ON SETS OF VECTORS

PETER SCHERK

Given \(n \) non-void sets

\[A_1, \ldots, A_n \]

of vectors in a finite or infinite dimensional vector space \(V \) over an arbitrary field. The letters \(a_i, b_i, c_i \) denote elements of \(A_i \), and \(\dim A_i \) denotes the dimension of the subspace spanned by \(A_i, \ i = 1, \ldots, n \). Let

\[0 \leq m \leq n. \]

We consider the following two statements:

- \(P_{n,m} \): \(n \) vectors \(a_1, \ldots, a_n \) always span a subspace of dimension \(\leq m \).
- \(Q_{n,m} \): There exists an integer \(h, 0 \leq h \leq m \), and an \(h \)-space containing \(h + (n - m) \) of the sets \((1) \).

Obviously, \(Q_{n,m} \) implies \(P_{n,m} \).

The purpose of this note is to show that conversely \(P_{n,m} \) implies \(Q_{n,m} \).

This assertion is trivial for \(n = 1 \). We assume it has been proved up to \(n - 1 \). From now on let \(n > 1 \) be fixed. The case \(m = 0 \) being trivial, we may assume \(m > 0 \).

If some \(n - 1 \) of the sets \((1) \) satisfy \(P_{n-1,m-1} \), then they satisfy \(Q_{n-1,m-1} \) by induction assumption and the sets \((1) \) themselves will satisfy \(Q_{n,m} \). Thus we may assume that no \(n - 1 \) of the sets \((1) \) satisfy \(P_{n-1,m-1} \), and hence, in particular, that \(m < n \).

By the last assumption, there are \(n - 1 \) vectors \(b_1, \ldots, b_{n-1} \) spanning a subspace \(V_m \) of dimension \(\geq m \). By \(P_{n,m} \), we have \(\dim V_m = m \) and every vector \(a_n \) lies in \(V_m \). This yields \(\dim A_m \leq m \); more generally,

\[\dim A_i \leq m, \quad i = 1, \ldots, n. \]

In particular, we may assume \(V \) to be finite dimensional.

Suppose \(A_n = \{0\} \). Then \(A_1, \ldots, A_{n-1} \) satisfy \(P_{n-1,m} \). If \(m = n - 1 \), then \(Q_{n,m} \) is trivial with \(h = 0 \). If \(m < n - 1 \), then our induction assumption implies \(Q_{n-1,m} \) for the sets \(A_1, \ldots, A_{n-1} \) and the sets \((1) \) satisfy \(Q_{n,m} \). Thus we may assume

Received April 19, 1965.
(2) \[A_i \neq \{0\}, \quad i = 1, \ldots, n. \]

Lemma. Suppose there is an integer \(k \), \(1 \leq k \leq m \), and there is a \(k \)-space containing \(k \) of the sets (1). Then \(Q_{n,m} \) holds.

Proof. Without loss of generality, we may assume that the sets

(3) \[A_1, \ldots, A_k \]

lie in a \(k \)-space \(V_k \). We may also assume that \(k \) is minimal. Thus either \(k = 1 \) or every \(h \)-space contains fewer than \(h \) of the sets (3) if \(0 < h < k \). Thus \(Q_{k,k-1} \) and hence \(P_{k,k-1} \) are false for the sets (3) if \(k > 1 \). There are, therefore, \(k \) linearly independent vectors

\[c_1, \ldots, c_k. \]

They form a base of \(V_k \). (If \(k = 1 \), this remark follows directly from (2).)

We now project \(V \) parallel to \(V_k \) onto a subspace complementary to \(V_k \). Dashes denote projections. For every choice of \(a_{k+1}, \ldots, a_n \), the vectors

\[c_1, \ldots, c_k, a_{k+1}, \ldots, a_n \]

span a space of dimension \(\leq m \). Hence the projections

\[a'_{k+1}, \ldots, a'_n \]

always span a subspace of dimension \(\leq m - k \) and the projections

(4) \[A'_{k+1}, \ldots, A'_n \]

satisfy \(P_{n-k,m-k} \) and hence \(Q_{n-k,m-k} \). Thus there is an integer \(g \), \(0 \leq g \leq m - k \), and there are

\[g + (n - k) - (m - k) = g + (n - m) \]

distinct sets

\[A'_{i_1}, \ldots, A'_{i_{g+n-m}} \]

among the sets (4) which lie in a \(g \)-space. The \(k + g + n - m \) sets

\[A_1, \ldots, A_k, A_{i_1}, \ldots, A_{i_{g+n-m}} \]

then lie in the \((g+k) \)-space through \(V_k \) and that \(g \)-space. Thus our lemma is proved with \(h = g + k \).

We now complete the induction proof of \(Q_{n,m} \). The integer \(n \) was fixed. Put

\[f = \sum_{1}^{n} \dim A_i. \]

For \(f < n \), our assertion is trivial; cf. (2). Suppose it has been proved up to \(f - 1 \). On account of the Lemma, we may assume that
\[\dim A_n > 1. \]

Let the set \(B_n \) consist of one single element \(b_n \in A_n, b_n \neq 0 \). Thus
\[\dim B_n = 1 < \dim A_n. \]

The sets
\[A_1, \ldots, A_{n-1}, B_n \]
also satisfy \(P_{n,m} \). Also
\[\sum_{1}^{n-1} \dim A_i + \dim B_n < f. \]

Hence by our induction assumption for \(f \) and by (2), there is an integer \(k, 1 \leq k \leq m \), and a \(k \)-space containing \(k + (n - m) \) of the sets (5). Thus it contains \(k + (n - m - 1) \geq k \) of the sets (1). Our lemma now yields \(Q_{n,m} \).