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ON CERTAIN INTERPOLATION SPACES RELATED
TO GENERALIZED SEMI-GROUPS

JORGEN LOFSTROM
Introduction.

Let D(A) be the domain of the infinitesimal generator 4 of a strongly
continuous semi-group G(¢) of bounded linear operators in a Banach-
space K (see [2], [3]). In [4] Lions has described interpolation spaces
between E and D(A). Later these results were extended to inter-
polation spaces between E and D(A™) (m=1), (see [6], [7]). The de-
scription was made by means of the first order difference G(s)—1 and
the m-th order difference

(G(e)—1)m,

respectively.

The purpose of this paper is to describe interpolation spaces between
D(A™-1) and D(A™) (m = 1), where now A4 is the infinitesimal generator
of a generalized semi-group of a certain class (see [8]; see also [5], [9]).
Since differences are not bounded operators they cannot be used any
longer. We use instead the remainder of order m in Taylor’s formula, i.e.

8

o f (s — 0)™1G(0) A™ do .
(m—1)! ]
The precise result will be found in section 3.

The first two sections are devoted to a brief presentation of definitions
and results in the theory of interpolation spaces and generalized semi-
groups, based on [6] and [7] and [8] (cf. also [5], [9]), respectively. In
section 4 the result obtained in section 3 is used to extend theorems of
Butzer and Tillmann [1] to generalized semi-groups. Finally, section 5
contains a further generalization of the results of the preceding sections.

The subject of this paper was suggested to me by professor Jaak Peetre.
I thank him for valuable advice and great interest in my work.

1. Preliminaries; interpolation spaces.

Let X, and X, be Banach spaces, continuously embedded in a Banach
space E. The corresponding norms are denoted by
" Received April 9, 1965.
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a — [lallx,
and
a — |allx, »

respectively. In X+ X, we consider the family of norms

K(s,a) = inf (laglg,+slaglly), O<s<oo.
a=ag+ay
Further, let @ be a function norm, i.e. a positive functional defined on
the set of positive functions on (0, o) which are measurable with respect
to the measure dtft such that:

(1.1) D(p) =0 ifandonlyif ¢ = 0 a.e.
(1.2) D(p) < oo implies ¢ < o a.e.
(1.3) Dop) = cD(p) if «20.

(1.4) g = 21% a.e. implies P(g) < Eld’(%)-
Then

K(®P) = K(P; X0, X,) = {a|ae Xy+X,, <D(K(s,a))<oo}
is a Banach space with the norm
a -~ ®(K(s,a)) .

It can be shown that K(®) is an interpolation space (see [6], [7]).
If :
(1.5) ®(min(1,s)) < o,
then
XonX, < K@) <« Xo+X,,

(see [7]). On the other hand, if (1.5) does not hold, then K(®)={0}. In
the sequel we will therefore assume (1.5).
In the special case that we will consider, we have

(1.6) lallx, = llallx, ,
so that X(>X,.
From (1.6) it follows that

(1.7) K(s,a) = |lalx, if s21.
Indeed, obviously K(s,a) = |la| x, for all §>0, and

lallx, = llaollx, + lladlx, = llaollxy+8llallx, »

if a=ay+a,, 821. From the first inequality we also get
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Sllallx, = K(s,a) if s<1,
and thus
(1.8) K(s,a) 2 min(1,s) |ja||x, -

REMARK 1.1. This formula also shows that K(®)={0} if (1.5) does
not hold.

2. Preliminaries; generalized semi-groups.

Let 2, be the space of infinitely differentiable complex-valued func-
tions with compact supports contained in R,={t |¢>0}. Moreover, let
Z(E) be the algebra of bounded linear operators in £. A generalized
semi-group on E is a linear mapping G from 2, into Z(E) such that:

Glpxy) = Ae)A(y), @yeD,,
G(p) > Q(@,) uniformly when ¢ —>¢@,in I,
(see [5], [8], [9])-
For example, let G(t) be a strongly continuous semi-group, that is, a
mapping from R, into Z(E) such that:
G(s+t) = G(s)A(t), G(s) - G(s,) strongly when s-—s,.
Then, if we define G on 2, by the formula

Hp)a = f P(H)G(t)a dt ,
0

@ is a generalized semi-group.
Now it is possible to extend the domain of G to the space &' of
distributions with compact supports in R, = {¢ | £2 0}, so that:

KT x S)a = QT)G(S)a, S,Teé,,
HTya - G(Ty)a, T->T,iné&,’ ,
where i
aeR=1{a|a=3 g, ), ¢ €D, a,€E},

which is assumed dense in E (see [8], [9]). Thus G(T') is, in general, an
unbounded operator with domain R.
Put

G(3,)a = G(o)a, aeR,0>0,

where 8, is the Dirac measure in the point 0. If 7€ &,’ then, as can be
shown,
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(2.1) (T = (T(0); Xo)a) = f T(0)¥(o0)a do ,
0

where a € R. Write G(T') for the closure of G(7T'). Then, by definition,
4 = —G(4y)

is the infinitesimal generator and
(2.2) A™ = (—1)"G(6,™), mz=1.

Now we say that the semi-group @ is of class o(k), if for every p € 2,
we have that

(2.3 16 < C [ ekig®e) de
0

Then the same inequality holds for ¢ € 9 k%, where 9% is the space of
k-times continuously differentiable functions with compact supports in
R,, and even for ¢ in the space M, of measures 7' with compact supports
in R, such that |7|{0}=0 and such that the restriction of 7® to R, is a

measure with
(o o]

f #|T98)| dt < oo

+0

(see [8]). After a change of variable (2.3) becomes

(2.4 6@l < C [tip@ldt,  pedy,
+0

where
P4(t) = 87 lg(ts™) .
From (2.2) it follows that

(2.5) gs—nG(s)a = G(s) A"a
(cf. section 5). Hence
G(s)a—a = fG(a) Aado.
0

Iteration of this leads to Taylor’s formula

m—1 .n
(2.6) G@s)a = > %Aﬂa + R, (8)a ,

n=0""*
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where

(2.7) Rsya= [ Glo) amado, ae D(am).
0

(m—-1)!

3. Interpolation between D(A™') and D(4A™).
In this section we put

X, = D(4™1), X, = DA™).

The norms in D(A™-1) and D(A™) will be denoted
”a"m-—l and ”a'”m ’
respectively, and are defined by
lalm—y = llall+ 4™ all,  llally = [l ,

lallm = llall+[A™a] ,
where ||+|| is the norm in E. Then we may suppose
(3-1) ”a’"m—l é ”a”m .

(We have |all,—; = Cllall,,. By replacing |jall,, with the equivalent norm
Cllall,, we get (3.1)). We also put (cf. (2.7))

em(8,a) = s'-™ sup |R,(o)al| .

0<oss
THEOREM 3.1. If G 13 of class a(k) and if m >k, then for s>0,
C1K(s,a) £ 0,(8,a)+min(1,s) |a|,,—1 < CK(s,a),
where C is independent of a and s.

Proor. (i) The second inequality:
Let a=ay+a,, ay € D(A™-1), a, € D(A™), be a given decomposition of a.
Then ,,
o™ 1
R, (o)a, = — - f (1—7o-1ym-1 G(z) A™a, dz .
—-1)!e ’

(m
But

1 o

_f(l_-m—l)m-l G(r)bdr = G(p,)d,
00

if

(1 —¢ym-1, 0=st<1,

‘p(t)={ 0, t>1.

(cf. (2.1)). According to (2.4) we obtain
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m

o
IB(0)ay]| = m—,

K@) A™ay]| = Co™|[A™ay]| ,

and thus .
Om(8,a,) = Cs|lA™ay| < Csllay|l,, -
Now we have

O.m—-l
(3‘2) Rm(o)ao = Rm-l(o) Qo — _(m_-—ﬁ Am—-lao ’

(we put Ry(c)b=G(o)b). Since

R, 4(0)a, = f (1= zo-1ym-2 G(v) Am-a, dz ,

( -2)lo
we again obtain from (2.4) that

1B p-1(0)aol| £ Co™|A™1ay)..
Hence
IR (0)agll £ Co™-1||Am-1q, ,
and thus
Qm(s’ao) § OllAm—laOH é C”aoum*l .

Finally we obtain

0n($:0) S €n(8,80) +0n(8:01) S Ollltollmy +8]s]n) »

from which follows
om(s,a) £ CK(s,a).
From (1.8) we get
min(1,8) @],y < K(s,0),

and hence the second inequality of the theorem is proved.
(ii) The first inequality: Put
a, = ms-'"f (8—o)m1 G(o)ado = ms1 f (1— 08 1)1 G(¢)a do
0 0

and ‘

ao = a'—al ..
Then, according to (2.4),
(3.3) llasl = Cllall = Clialip-1 -

Moreover we have
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ay = —ms—m f (s—o)"(Q(0)—1)a do
0

= _.mrm! (s —o)m-1 (b[ G(7) Aa dt) do

8

= _ms-mi!- (! (8—o)m-1 do) G(t) Aadr

—gm f (8— 7)™ G(v) dadr = — f (1= 7s-1)m () Aa dv
. 0

0

I

if m>1. Thus
(3.4) llaoll = Cs|ldall = Csllally—, m>1.

IA

If m=1 we easily get

(3.4) laol = 82| [ (G0)-1)a do{ < a0
0
Now
(§—o)m1

(3.5) Ama, = m! s-mf m l)'— G(o)A™a do = m!s—™R, (s)a ,

0
and thus
(3.6) sllA™ay|| = Con(s,a) .
Moreover we have

— g\ym-1
Am-lg, = mlg™ (8 ?) — Q(0)4A™1a do

s (m—1)!

— r\ym-2
= m! s—mf (o i —G’(t)A"‘ lg dvde = m! s*mme_l(a)a do .

It follows that
m—1

(m—-1)!

Am-lgy = Am-lg— A™-1g, = m! s*"’f [ Am—l—Rm'_l(a)] a do

= —m! s*mme(a)a do,

which gives
(3.7 4™ty < Conls, a)
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From (3.3) and (3.6) we obtain
(3.8) slallm < Clom(s,a) +slallms) »
and from (3.4) (or (3.4')) and (3.7)

(3‘9) ”a’ollm—l é C(Qm(s’a’)+8llallm—l) .
Finally
K(s,0) < |aglln-1+8llasllm < O(om(s@)+sllally_y) »

which is the first inequality for 0 <s < 1. But if s> 1 it follows from (1.7)

that
K(‘?:a’) = “a“m—l = Qm('s’a')‘*'”a”m-—l .

Hence the first inequality is proved.

Now we put
Wom = {a |a € D(A™1), D(oy(s,a)) < oo},

where @ is a function norm such that (1.5) holds. Then W™ is a Banach
space with the norm
a — Q(Qm(s’a’))‘F “a’”m-l .

From theorem 3.1 we immediately get

CoroLLARY 3.1. If @ is of class a(k) and if m >k then
W = K(®; D(4A™-1), D(4m))
except for an equivalence of norms.
ReMARK 3.1. For k=0, m=1 we get that the space
Wot={a|ack, ¢(Osup [G(a)a —al]) < oo}

<0=8

is identical with the interpolation space K(®; E,D(4)), except for an
equivalence of norms. This is the description made in [7, pp. 9-10] if

T (p(t)\P dt\ VP
¢(¢)=¢a,p(¢)=(f (%—)) T) , 0<0<1,1£p=co,
0

(cf. also [4] and [6, pp. 55-57]).

4. Extension of theorems of Butzer and Tillmann.
If G is of class a(k) and if m >k, then

ms—m f s—0)"1 Qo) do »b, s- +0,
0
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(see [8]). This implies that if @ € D(4A™), then

m! s~"R, (s)a = m! s—”‘f (s— o)™ 1 G(c) A™a do - A™a .
0

We have the following converse:

THEOREM 4.1. If G is of class o(k), if m >k and if there is an element
b € E such that

(4.1) lim|m!s™R, (s)a—b|| =0, aeDA™1),
then 8—>+40
a € D(A™) and b= A™a.

ReMARK 4.1. This and the following theorem were proved by Butzer
and Tillmann [1] for ordinary semi-groups. After a slight modification
their proofs can be carried over to generalized semi-groups. Here we
give alternative proofs, along the lines of theorem 3.1.

ProoF oF THEOREM 4.1. In the proof of theorem 3.1 we constructed
a decomposition @ =a,+a,, such that

(4.2) A™q, = m! s™R, (s)a
(formula (3.5)), and such that ((3.8) and (3.9))

Wtalhs + 8180l S Clo(5,2) + 8]l -
But according to the assumptions we have

on(s,a) = s sup ||s~™ R, (o)a| = O(s), s—> +0.

0<oss
Hence
l@ollm—1+sllay)l, = OGs), 8- +0,
so that
ay—~0 in D(A™-1),
which implies

a, >a in D(A4™-1).
But, by (4.1) and (4.2),
A™a, — b .
Since A™ is a closed operator the conclusion follows.

THEOREM 4.2. If E is reflexive, if G is of class o(k) and if m >k, then

sup |m! s~™ R, (s)a|| < oo, aeDA™1),
. . 0<s=s1
tmplies e DAm) .

Math. Scand. 16 — 4
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Proor. Since g,,(s,a)=0(s) we get from theorem 3.1 that there is a
decomposition a =a,,+a,, such that

llaoallm—1+sllalallm s OK(S:a) = 0(3), §—>0.
Hence gy, > 0 in D(A™-1) and

sup |lasgll, < o .
0<s<1

The space D(A™) with the graph-norm |ja|| + ||A™a|| can be identified with
the graph of A™. It is then a closed sub-space of E x E, which is reflexive.
This implies that D(A™) is reflexive. Then the set {a,,,0 <s<1}, being
bounded, is weakly sequentially compact. Therefore the sequence
a, 1y has a weakly convergent subsequence b,. Then, if b, > b weakly
in D(A™), we easily obtain a=b and a € D(4A™). (Concerning these general
results on reflexive spaces see e.g. [2, pp. 656-69].)

5. Generalization of the preceding results.
Let T € M, and @ be of class o(k). We recall that

T (x) = s (xs™1).
Now we have

d d d
el = g2 1) _g-1 -1y = = —87
7 T (x) 8~ (xs1)—s o T(xs™1) 7 (=T, 8o *(xT), ,

and in general
dn
ds™
From (2.2) it follows that

T, = (= 1)@ (@ T), .

dn dn
6T =@ (Zis_n Ts) o = G(@"T),) 4 ,

and from this we obtain Taylor’s formula:

m—1 n
(5.1) GT)a =3 gifl‘iAnaJrRm(Ts),
where "
_ [ e am) am
R (T, = Of m@((x T),) Ama do

and
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o]

C.T) = fx"T(x) dx
(cf. (2.6)). We put ’

em(T'; 8,a) = &'~ sup ||R,(T,)all .

0<o=s

The proof of theorem 3.1 depends essentially on Taylor’s formula (5.1)
(for T'=4,) and on (2.4). We can thus prove the following generalization.

THEOREM 5.1. If G is of class o(k), if T € M and if m>k, C,(T)+0,
then
C-(s,a) £ 0,(T; 8,a)+0,(xT; s,a) + min(1; s) |lal|l,,—; < Ck(s,a).

REMARK 5.1. The special case m=1 can be found in [8].

Proor. (i) The second inequality:
Let a =ay+a,, a, € D(A™ 1), a, € D(A™) be a decomposition of a. Since

R (T.)a, = f (1= zo-1ym-1G((&™T),) A™a, dv ,

(m o
we have, according to (2.5),

|BW(Tp)a,ll = Co™-1||A™a,| .
Moreover

R, (Ty)ay = R, (T ,)a, —

which by (2.4) gives
IR (T a0l S Com-1||Am-1a, .
Hence we easily get
on(T'; 8,a) < CK(s,a).
By substituting 27 for T we get
Qm(xT; s,a) = C-K(S,a) .

Now the second inequality follows by applying (1.8).
(ii) The first inequality: Put
8
a, = ms*”‘j (s— o)™ 1 G(@™T),)ads, ay=a—a,
* 0

and suppose that C,(7)=1. From (2.5) we obtain
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(5.2) llayll = Cllally,— -

A simple calculation, analogous to the corresponding one in the proof of
theorem 3.1 gives

—ay = ms—"‘f(s—a)m‘l(G((me)a)— l)a do
0

8

ms—mJl (8 —o)m-1 (f G((2m™T),)Aa d1:> do
0

0

f (1- s (@ 1T))da dv, m>1,

]

and thus
(5.3) laoll = Csliall,—y, m>1.
If m=1 we easily get
(5~3,) ”a’OH s CQI(LUT,S,G) .
Since

Ama, = m!s ™R, (T,)a ,
we obtain
(5.4) l4™a,| < Cop(T' s,a).

We also have

M om-1
A™ay = m! S"mf [(m_ 1 Am-l—Rm—l((xT)u)jI a do
J !

= —m! s*mme((xT)o)a do .
0

Hence
(5.5) [|[Amay|| £ Co,,(xT'; s,a) .

As in the proof of theorem 3.1 it follows that
K(s,a) £ Oon(T; 8,0) + 0,(xT'; 5,a)+ 8|ally,—y) -

From (1.7) we obtain
K(3,0) = |alpy if 621,

and hence the first inequality follows.
Now, let W7 , be the Banach space of all a € & such that the norm

lallwg, = Plen(T; 5,0) + Pen(eT; 5,0)) + allnos
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is finite. If (1.5) holds, theorem 5.1 implies that
C-19(K(s,a)) < lallwg , < CP(K(s,a)) .
We have proved
COROLLARY 5.1. Except for an equivalence of norms we have
Wa.p = K(®; D(A™-1), D(A™)) = W,m.
Obviously we also have
CoROLLARY 5.2. a € K(®; D(A™-1), D(A™)) if and only if
aeDA™Y) and D(p,(T;s,a)) < =,
for all T e M, (cf. [8, p. 96-98]).
From theorem 5.1 also follows

THEOREM 5.2. Under the assumptions of theorem 5.1 and if there is a
b e E such that

(5.6) lim|m!s™R, (T )a—b| = 0, a € D(A™)

8—>+0
then a € D(A™), b=A™a. Conversely, if a € D(A™), then (5.6) holds with
b= A™q.

THEOREM 5.3. If E is reflexive and if

sup ||m! s ™R, (T )al < oo, a € D(A™1),

0<s=s1

then the assumptions of theorem 5.1 imply that a € D(A™).

The proofs of these theorems are analogous to those of theorems 4.1
and 4.2 and will be omitted.
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