$ such that:

$$G(\varphi * \psi) = G(\varphi)G(\psi), \qquad \varphi, \psi \in \mathscr{D}_+ ,$$

$$G(\varphi) \to G(\varphi_0) \text{ uniformly} \quad \text{when} \quad \varphi \to \varphi_0 \text{ in } \mathscr{D}_+$$

(see [5], [8], [9]).

For example, let G(t) be a strongly continuous semi-group, that is, a mapping from R_+ into $\mathcal{L}(E)$ such that:

$$G(s+t) = G(s)G(t), \qquad G(s) \to G(s_0) \text{ strongly when } s \to s_0.$$

Then, if we define G on \mathcal{D}_+ by the formula

$$G(\varphi)a = \int_{0}^{\infty} \varphi(t)G(t)a dt ,$$

G is a generalized semi-group.

Now it is possible to extend the domain of G to the space $\overline{\mathscr{E}}_{+}'$ of distributions with compact supports in $\overline{\mathbb{R}}_{+} = \{t \mid t \geq 0\}$, so that:

$$G(T*S)a = G(T)G(S)a, \qquad S,T \in \overline{\mathscr{E}}_+{}',$$

$$G(T)a \to G(T_0)a, \qquad T \to T_0 \text{ in } \overline{\mathscr{E}}_+{}',$$

where

$$a \, \in \, R \, = \, \{ a \, \, \big| \, \, a = \sum G(\varphi_n) a_n, \, \varphi_n \in \mathcal{D}_+, \, a_n \in E \} \; ,$$

which is assumed dense in E (see [8], [9]). Thus G(T) is, in general, an unbounded operator with domain R.

Put

$$G(\delta_{\sigma})a \ = \ G(\sigma)a, \qquad a \in R, \ \sigma > 0 \ ,$$

where δ_{σ} is the Dirac measure in the point σ . If $T \in \overline{\mathscr{E}}_{+}{}'$ then, as can be shown,

(2.1)
$$G(T)a = \langle T(\sigma); G(\sigma)a \rangle = \int_{0}^{\infty} T(\sigma)G(\sigma)a \ d\sigma ,$$

where $a \in R$. Write $\overline{G(T)}$ for the closure of G(T). Then, by definition,

$$A = -\overline{G(\delta_0')}$$

is the infinitesimal generator and

$$(2.2) A^m = (-1)^m \overline{G(\delta_0^{(m)})}, m \ge 1.$$

Now we say that the semi-group G is of class $\sigma(k)$, if for every $\varphi \in \mathcal{D}_+$ we have that

$$||G(\varphi)|| \leq C \int_{0}^{\infty} t^{k} |\varphi^{(k)}(t)| dt.$$

Then the same inequality holds for $\varphi \in \overline{\mathcal{D}}_+{}^k$, where $\overline{\mathcal{D}}_+{}^k$ is the space of k-times continuously differentiable functions with compact supports in R_+ , and even for φ in the space M_k of measures T with compact supports in R_+ such that $|T|\{0\}=0$ and such that the restriction of $T^{(k)}$ to R_+ is a measure with

$$\int_{+0}^{\infty} t^k |T^{(k)}(t)| \ dt < \infty$$

(see [8]). After a change of variable (2.3) becomes

$$||G(\varphi_s)|| \leq C \int_{-10}^{\infty} t^k |\varphi^{(k)}(t)| \ dt, \qquad \varphi \in M_k \ ,$$

where

$$\varphi_s(t) = s^{-1} \varphi(ts^{-1})$$
.

From (2.2) it follows that

(2.5)
$$\frac{d^n}{ds^n}G(s)a = G(s) A^n a$$

(cf. section 5). Hence

$$G(s)a-a = \int_{0}^{s} G(\sigma) Aa d\sigma.$$

Iteration of this leads to Taylor's formula

(2.6)
$$G(s)a = \sum_{n=0}^{m-1} \frac{s^n}{n!} A^n a + R_m(s)a,$$

where

(2.7)
$$R_m(s) a = \int_0^s \frac{(s-\sigma)^{m-1}}{(m-1)!} G(\sigma) A^m a d\sigma, \quad a \in D(A^m).$$

3. Interpolation between $D(A^{m-1})$ and $D(A^m)$.

In this section we put

$$X_0 = D(A^{m-1}), \qquad X_1 = D(A^m).$$

The norms in $D(A^{m-1})$ and $D(A^m)$ will be denoted

$$||a||_{m-1}$$
 and $||a||_m$,

respectively, and are defined by

$$||a||_{m-1} = ||a|| + ||A^{m-1}a||, ||a||_0 = ||a||,$$

 $||a||_m = ||a|| + ||A^ma||,$

where $\|\cdot\|$ is the norm in E. Then we may suppose

$$||a||_{m-1} \le ||a||_m.$$

(We have $||a||_{m-1} \le C||a||_m$. By replacing $||a||_m$ with the equivalent norm $C||a||_m$ we get (3.1)). We also put (cf. (2.7))

$$\varrho_m(s,a) = s^{1-m} \sup_{0 < \sigma \le s} ||R_m(\sigma)a||.$$

THEOREM 3.1. If G is of class $\sigma(k)$ and if m > k, then for s > 0,

$$C^{-1}K(s,a) \leq \varrho_m(s,a) + \min(1,s) ||a||_{m-1} \leq CK(s,a)$$
,

where C is independent of a and s.

PROOF. (i) The second inequality:

Let $a = a_0 + a_1$, $a_0 \in D(A^{m-1})$, $a_1 \in D(A^m)$, be a given decomposition of a. Then

$$R_m(\sigma) a_1 \, = \, \frac{\sigma^m}{(m-1)!} \frac{1}{\sigma} \int\limits_0^\sigma \, (1-\tau \sigma^{-1})^{m-1} \; G(\tau) \; A^m a_1 \, d\tau \; .$$

But

$$\frac{1}{\sigma}\int_{\tau}^{\sigma} (1-\tau\sigma^{-1})^{m-1} G(\tau) b d\tau = G(\varphi_{\sigma})b ,$$

if

$$\varphi(t) \ = \begin{cases} (1-t)^{m-1}, & 0 \le t < 1 \ , \\ 0, & t \ge 1 \ . \end{cases}$$

(cf. (2.1)). According to (2.4) we obtain

$$||R_m(\sigma)a_1|| \le \frac{\sigma^m}{(m-1)!} ||G(\varphi_\sigma)A^m a_1|| \le C\sigma^m ||A^m a_1||,$$

and thus

$$\varrho_m(s, a_1) \leq C s ||A^m a_1|| \leq C s ||a_1||_m$$
.

Now we have

(3.2)
$$R_m(\sigma)a_0 = R_{m-1}(\sigma)a_0 - \frac{\sigma^{m-1}}{(m-1)!}A^{m-1}a_0,$$

(we put $R_0(\sigma)b = G(\sigma)b$). Since

$$R_{m-1}(\sigma)a_0 = \frac{\sigma^{m-1}}{(m-2)!} \frac{1}{\sigma} \int_0^{\sigma} (1-\tau\sigma^{-1})^{m-2} G(\tau) A^{m-1}a_0 d\tau ,$$

we again obtain from (2.4) that

$$||R_{m-1}(\sigma)a_0|| \leq C\sigma^{m-1}||A^{m-1}a_0||$$
.

Hence

$$||R_m(\sigma)a_0|| \leq C\sigma^{m-1}||A^{m-1}a_0||$$
,

and thus

$$\varrho_m(s,a_0) \leq C||A^{m-1}a_0|| \leq C||a_0||_{m-1}$$
.

Finally we obtain

$$\varrho_m(s,a) \, \leq \, \varrho_m(s,a_0) + \varrho_m(s,a_1) \, \leq \, C(\|a_0\|_{m-1} + s \, \|a_1\|_m) \,\, ,$$

from which follows

$$\varrho_m(s,a) \leq CK(s,a)$$
.

From (1.8) we get

$$\min(1,s) ||a||_{m-1} \leq K(s,a)$$
,

and hence the second inequality of the theorem is proved.

(ii) The first inequality: Put

$$a_1 = ms^{-m} \int_0^s (s-\sigma)^{m-1} G(\sigma) a \ d\sigma = ms^{-1} \int_0^s (1-\sigma s^{-1})^{m-1} G(\sigma) a \ d\sigma$$

and

$$a_0 = a - a_1.$$

Then, according to (2.4),

$$||a_1|| \le C||a|| \le C||a||_{m-1}.$$

Moreover we have

$$\begin{split} a_0 &= -ms^{-m} \int\limits_0^s (s-\sigma)^{m-1} \big(G(\sigma) - 1 \big) a \; d\sigma \\ &= -ms^{-m} \int\limits_0^s (s-\sigma)^{m-1} \left(\int\limits_0^\sigma G(\tau) \; Aa \; d\tau \right) d\sigma \\ &= -ms^{-m} \int\limits_0^s \left(\int\limits_\tau^s (s-\sigma)^{m-1} \; d\sigma \right) G(\tau) \; Aa \; d\tau \\ &= -s^{-m} \int\limits_0^s (s-\tau)^m \; G(\tau) \; Aa \; d\tau = -\int\limits_0^s (1-\tau s^{-1})^m \; G(\tau) \; Aa \; d\tau \end{split}$$

if m > 1. Thus

$$||a_0|| \le Cs \, ||Aa|| \le Cs \, ||a||_{m-1}, \qquad m > 1.$$

If m=1 we easily get

(3.4')
$$||a_0|| = s^{-1} \left\| \int_{0}^{s} (G(\sigma) - 1)a \ d\sigma \right\| \leq \varrho_1(s, a) \ .$$

Now

(3.5)
$$A^{m}a_{1} = m! s^{-m} \int_{0}^{s} \frac{(s-\sigma)^{m-1}}{(m-1)!} G(\sigma) A^{m}a \, d\sigma = m! s^{-m}R_{m}(s)a,$$

and thus

$$(3.6) s||A^m a_1|| \leq C \varrho_m(s,a) .$$

Moreover we have

$$\begin{split} A^{m-1}a_1 &= \, m\,!\, s^{-m}\, \int\limits_0^s \frac{(s-\sigma)^{m-1}}{(m-1)\,!}\, G(\sigma) A^{m-1}a\,\, d\sigma \\ &= \, m\,!\, s^{-m} \int\limits_0^s \int\limits_0^\sigma \frac{(\sigma-\tau)^{m-2}}{(m-2)\,!}\, G(\tau) A^{m-1}a\,\, d\tau \, d\sigma \, = \, m\,!\, s^{-m} \int\limits_0^s R_{m-1}(\sigma)a\,\, d\sigma \, \, . \end{split}$$

It follows that

$$\begin{split} A^{m-1}a_0 &= A^{m-1}a - A^{m-1}a_1 = m! \, s^{-m} \int\limits_0^s \left[\frac{\sigma^{m-1}}{(m-1)!} \, A^{m-1} - R_{m-1}(\sigma) \right] a \, d\sigma \\ &= -m! \, s^{-m} \int\limits_0^s R_m(\sigma) a \, d\sigma \, , \end{split}$$

which gives

$$||A^{m-1}a_0|| \le C\varrho_m(s,a) .$$

From (3.3) and (3.6) we obtain

$$(3.8) s||a||_{m} \leq C(\varrho_{m}(s,a) + s||a||_{m-1}),$$

and from (3.4) (or (3.4')) and (3.7)

$$||a_0||_{m-1} \le C(\varrho_m(s,a) + s ||a||_{m-1}).$$

Finally

$$K(s,a) \leq ||a_0||_{m-1} + s||a_1||_m \leq C(\varrho_m(s,a) + s||a||_{m-1}),$$

which is the first inequality for 0 < s < 1. But if $s \ge 1$ it follows from (1.7) that

$$K(s,a) = ||a||_{m-1} \leq \varrho_m(s,a) + ||a||_{m-1}.$$

Hence the first inequality is proved.

Now we put

$$W_{\Phi}^{m} = \{a \mid a \in D(A^{m-1}), \Phi(\varrho_{m}(s,a)) < \infty \},$$

where Φ is a function norm such that (1.5) holds. Then W_{Φ}^{m} is a Banach space with the norm

$$a \to \Phi(\varrho_m(s,a)) + ||a||_{m-1}$$
.

From theorem 3.1 we immediately get

COROLLARY 3.1. If G is of class $\sigma(k)$ and if m > k then

$$W_{\boldsymbol{\Phi}^m} = \mathsf{K}(\boldsymbol{\Phi}; D(A^{m-1}), D(A^m)),$$

except for an equivalence of norms.

REMARK 3.1. For k=0, m=1 we get that the space

$$W_{\varPhi}^{1} \, = \, \big\{ a \, \, \big| \, \, a \in E, \, \varPhi \big(\sup_{0 < \sigma \le s} ||G(\sigma)a - a|| \big) < \infty \big\}$$

is identical with the interpolation space $K(\Phi; E, D(A))$, except for an equivalence of norms. This is the description made in [7, pp. 9-10] if

$$\boldsymbol{\varPhi}(\varphi) \; = \; \boldsymbol{\varPhi}_{\theta,\;p}(\varphi) \; = \; \left(\int\limits_0^\infty \left(\frac{\varphi(t)}{t^\theta}\right)^p \frac{dt}{t}\right)^{1/p}, \qquad 0 < \theta < 1,\; 1 \leq p \leq \infty \; ,$$

(cf. also [4] and [6, pp. 55-57]).

4. Extension of theorems of Butzer and Tillmann.

If G is of class $\sigma(k)$ and if m > k, then

$$ms^{-m}\int\limits_0^s (s-\sigma)^{m-1} G(\sigma)b \ d\sigma \to b, \qquad s \to +0$$
,

(see [8]). This implies that if $a \in D(A^m)$, then

$$m! \ s^{-m}R_m(s)a = m! \ s^{-m} \int\limits_0^s (s-\sigma)^{m-1} \ G(\sigma) \ A^m a \ d\sigma \ o \ A^m a \ .$$

We have the following converse:

THEOREM 4.1. If G is of class $\sigma(k)$, if m > k and if there is an element $b \in E$ such that

(4.1)
$$\lim_{s\to +0} \|m! \, s^{-m} R_m(s) a - b\| = 0, \qquad a \in D(A^{m-1}) ,$$
 then
$$a \in D(A^m) \quad and \quad b = A^m a .$$

Remark 4.1. This and the following theorem were proved by Butzer and Tillmann [1] for ordinary semi-groups. After a slight modification their proofs can be carried over to generalized semi-groups. Here we give alternative proofs, along the lines of theorem 3.1.

PROOF OF THEOREM 4.1. In the proof of theorem 3.1 we constructed a decomposition $a = a_0 + a_1$, such that

$$(4.2) A^m a_1 = m! \, s^{-m} R_m(s) a$$

(formula (3.5)), and such that ((3.8) and (3.9))

$$||a_0||_{m-1} + s||a_1||_m \le C(\varrho_m(s,a) + s||a||_{m-1}).$$

But according to the assumptions we have

$$\varrho_{m}(s,a) = \sup_{0 < \sigma \leq s} \|s^{-m}R_{m}(\sigma)a\| = O(s), \qquad s \to +0.$$

Hence

$$||a_0||_{m-1} + s||a_1||_m = O(s), \qquad s \to +0$$

so that

$$a_0 \rightarrow 0$$
 in $D(A^{m-1})$,

$$a_1 \rightarrow a$$
 in $D(A^{m-1})$.

 $a_1 \rightarrow a \quad \text{in } D(A^{m-1}) \; .$ But, by (4.1) and (4.2),

$$A^m a_1 \rightarrow b$$

Since A^m is a closed operator the conclusion follows.

THEOREM 4.2. If E is reflexive, if G is of class $\sigma(k)$ and if m > k, then

$$\sup_{0 < s \le 1} ||m! \, s^{-m} R_m(s) a|| < \infty, \qquad a \in D(A^{m-1}) \;,$$

implies

$$a \in D(A^m)$$
.

PROOF. Since $\varrho_m(s,a) = O(s)$ we get from theorem 3.1 that there is a decomposition $a = a_{0s} + a_{1s}$ such that

$$||a_{0s}||_{m-1} + s||a_{1s}||_m \le CK(s,a) = O(s), \qquad s \to 0.$$

Hence $a_{0s} \to 0$ in $D(A^{m-1})$ and

$$\sup_{0 < s < 1} \|a_{1s}\|_m < \infty .$$

The space $D(A^m)$ with the graph-norm $||a|| + ||A^ma||$ can be identified with the graph of A^m . It is then a closed sub-space of $E \times E$, which is reflexive. This implies that $D(A^m)$ is reflexive. Then the set $\{a_{1s}, 0 < s < 1\}$, being bounded, is weakly sequentially compact. Therefore the sequence $a_{1,1/n}$ has a weakly convergent subsequence b_r . Then, if $b_r \to b$ weakly in $D(A^m)$, we easily obtain a = b and $a \in D(A^m)$. (Concerning these general results on reflexive spaces see e.g. [2, pp. 65-69].)

5. Generalization of the preceding results.

Let $T \in M_k$ and G be of class $\sigma(k)$. We recall that

$$T_s(x) = s^{-1}T(xs^{-1})$$
.

Now we have

$$\frac{d}{ds}T_s(x) = -s^{-2}T(xs^{-1}) - s^{-1}\frac{d}{dx}T(xs^{-1}) = -\frac{d}{dx}(xT)_s = -\delta_0'*(xT)_s,$$

and in general

$$\frac{d^n}{ds^n}T_s = (-1)^n \delta_0^{(n)} * (x^n T)_s.$$

From (2.2) it follows that

$$\frac{d^n}{ds^n}G(T_s)a = G\left(\frac{d^n}{ds^n}T_s\right)a = G((x^nT)_s)A^na,$$

and from this we obtain Taylor's formula:

(5.1)
$$G(T_s)a = \sum_{n=0}^{m-1} \frac{C_n(T)s^n}{n!} A^n a + R_m(T_s),$$

where

$$R_m(T_s) = \int_0^s \frac{(s-\sigma)^{m-1}}{(m-1)!} G((x^m T)_\sigma) A^m a \, d\sigma$$

and

$$C_n(T) = \int_0^\infty x^n T(x) \, dx$$

(cf. (2.6)). We put

$$\varrho_m(T;s,a) = s^{1-m} \sup_{0 < \sigma \le s} ||R_m(T_\sigma)a||.$$

The proof of theorem 3.1 depends essentially on Taylor's formula (5.1) (for $T = \delta_1$) and on (2.4). We can thus prove the following generalization.

Theorem 5.1. If G is of class $\sigma(k)$, if $T \in M_k$ and if m > k, $C_m(T) \neq 0$, then

$$C^{-1}k(s,a) \leq \varrho_m(T;s,a) + \varrho_m(xT;s,a) + \min(1;s) ||a||_{m-1} \leq Ck(s,a).$$

REMARK 5.1. The special case m=1 can be found in [8].

PROOF. (i) The second inequality:

Let $a = a_0 + a_1$, $a_0 \in D(A^{m-1})$, $a_1 \in D(A^m)$ be a decomposition of a. Since

$$R_m(T_\sigma) a_1 = rac{\sigma^m}{(m-1)!} rac{1}{\sigma} \int\limits_0^\sigma {(1 - au \sigma^{-1})^{m-1} G\! \left((x^m T)_{ au}
ight)} A^m a_1 \, d au \; ,$$

we have, according to (2.5),

$$||R_m(T_\sigma)a_1|| \leq C\sigma^{m-1}||A^ma_1||.$$

Moreover

$$R_m(T_\sigma)a_0 = R_{m-1}(T_\sigma)a_0 - \frac{C_{m-1}(T)\sigma^{m-1}}{(m-1)!}A^{m-1}a_0 ,$$

which by (2.4) gives

$$||R_m(T_\sigma a_0)|| \leq C\sigma^{m-1}||A^{m-1}a_0||.$$

Hence we easily get

$$\varrho_m(T;s,a) \leq CK(s,a).$$

By substituting xT for T we get

$$\varrho_m(xT; s, a) \leq CK(s, a)$$
.

Now the second inequality follows by applying (1.8).

(ii) The first inequality: Put

$$a_1 = m s^{-m} \int_{0}^{s} (s - \sigma)^{m-1} G((x^m T)_{\sigma}) a d\sigma, \qquad a_0 = a - a_1,$$

and suppose that $C_m(T) = 1$. From (2.5) we obtain

$$||a_1|| \le C||a||_{m-1}.$$

A simple calculation, analogous to the corresponding one in the proof of theorem 3.1 gives

$$\begin{split} -\; a_0 \; &= \; m \, s^{-m} \int\limits_0^s \, (s-\sigma)^{m-1} \Big(G \big((x^m T)_\sigma \big) - 1 \Big) a \; d\sigma \\ \\ &= \; m \, s^{-m} \int\limits_0^s \, (s-\sigma)^{m-1} \left(\int\limits_0^\sigma G \big((x^{m+1} T)_\tau \big) A a \; d\tau \right) d\sigma \\ \\ &= \int\limits_0^s \, (1-\tau s^{-1})^m \, G \big((x^{m+1} T)_\tau \big) A a \; d\tau , \qquad m > 1 \; , \end{split}$$

and thus

$$||a_0|| \leq Cs \, ||a||_{m-1}, \qquad m > 1.$$

If m=1 we easily get

$$||a_0|| \le C\rho_1(xT, s, a) .$$

Since

$$A^m a_1 = m! s^{-m} R_m(T_s) a,$$

we obtain

(5.4)
$$||A^m a_1|| \leq C \varrho_m(T; s, a) .$$

We also have

$$\begin{split} A^m a_0 &= \, m\,! \; s^{-m} \int\limits_0^s \left[\frac{\sigma^{m-1}}{(m-1)\,!} \, A^{m-1} - R_{m-1} \! \left((xT)_\sigma \right) \right] a \; d\sigma \\ \\ &= \, - \, m\,! \; s^{-m} \int\limits_0^s R_m \! \left((xT)_\sigma \right) \! a \; d\sigma \; . \end{split}$$

Hence

(5.5)
$$||A^m a_0|| \leq C \varrho_m(xT; s, a) .$$

As in the proof of theorem 3.1 it follows that

$$K(s,a) \leq C(\varrho_m(T; s,a) + \varrho_m(xT; s,a) + s||a||_{m-1}).$$

From (1.7) we obtain

$$K(s,a) = ||a||_{m-1} \quad \text{if } s \ge 1,$$

and hence the first inequality follows.

Now, let $W_{\Phi,T}^m$ be the Banach space of all $a \in E$ such that the norm

$$||a||_{W_{\boldsymbol{\Omega},T}^{m}} = \Phi(\varrho_{m}(T;s,a)) + \Phi(\varrho_{m}(xT;s,a)) + ||a||_{m-1},$$

is finite. If (1.5) holds, theorem 5.1 implies that

$$C^{-1}\Phi\big(K(s,a)\big) \leq \|a\|_{W^m_{\Phi,T}} \leq C\Phi\big(K(s,a)\big).$$

We have proved

COROLLARY 5.1. Except for an equivalence of norms we have

$$W_{\Phi,T}^m = K(\Phi; D(A^{m-1}), D(A^m)) = W_{\Phi}^m.$$

Obviously we also have

COROLLARY 5.2. $a \in K(\Phi; D(A^{m-1}), D(A^m))$ if and only if

$$a \in D(A^{m-1})$$
 and $\Phi(\varrho_m(T; s, a)) < \infty$,

for all $T \in M_k$ (cf. [8, p. 96-98]).

From theorem 5.1 also follows

Theorem 5.2. Under the assumptions of theorem 5.1 and if there is a $b \in E$ such that

(5.6)
$$\lim_{s \to +0} ||m! \, s^{-m} R_m(T_s) a - b|| = 0, \qquad a \in D(A^{m-1}),$$

then $a \in D(A^m)$, $b = A^m a$. Conversely, if $a \in D(A^m)$, then (5.6) holds with $b = A^m a$.

Theorem 5.3. If E is reflexive and if

$$\sup_{0 \le s \le 1} ||m! \, s^{-m} R_m(T_s) a|| < \infty, \qquad a \in D(A^{m-1}) ,$$

then the assumptions of theorem 5.1 imply that $a \in D(A^m)$.

The proofs of these theorems are analogous to those of theorems 4.1 and 4.2 and will be omitted.

REFERENCES

- P. L. Butzer and H. G. Tillmann, Approximation theorems for semi-groups of bounded linear transformations, Math. Ann. 140 (1960), 256-262.
- 2. N. Dunford and J. T. Schwartz, Linear operators I, New York, 1958.
- E. Hille and R. S. Phillips, Functional analysis and semi-groups (Revised edition), New York, 1957.
- J. L. Lions, Théorèmes de trace et d'interpolation (I), Ann. Scoula Norm. Sup. Pisa 13 (1959), 389-403.
- 5. J. L. Lions, Les semi-groupes distributions, Portugal. Math. 19 (1960), 141-164.
- J. L. Lions et J. Peetre, Sur une classe d'espaces d'interpolation, Inst. Hautes Études Sci. Publ. Math. 19 (1963), 5-68.

;

V 50

· ! .

, , , **'**

- J. Peetre, Espaces d'interpolation; generalisations, applications, Rend. Sem. Mat. Fis. Milano 34 (1964), 2-34.
- J. Peetre, Sur la théorie des semi-groupes distributions, Collège de France, Séminaire sur les équations aux dérivées partielles II, novembre 1963 – mai 1964, 76–99.
- 9. K. Yoshinaga, Ultra-distributions and semi-groups distributions, Bull. Kyushu Inst. Techn. 10 (1963), 1-24.

LUND INSTITUTE OF TECHNOLOGY, LUND, SWEDEN