ON SETS OF VECTORS

PETER SCHERK

Given n non-void sets

$$(1) A_1, \ldots, A_n$$

of vectors in a finite or infinite dimensional vector space V over an arbitrary field. The letters a_i, b_i, c_i denote elements of A_i , and $\dim A_i$ denotes the dimension of the subspace spanned by A_i , $i=1,\ldots,n$. Let

$$0 \le m \le n$$
.

We consider the following two statements:

 $P_{n,m}$: n vectors a_1, \ldots, a_n always span a subspace of dimension $\leq m$. $Q_{n,m}$: There exists an integer h, $0 \leq h \leq m$, and an h-space containing h + (n-m) of the sets (1).

Obviously, $Q_{n,m}$ implies $P_{n,m}$.

The purpose of this note is to show that conversely $P_{n,m}$ implies $Q_{n,m}$. This assertion is trivial for n=1. We assume it has been proved up to n-1. From now on let n>1 be fixed. The case m=0 being trivial, we may assume m>0.

If some n-1 of the sets (1) satisfy $P_{n-1, m-1}$, then they satisfy $Q_{n-1, m-1}$ by induction assumption and the sets (1) themselves will satisfy $Q_{n, m}$. Thus we may assume that no n-1 of the sets (1) satisfy $P_{n-1, m-1}$, and hence, in particular, that m < n.

By the last assumption, there are n-1 vectors b_1, \ldots, b_{n-1} spanning a subspace V_m of dimension $\geq m$. By $P_{n,m}$, we have $\dim V_m = m$ and every vector a_n lies in V_m . This yields $\dim A_m \leq m$; more generally,

$$\dim A_i \leq m, \qquad i=1,\ldots,n.$$

In particular, we may assume V to be finite dimensional.

Suppose $A_n = \{0\}$. Then A_1, \ldots, A_{n-1} satisfy $P_{n-1,m}$. If m = n-1, then $Q_{n,m}$ is trivial with h = 0. If m < n-1, then our induction assumption implies $Q_{n-1,m}$ for the sets A_1, \ldots, A_{n-1} and the sets (1) satisfy $Q_{n,m}$. Thus we may assume

Received April 19, 1965.

(2)
$$A_i \neq \{0\}, \quad i=1,\ldots,n.$$

LEMMA. Suppose there is an integer k, $1 \le k \le m$, and there is a k-space containing k of the sets (1). Then $Q_{n,m}$ holds.

Proof. Without loss of generality, we may assume that the sets

$$(3) A_1, \ldots, A_k$$

lie in a k-space V_k . We may also assume that k is minimal. Thus either k=1 or every k-space contains fewer than k of the sets (3) if 0 < k < k. Thus $Q_{k,k-1}$ and hence $P_{k,k-1}$ are false for the sets (3) if k > 1. There are, therefore, k linearly independent vectors

$$c_1,\ldots,c_k$$
.

They form a base of V_k . (If k=1, this remark follows directly from (2).) We now project V parallel to V_k onto a subspace complementary to V_k . Dashes denote projections. For every choice of a_{k+1}, \ldots, a_n , the vectors

$$c_1,\ldots,c_k,a_{k+1},\ldots,a_n$$

span a space of dimension $\leq m$. Hence the projections

$$a'_{k+1},\ldots,a_n'$$

always span a subspace of dimension $\leq m-k$ and the projections

$$A'_{k+1},\ldots,A'_{n}$$

satisfy $P_{n-k, m-k}$ and hence $Q_{n-k, m-k}$. Thus there is an integer g, $0 \le g \le m-k$, and there are

$$g+(n-k)-(m-k) = g+(n-m)$$

distinct sets

$$A'_{i_1},\ldots,A'_{i_{g+n-m}}$$

among the sets (4) which lie in a g-space. The k+g+n-m sets

$$A_1,\ldots,A_k,A_{i_1},\ldots,A_{i_{g+n-m}}$$

then lie in the (g+k)-space through V_k and that g-space. Thus our lemma is proved with h=g+k.

We now complete the induction proof of $Q_{n, m}$. The integer n was fixed. Put

 $f = \sum_{1}^{n} \dim A_{i}.$

For f < n, our assertion is trivial; cf. (2). Suppose it has been proved up to f-1. On account of the Lemma, we may assume that

$$\dim A_n > 1$$
.

Let the set B_n consist of one single element $b_n \in A_n$, $b_n \neq 0$. Thus

$$\dim B_n = 1 < \dim A_n.$$

The sets

(5)

$$A_1,\ldots,A_{n-1},B_n$$

satisfy $P_{n,m}$. Also

$$\sum_{1}^{n-1} \dim A_i + \dim B_n < f.$$

Hence by our induction assumption for f and by (2), there is an integer k, $1 \le k \le m$, and a k-space containing k + (n - m) of the sets (5). Thus it contains $k + (n - m - 1) \ge k$ of the sets (1). Our lemma now yields $Q_{n,m}$.

UNIVERSITY OF TORONTO, CANADA