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SOME RESULTS CONCERNING
A GENERAL SET THEORETICAL APPROACH
TO LOGIC

ANTON JENSEN

1. Introduction.

The meaning of compound propositions in a logical system is usually
defined recursively by defining the truth or falsehood of propositions as
dependent on the truth or falsehood of already meaningful propositions.
The basis for the definition is a set of atomic propositions which are con-
sidered meaningful in advance. A relation of consequence is defined by
stating that a proposition is a consequence of a set of propositions if it
is true whenever all propositions of the set are true.

The aim of this paper is to study the general aspects of a similar ap-
proach to logic. The idea is also recursively to attach meanings to com-
pound propositions and to define relations of consequence in accordance
with these meanings.

The observation which leads to the theory is that the meaning of e.g.
the conditional b => ¢ is given if b = c is defined to be a proposition
which together with b yields ¢. Of course many propositions may have
this property, but no other one can be defined by this property alone.

So, in our concept of logic, a meaning is attached to the elements of a
system of propositions by defining how each proposition together with
already meaningful propositions implies other already meaningful propo-
sitions.

It is possible to give a definition of relations of consequence (deriva-
tions) which in a natural way expresses the above formulated idea. The
main topics of the paper are the minimal derivations, which correspond
to the intuitionistic logic, the weak classical derivations, which are the
smallest derivations with the property that the double negation of a
proposition always implies the proposition itself, and finally the relations
of consequence derived by the above mentioned “‘truth-table’’ method.
The technique of characterizing relations of consequence as minimal
relations (derivations) having certain properties is due to L. Henkin [2].
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A general set-theoretical presentation is used in order to simplify nota-
tion and proofs. All propositions are considered elements of a set-theory,
and the compound propositions are defined in the following way: If 4,,
i€ l, are sets of propositions and y, ¢el, are propositions, then
{(4;,y;) | i € I} is the proposition the meaning of which is derived from
the fact that the proposition, for all k € I, together with A4, implies y,.

The main result is that the minimal, the weak classical, and the strong
classical derivations can be given general deductive characterizations,
which resemble the formal deductive systems of Gentzen [1]. These
deductive characterizations seem well suited for a kind of model theoreti-
cal treatment of formal logic, which is roughly sketched in the last sec-
tion.

I wish to express my gratitude to professor L. Henkin for his valuable
help in preparing this paper.

2. Set-theoretical preliminaries.

All objects of the theory which will be presented in the following sec-
tions are elements of a set-theory of the von Neumann-Bernays—-Godel-
type with the axiom of regularity and possibly with individuals.

Below are listed some conventions which are not generally used or
understandable:

V is the universal class.

0 is the empty set.

8(A4) is the class of all subsets of 4.

(@,by={{a,}, {}}.

{a,b,c)= <(a,b),c .

X{a, | v € N}=the class of functions from N to V such that f(») € a,.

A very important convention is the following: An element ae ¥V is
called basic with respect to a predicate @ if d(a) and D(x) does not hold
for any x which is an element of the transitive closure auUauUUUau. ..
of a. It is a consequence of the normally used axioms of set theory
that, if @ is satisfied by some b € V, then there exists an a which is basic
with respect to .

3. Fundamental definitions.

DeriniTION 3.1. An element x of the universe V is called compound if
2 € 8(8(V)x V), that is, if x'is a set of the form {(4,,;) |t € I}, where
A,<V for all kelI. For any class K, let C(K) be the class of all com-
pound elements of K.
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DEerFINITION 3.2. An element x of the universe V is called atomic if
z & C(V). For any class K, let A(K) be the class of all atomic elements
of K.

DEerINITION 3.3. A prelogic is a set L with the property that

{duy |iel} € CL)
implies A, L, y,,e L for all ke I.

NoraTion. The letter L will always denote a prelogic. For the rela-
tions , H-, etc., we shall use the normal notation, writing I't z instead of
I xyet, IAt x instead of {(I'ud,z)et, Iyt instead of {I'u{y},z)
€t, ete.

DEeriNITION 3.4. The relation + is a derivation on L, f F<S(L)x L
and the following four conditions are satisfied:

(0) If I't 2z for all ze 4 and At x, then I't z.

(1) If ke I'c L, then I't 2.

(2) I x={{4;,y) |t €I} € C(L), then x,4,F y, for all ke I.

(3) Hae={4yy) |tel} € C(L) and I, At y, forallke I, then I't 2.

Conditions (0) and (1) express fundamental properties of any relation of
consequence. Condition (2) expresses that {(4;,¥,> |+ €I} is to be con-
sidered as a proposition, the assumption of which enables one, for each
keI, to draw the conclusion y, provided all propositions of A4, are
assumed. Condition (3) expresses that the meaning of {(4,, y;,> | 1 € I} is
to be derived solely from this property; that is, if the set of propositions
I" permits one, for each keI, to draw the conclusion y, provided all
propositions of 4, are assumed, then {(4,y;) |% €I} is itself a conse-
quence of I

The following three definitions are listed at this point in order to
facilitate the interpretation of the theory. Notice that the defined sets
are not necessarily elements of the prelogic L.

- DEFINITION 3.5. If 2 € V, then — o = {({x},y) |y € A(L)}.

DEeriNITION 3.6. If 2,9 € V, then

rT=Y = {({x},y)} >
TAY = {(@,x),(@,y)} ’
xvpy = {{o =29 =>2hL2) |2€ A(L)}.

DerintTION 3.7. If '€ S(V), then
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VI={{@x)|zel},
3,7 ={{{z=y|zecT}y) | ye A(L)}.
Below are listed without proof five simple consequences of the defini-

tions. In the later sections these propositions will generally be used
without any references.

ProrositioN 3.1. If | ts a derivation on Land I"<I'c L, then I'"t x
smplies I't x.
ProrosrrioN 3.2. If | is a derivation on L, {4,y) e UC"), 'tz for
all ze 4, and Iyt x, then I't z.
ProrosrrioN 3.3. If s a derivation on L and
I't {{dpyp|iel} e CIL),
then I',A by, for all ke L.

ProrposITION 3.4. The intersection of a non-empty set of derivations on L
18 a derivation on L.

ProrpositioN 3.5. S(L)x L is a derivation on L.

4. The minimal derivations.

DEerFintTION 4.1. H-7, the minimal derivation on L, is the intersection of
all derivations on L.

DEerINITION 4.2. A mintmal deduction is a triple (I, zy, 7,y which is
an element of a set P of triples {(I',x,n) each of which satisfies the con-
dition < P and one of the conditions:

(1) »=0 and x e I.
(2) m={I\2,m,) |z A} u {{I'u{y},2,n')}, where (4,y) e UC(T).
(3) n={{l'ud,y;n,) |1 €I}, where z={{d;,y,) |t €I} C(V).

DEerFINITION 4.3. I'H 2 means that there exists a minimal deduction

Iz, 7).
THEOREM 4.1. The relation H satisfies the conditions:

(0) If 't 2z for all ze A and A H z, then I'H x.

(1) Ifxel'eV, then I'H .

@) If z={{d,,y,) | i € I} € C(V), then z, A, -y for all ke I.

(3) If e={4,y) |1€ I} e C(V)and I, A, Wy, for all k € I, then I'H- x.
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Proor. (1) If x € I'e V, then (I',z,0) is a minimal deduction.
(2) If e={4;,y;) |1 €I} € C(V) and k € I, then

<{x} U4y, Y {({x} Udy29)|ze Ak} u {({x} ud,u {yk},.'/k:@>}>

is a minimal deduction.

(3) If m={I'ud,y;m;)|tel} is a set of minimal deductions and
z={{4;y) |t €I} e C(V), then {I',x,n) is a minimal deduction.

(0) is proved by lemmas 4.2, 4.3 and 4.4.

Lemma 4.2. I"cI'e V and I Kz imply I'H .

Proor. Assume J&y=<{Iy,%,, 7,y basic with respect to @: D(5) iff
0={(I",z,x) is a minimal deduction and there exists a I"e ¥V such that
I"'cI' and I't x is false. Assume I'ye V, I'V' < Iy and I'jH x, is false.

(1) mo=0 and xy € I'y’. In this case (I'y,xy,?) is a minimal deduction.

(2) mo={Ty 2,7,y | 2 € A}U{{Ty' U{y}, 2o, 7>}, where <4,y) e UC(TY).
There exists a set o= {(I,2,%,) | z€ A}U{(T,U{y}, %, 7>} of minimal
deductions, and {I'y,z,,7,) is a minimal deduction.

(8) mo={{Ty'Vdy,y,m;) | i €I}, where zy={(4,y;) |i€I}eC(V).
There exists a set 7y={{I U4, ¥y;,7;) | © € I} of minimal deductions, and
(T, %y,7py 18 & minimal deduction.

Lemma 4.3. I' H-{{4;,y,) |1 € I} € C(V) implies I', A, Wy, for all k € I.

Proor. Assume d,={l,%,7,» basic with respect to @: PD(d) iff
8=(I,x,n) is a minimal deduction, x € C(V), and I, A H y is false for
some {4,y) e x. Assume (4,,y,> € , and [y, 4, H y, is false.

(1) my=0 and z, e I'y. In this case

(Lo U Ao,y {{T'o U 40,2,0) | z€ 4} U {Fo ud,u {3/0};?/0’@>}>

is a minimal deduction.
(2) 7o={KTp,2,7,) | 2 € AJU{{TyU{y}, 20, 7')}, where (d,y)e UC(Iy).
Using lemma 4.2, we get the existence of a set

7y = {{LoyVUdp2,7,) |zed}u {(Fo udyu {y}’yo’ﬁl>}

of minimal deductions, and (I'qU4,,¥,, 7, is @ minimal deduction.

(3) mo={{Tyud;,y;7;) | i€}, where xy={{d;,y,) |1 €I}. There is a
ke I such that (dy,y0) =<4, ¥r), and (LU, Yo, ;) is & minimal de-
duction.

LemmA 4.4. If 'Kz for all z€ A and I',A H =, then I'H .

Proor. Assume 4, basic with respect to @: @(4) iff there exist I" and
z such that I'H z is false although I'H-z for all ze 4 and I'AH .
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Assume Jy= (I Uy, 2,7,y basic with respect to ¥: W(8) iff o=
{(I'udy,z,n) is a minimal deduction such that I'H z for all z e 4, and
I't z is false.

(1) my=9 and =z, I'yud,. If xyel,, then (Iy,x,,9) is a minimal
deduction. If z,€ 4,, then I'yH =z, is assumed.

(2) mo={{TyUdy,2,m,) | z€ A} U {KTUAoU{y}, %o, 7'y}, where (d,y)e
C(Iy)uC(4,). Using that ¢, is basic with respect to ¥ and lemma 4.2,
we get the existence of a set

7_‘0 = {(szvﬁz> l € A} U {<F0 U {y}’xo:ﬁ'>}

of minimal deductions. If {4,y) € C(I',), then {Iy,x,,7,y is a minimal
deduction. If (4,y) € C(4,), then lemma 4.3 implies Iy, 4H y. Since
I'yH 2z for all ze A4 and 4, is basic with respect to @, we get I'yH y.
Finally, since I'y,y H xo, we get I'oH x,, using on {y} that 4, is basic
with respect to ®.

(3) my={{ToUdoUdyys 7y | i €I}, where zo={{d,,y,) |iel}eC(V).
Using that §, is basic with respect to ¥ and lemma 4.2, we get the exis-
tence of a set

Ty = LoV Ay, 7y |i e I}

of minimal deductions, and {(I'y,x,,7,) is a minimal deduction.
TaEOREM 4.6. I'Hpz iff 'L, xe€ L and 't x.

Proor. Let I't x mean that I'c L, x € L and 't z. It is an imme-
diate consequence of theorem 4.1 that I is a derivation on L. In order
to prove that ' < H, assume 8y = (', ,, 7,) basic with respect to @: D(8)
iff ={I',2,n) is a minimal deduction, I'c L, x € L and I'H z is false.

(1) mg=0 and xy€ I,. Then I'jH, x,.

(2) mo={(T 2,7,y | 2€ 4} U {{TU{y}, 20, 7")}, where (d,y)e UC(Iy).
We have I'ygH-, z for all ze 4 and I'y,y H, %, and proposition 3.2 gives
Iy .

(3) mo={{I'oudy,y;,7;) | ¢ € I}, where xy={{d;,y;) |t €I} e C(V). We
have I'y,4; H 1y, for all ke I, but then I'yH x,.

The conditions in definition 4.2 of minimal deductions can be strength-
ened in various ways without decreasing the class of pairs (I',z) for
which deductions (I',z,n) can be found. The following definition can
be further strengthened, but is sufficient for our purpose.

DrriniTION 4.4. A regular minimal deduction is a triple (I'y,,,7,),
which is an element of a set P of triples (I',z,n), each of which satisfies
the condition < P and one of the conditions:
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(1) #=0 and z e A(I).

(2) a={T\2,m,) |z€ A} U {(FU {y},x,n')}, where (4,y) e UC(I"), and
y=x if ye A(V).

(3) m={I'ud,ys,m) | i € I}, where x={{d,,y;) |iel} € C(V).

ProposiTioN 4.6. I'H x implies the existence of a regular mintmal
deduction {I',z,7).

Proor. Assume xz, basic with respect to @: D(x’) iff there exists a
minimal deduction ¢’ ={I",z’,n") which is basic with respect to ¥': ¥(9)
iff 6 =(I',x,n) is a minimal deduction, and no regular minimal deduction
Iz, 7"y exists. Assume (I, %y, 7,) is basic with respect to 7.

(1) mg=0 and xy € Iy. If xye A(V), then (I'y,2,,T) is a regular minimal
deduction. If zy={{4;,y,) | € I}, then the assumption that z, is basic
with respect to @ implies the existence of sets

my = {{Tyudyzm ,»|2ed}u {(F ud;u {yi},yi,ni'>}, 1el,
of regular minimal deductions, and

<F0,xo, {Toud,y,m)|ie I}>
is a regular minimal deduction.

(2) mo={{Tp2,m,) | z€ A} U {{ToU{y}, %0, 7")}, where (A,y) e UC(T,).
There exists a set

fg = {{Lp2,7,) |z€4} U {<Fo U {y}’xo’ﬁ'>}

of regular minimal deductions. If y € C(V) or y==, then (I, %,,7,) is
a regular minimal deduction. If y € 4(V) and y #x, then lemma 4.7 below
can be used.

(3) mo={(TUdy,y;,7m;) | i €I}, where xy={({dy,yy)|iel}eC(V).
There exists a set @y={{(I U4, ¥;7;) | ¢ € I} of regular minimal deduc-
tions, and (I'y,%,, 7,y is a regular minimal deduction.

Lemma 4.7. If o={I\z,7,) |ze A} u {{T'u{y},x,n')}, where (4,y) e
UC(I') and ye A(V), is a set of regular minimal deductions, then there
exists a regular minimal deduction (I',x,n'").

Proor. Assume {I\U{y,},2y,7,") basic with respect to @: &() iff
8=(I'u{y},z.a’) is a regular minimal deduction, {4,y)e UC(I), y e
A(V), and there exist regular minimal deductions {I',z,n,) for all z€ 4,
but no regular minimal deduction (I',z,zx).

Assume that {(I'y,2,7,) | 2 € 4} is a set of regular minimal deductions,
and that no minimal deduction {(I'y,xy,m,) exists.



12 ANTON JENSEN

(1) =y’ =9. If e I'y, then (Iy,x,,9) is a regular minimal deduction.
If 2y=y,, then

<F0,x0,{(To,z,n,> |zed}u {<F0U{yo}’xo’“ol>}>
is a regular minimal deduction.

(2) @y’ ={{ToU{yo} u,m,) | w e A} U {ToU{yo}u{v}, 2o, 7"")}, Where
(4',v) e UC(I'y). Using the obvious generalization of lemma 4.2 to
regular minimal deductions, we get the existence of a set

7y = {(Tou, @,y |ueAd'}u{(Tyu {v}, 207"}

of regular minimal deductions, and (Ig,%,,@,") is a regular minimal
deduction.

(3) ' ={<ToUA;U{yo}. ys,7s) | ¢ € I}, Where o= {4,y | i € I} € O(V).
Using again the generalization of lemma 4.2 to regular minimal deduc-
tions, we get a set

7y = {{TyVdsy,7) |iel}

of regular minimal deductions, and (I'y,,,%,") is a regular minimal
deduction.

5. g-minimal derivations.
The following proposition is easily proved by theorem 4.1:

ProposritioN 5.1. If g € V, then the relation H-;2 defined by
I'tt2x iff I'eL, xelLl and I',gH x,

18 a derivation on L.
DerinrrION 5.1, H-;? is called the g-minimal derivation on L.

TaEOREM 5.2. If q={({I, ,) |v€ N}=S(L)x L, then 112 is the inter-
section of all derivations + on L having the property that T',t x, for all v e N,
and H-12 has this property itself.

Proor. Theorem 4.1 implies that I',, ¢ H z, for all v € N ; therefore, all
we have to do is to prove, that H-;2< | for all derivations F on L satisfy-
ing [, bz, for all ve N. Let | be such a derivation.

Assume 6y= (I U{g}, 2y, 7,) basic with respect to @: &(d) iff d=
{I'u{g},z,nx) is a minimal deduction, I'c L, z€ L, and I't' = is false.

(1) my=0 and x,€ I',. But then Ij} x,.

(2) mo={<Tou{g},2m,) | z€ 4} u {KTuiy}u{a} e, '>} where (4,y) €
UC(I'y)ug. We have I,V z for all ze 4, and TyyV x, If (4,y)€
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UC(T,), then proposition 3.2 implies Iyt @, If {(4,y) €q, then 4V y,
and consequently Iy}t x,.

(3) my= {(I’ou{q}udi,yi,ni) |ie I}, where xy={(4;,y,) |1eI}eC(V).
Here I'y, 4, V' y, for all ke I, and consequently Iy} x,.

6. Properties of the negation — .
ProposiTiON 6.1. 2, —~ 2ty for all xe V and y € L.

Proor. Assume y, basic with respect to @: @(y) iff ye L, and
x, -y, is false.
If yoe A(L), then {{x},y,) € — 2, and &, -~ xH y, If

Yo = {doyp |ieI}eCl),

then z, -~z H vy, for all ke I.
Lemma 4.2 gives z, - x,4,H y, for all kel, and consequently
x, = H y,.

ProrositioN 6.2, I H y implies I', — py H — 2.

Proor. I', -y, 24y and I, —y,xH —py; consequently I', -y,
H-z for all z € A(L), and this implies I', -,y H — 2.

ProrosiTioN 6.3. 2H — —px forall ze V.
Proor. z, —xH 2z for all ze€ A(L), and consequently xH —  —z.
PROPOSITION 6.4. —; —f —pZH —px for all x€ V.
Proor. Proposition 6.2 applied to e H —; — 2 gives
- L pH .

ProposiTion 6.5. If A(L) contains more that one element, then
— gz &t x is false for all x e A(L).

Proor. Assume {({—j —z},2,7) is a regular minimal deduction, and
ze A(L). Then

T = {({_'L _'Lx}) '—‘van'>’ <{—1L ﬁLx,x},x,ﬂ">} .

This implies —7 —pzH —,z, and we have z,— - zHy for all
ye A(L). Since xH —; — .z, we have zH y for some ye A(L)\{z},
which contradicts the obvious fact that no minimal deduction {{x},y,x)
exists, where z,y € A(V) and z+y.



14 ANTON JENSEN

7. The weak classical derivations.

DrrvtTioN 7.1. With wy={{{— - ,2},2) |z € A(L)}, the relation
H- YL is called the weak classical derivation on L.

Lemma 7.1. - —p2x,wpH « for all x € L.

Proor. Obvious if x € A(L). Assume z,={{d4;,x,) | ¢ € I} basic with
respect to @: P(x) iff re L and — — pz,wy H x is false. We have that
Ay, 2oy, for all kel. Using proposition 6.2 twice, we obtain
Ay~ %t — —py; for all ke I, and since — — .y, wr H ¥, for
all keI, we have —; — &y, 4w H vy, for all ke I, and consequently
—r %W H .

TaEOREM 7.2. If — 2 € L for all x € L, then H-;*L is the intersection of
all derivations } on L having the property that —; —xtz for all x € L,
and H L has this property itself.

Proor. From theorem 5.2 it follows that H-;*Z is the smallest deriva-
tion + with the property that —, —,ztF« for all z € A(L); and from
lemma 7.1 it follows that —, — ;2 H*“Zx for all x € L.

DeriviTioN 7.2. A weak classical deduction is a triple (I, 0,,7,),
which is an element of a set P of triples (I',0,n) each of which satisfies
the condition #< P and one of the conditions:

(1) a=¢ and I'n0+0.
(2) m={KI,0U{z},m,) | z€ 4} U {{T'U{y},0,n")}, where (4,y) e UC(I).
(8) m={KI'u4,,0u{y;}, 7> | i € I}, where x={(4;,y;) |1 I} C(0).

DEeriNITION 7.3. I'H%* 6 means that there exists a weak classical de-
duction (I, 6,n).

NotatioN. We shall write I'H* 2z instead of I'Hv {z}, I'Hvz,0
instead of I'H¥ {x}u6, etc.

TaroreM 7.3. I'h "2z iff I'c L, xe L and I'H¥ 2.

Proor. The theorem is proved by a series of lemmas of which lemma 7.7
and lemma 7.8 directly imply the theorem.

LemMA 7.4. T Hv 0, implies Iy, I'y H 0,0, for all T,,0,< V.
Proor. Analogous to the proof of lemma 4.2.
Lemma 7.5. T, =z H¥ 0,2 implies I'Hv 0,x.

Proor. Assume 8y=(IgU{— 2o}, 0,U{%,},7,) basic with respect to @:
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&) iff o= U{—x},0u{z},n) is a weak classical deduction, and
't 6,z is false.

(1) my=0 and (LyU{—yxe}) N (Ou{xe})=P. If —,x5€06, then
(Lo, 06U {o}, {{ToU {mo}, 0U{mo} U {y},0) | y € A(L)}) is a weak classical
deduction. If — ;¢ 0y, then (Iy,0,U{x,},9) is a weak classical deduc-
tion.

(2) ”o={<FoU{—'on}s Opu{zoyu{z}, ) |z € A} u {(FOU{“L%}U{?/}’ /Y
{xo}, ')}, where (4,y) € UC (IyU{—1x,}). We have a set

Ty = {(Fm 0o U {zo} U {z},7,) | z € A} u {(Po U {y}0,u {xo}’ﬁ'>}

of weak classical deductions. If {(4,y) € UC(I,), then (I'y,0,U{z,},7,)
is a weak classical deduction. If (4,y) € — 1%, then (I'y, 04U {x,}, 7, is
a weak classical deduction.

(3) yzo={(PoU{—'Lf""o}UAt’ OoU {mo}U{ys} ) | € I}, {{dpyp |tel}e
C(0yu{x,}). There exists a set
Fy = {(ToU 45,0, U {z} U {y;}, %) | i e I}

of weak classical deductions, and (I'y,0,U{z,},7,) is a weak classical
deduction.

LemMMmA 7.6. I'H* 0, — ;, — Lz smplies I'H* 0,2 for all x € A(L).

Proor. Assume 6y=(I,0,U{— 1, — %}, 7,y basic with respect to @:
D(9) iff 6=(I',0u{— —x},7) is a weak classical deduction, x € A(L),
and I'Hv 0,z is false.

(1) me=0 and I'yN(0U{—1 —1r%e})*+D. If I'ynOy+D, then (Iy,0,u
{x,},9) is a weak classical deduction. If —; — 2, € I, then

<Fo U {=1%},00 U {xo},{<ro U {= 1%}, 00 U {xo} U {— 1%}, 9) ,

(To U {17} U {o}, 04 U {“’o},g»)
is a weak classical deduction. Therefore, Iy, — 1z, H* 0,,%,, and lemma
7.5 gives I'jg H%0,,,.

(2) m = {(Fo, U {—r —1%o} U {z}m,) |z € A} v
U {(Po U{yhboU{—yr _'on},“’» ’
where {(4,y) e UC(I;). There exists a set
Ty = {(Po’ 0o U {mo} U {2},7,) | 2z € A} U {(Fo U{y}0,U {xo}’ﬁ’»

of weak classical deductions, and (I'y,0,U{x,}, %,y is a weak classical
deduction.

(3) my={{Toudy,0U{~ 1 = 1%}V {ys}, ;) | 4 € I}, where
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{{duyp |iel} e CBU{—1 —r%)).

There exists a set

g = {{ToU 4,0, U {mo} U {y}, 7 | i e I}
of weak classical deductions. If {(4;,y,) |+ €I} e C(0,), then

(T, 00 U {Z}, o)

is a weak classical deduction. If {{4;y;)|t€l}=—, -2, then
zo=1y; for some ke I, and (I U{— x,},0,U{x,}, 7,y is a weak classical
deduction. This proves that I, —  z,H® 0y, and lemma 7.5 gives
Lo H 04,2,

Lemma 7.7. I'{— .y |y € 0}, wy H x implies I'Hv 6,z.

Proor. Let 0={—_,y|ye 6} and assume Jy=<{LyUB,U{w.}, 207D
basic with respect to @: @(d) iff d=(I'ufuU{w.},z,7) is a regular minimal
deduction and I'Hv 6,z is false.

- (1) my=0 and xye I',. Then {Iy,0,U{x,},0) is a weak classical de-
duction.

(2) mo={{Toubuf{w;}, 2,7, | z€ AJU{(T,U0,U{w }U{y}, 20,7}, Where
{4,y> e UC(I',ub,u{w.}). Using lemma 7.4 we get a set

Ty = {(Fm 0o U {zo} U {2}, 7%, |z € A} U {(Fo U {y}0,u {xo}’ﬁ'>}

of weak classical deductions. If {4,y) e U C(I,), then {I'y, 0, {z,}, 7o) is a
weak classical deduction. If (4,y) e U#f,, then 4={z,}, where z,¢€ 6,
and (I, 0,U{x,},7,) is a weak classical deduction. If (4,y) € w;, then
A yy={—1 — 1%} %y and xz,e A(L). Consequently IyHY 6,2,
—r %, and lemma 7.6 gives I'q H* 0,,,.

(3) mo={{TpubpU{w }ud;y,m;) i€ I}, where xy={(4.,y;)|i€}e
C(V). Using lemma 7.4. we get a set

7y = {{To U 4;,0, U {xo} U {y}, @)}

of weak classical deductions, and (Ig,0,U{,},7,) is a weak classical
deduction.

Lemma 7.8. x€ L and I'Hv 0,z imply I',{—y |y € 0}, wy H .

Proor. Let 0={—_,y |y 06}, and assume &,= Iy, 0,U{zo}, 7, basic
with respect to @: @(9) iff d=(I",0u{x},n) is a weak classical deduction,
ze L and T,6,w; H z is false.

(1) my=0 and Iyn[0,U{x,}1+9. If xye Iy, then Iy,0,,w,H z, If
I'yn 6y, then proposition 6.1 implies I'y,0,, w; H z,.
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(2) mo={(To, 00U {zo}V {2}, m,) | z € AJU{(T,U{y}, 00U {zo}, 7))},  Where
A,y) e UC(I,). We have I'y,0y, — 2o, wH 2z for all ze 4 and con-
sequently Iy,0p, — 7%, wy H y. Furthermore, I'y,0,,y,w; t x,, and pro-
position 6.2 gives Iy, 0y, — %o, wr H —.y. Now proposition 6.1 gives
Ty, 0p,wy, — L2t 2z for all z € A(L), and this implies I'y, 0y, w; H — f — %0,
and finally lemma 7.1 gives I'y, 0y, w;, H %,.

(3) mo={<ToU4y,0,u{xe} Uy}, ) | i € I}, where

{{doyd |ieI}eC6,V {x,}) .
We have Iy, 0y, — 1.24,wr, 4, H y, for all keI, and consequently I, 0,
—rxewrt {4y |1 €I}, Since —p{{4,y;)|iel}e bpu{- Lz}, we
have Iy,0,, — %, wrt 2 for all ze A(L), and consequently I'y,f,,w;,
H =7 —1%. Now lemma 7.1 gives Iy, 0y, w H z,.

8. The strong classical derivations.
DeriniTION 8.1. Using the notations

Ap = Au{-,y|ye AL)\A} forall A < A(L),
s = {({{AL.y> | A = AL)}Ly) |y e ALY},

H-.°F is called the strong classical derivation on L.

Intuitively s; states that one of the sets A, A < A(L), contains nothing
but true sentences. (Compare with the definitions of v,y and 3,I" in
section 3.)

ProrosiTioN 8.1. If AS A(L), then Ay W s;.
ProrosiioN 8.2. If ASA(L) and x € L, then Ay H x or AW — 2.

Proor. Obvious if x € A(L). Assume z,={{4;,y;) |4 €I} e C(L) ba-
sic with respect to @: P(z) iff ApH x and AH — x are both false.

Since A H =, is false, we have A, A; H v, is false for some ke I.
Consequently A H y, is false, and A, H — y, is true. Since A, H — .2
for some z € 4, would imply 4,, A4, H y,, we have A, H z for all z € 4,,
and from this Ag,z,H y, follows. But Ay, H y, and Ag,zoH — Ly
imply A,z H z for all ze A(L), and consequently A H — ;.

DEFINITION 8.2. A truth-assignment on L is a set M <L with the
property that
{{dpyp |iel} e C(M)
iff no k € I exists such that 4, <M and y, ¢ M.

Math. S8cand. 16 — 2
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Prorosition 8.3. If AcA(L), then M={x |z e L and Ay H x} is the
only truth-assignment on L with the property that A(M)=A.

Proor. A(M)=24 is obvious. To prove A(M)cA, assume d,=

(Ay,xy,m,) basic with respect to @: D(0) iff =LA, x,7) is a regular
minimal deduction and — x € A;. Then

7y = {(fiL,?/o’%’), Agu {xo}’xo:ﬂo”>} ’

where — .y, € A;, and this contradicts that &, is basic with respect to @.
To prove that M is a truth-assignment on L, assume

z = {dpy lie T eO(L) .

If A H « and AL H 2 for all z € A,, where ke I, then A, H y,; and if
no k e I exists such that A H z for all z € 4, and A, H y, is false, then
Ay, AL H gy, for all keI because of proposition 8.2, and consequently
y| L H .

Finally, assume that M’ is a truth-assignment on L, and that 4(M') =
A(M)=A. Assume that zy={(4;,y,) |+ € I} € C(L) is basic with respect
to ¥: ¥(x) iff either xe€ M and x¢ M’ or x ¢ M and xe M’'. Then
zy€ C(M) iff no kel exists such that 4,c M and y, ¢ M iff no kel
exists such that 4, < M’ and y, ¢ M’ iff x, € C(M').

DerFinITION 8.3. A Sstrong classical deduction is a triple (I, 0,,7,»
which is an element of a set P of triples (I, 0,7) each of which satisfies
the condition » < P and one of the conditions:

(1) =0 and I'nf+0.

(2) m={CI'UT},0U0,7 | fe X{4,u{4,} | v N}}, where

Iy={y,|veN and f0) = 4}, 6, = {f() |[ve N and f(r) €4}
and {4,,y,> e UC(I") for all ve N.

(8) m={I'ul,,0uUb,,7,) | g€ X{z, |»e N}, where I',=U{4,, |ve N},

0,={y,, |ve N}, g0v)=(4,,.9,,> and z, € C(0) for all veN.

Notice that the weak classical deductions can be considered as strong
classical deductions, where the index sets N are always singletons.
Intuitively each step in a strong classical deduction is the simultaneous
execution of a number of weak classical steps; one step for each element
of the index set N. It is not hard to prove that any strong classical
deduction with a finite index set N can be replaced by a weak classical
deduction. As we shall see in the next section, this does not hold for
strong classical deductions in general.

THEOREM 8.4. The following four conditions are equivalent:
(a) I'H %L .
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(b) I'cL, xe L, and Ay, '+ x for all A< A(L).

(¢) I'cL, xe L, and I'c M implies x € M for all truth-assignments
M on L.

(d) I'c L, x € L, and there exists a strong classical deduction {I",{x},7).

Proor. The theorem is an immediate consequence of the following
five lemmas, which prove (a) — (¢), (¢) = (b), (b) > (a), (d) — (¢) and
(c) - (d).

Lemma 8.5. If I'H-°L x, then no truth-assignment M on L exists such
that 'c M and x & M.

Proor. Assume 8y=(I\U{s.}, 2,7,y basic with respect to @: @(0) iff
0=(I'u{sy},®,7x) is a regular minimal deduction, and there exists a
truth-assignment M on L such that 'c M and x ¢ M. Assume M=
{x |z e L and Ay W x}, where A< A(L), Ty M, and z, ¢ M,.

(1) my=9 and xy€ A(Iy). Since xye Iy, I'ys M, and z, ¢ M, cannot
both be true.

(2) my={<ToUfsh ) | z€ 4} U {(TaUls ) Uy}, 20y}, where (4,y) €
UC(IyU{s.}), and z,=y if ye A(L). We have z€ M, for all ze A be-
cause J, is basic with respect to @. If {4,y)e UC(I,), then ye M,;
but I'yu{y}< M, implies x,e M, since ¢, is basic with respect to .
If {4,y) € sy, then y=1, and (A UTyU{s.},%,,7"") €7, for some z € 4,
and since A H u for all we I'yu{s;}, we have A, H x, which implies
zo€ M,.

(3) n0={<F0UAiU{8L}:yi’ni> |ie I}’ where zy={(4;,y;) | v € I} e C(L).
Since x, ¢ My, a k € I exists such that 4,c M, and y, ¢ M, But since
I'yu4,< M, and §, is basic with respect to @, we have y, ¢ M,, which is
a contradiction.

Lemma 8.6. If A A(L), T'<L, x € L, and Ay, Tt  does not hold, then
I'cM and x ¢ M, where M={y |ye L and A, H y}.

_ Proor. We have Az forall ze I, since otherwise ZIL H —zz and
A, 't x; consequently I'c M. Since A;,I'H x is false, Ay H x is false,
and z ¢ M.

Lemma 8.7. If I'cL, xe L, and Ay, 't x for all A<A(L), then
Isp H 2.

Proor. Assume z, basic with respect to @: &(z) iff x € L, there exists
a I'c L such that A7, I''t z for all A< A(L), but I',s;, H 2 does not hold.
Assume I'yc L and Ay, Iy H x, for all A< A(L), but I'y,s; H x, is false.
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If zy€ A(L), then IyH {(Ap,z) | AsA(L)} and thus Iy sy H- .
If y={(4;y;) |t €l}eC(L), then A;,4;, T, H y, for all A A(L) and
all k€ I; consequently A,,Iy,s; H y, for all ke I, and Iy,s; H x,.

Lemma 8.8. If I'c L, < L, and there extists a strong classical deduction
{I,0,n), then no truth-assignment M on L exists, for which I'c M and
0= IL\M.

Proor. Assume &y={I,0y,7,) basic with respect to @: &) iff
0={(TI',0,x) is a strong classical deduction, I'c L, 6 < L, and there exists
a truth-assignment M on L such that I'c M and 6 < L\ M. Assume M,
is a truth-assignment on L, I'y)c M, and O,< L\ M,

(1) my=0 and I'yn0,+@. Impossible since I'yc M, and 6,nM,=0.

(2) wp= {(FOUF,, 0007 | fe X{d4,u{4,} | v € N}}, where

Iy ={y,|velN and f(v)=4,},
6; = {f(») |veN and f(»)e4,},
{4,,y,y e UC(I,) forall veN.

At least one fye X{4,u{4,} |» e N} has the property that y, e M, if
fo¥)=4,, and f(v)e I\M if fo(v)ed, But then Iuly <M, and
0oU 05 < LN\ M,.

- (3) me={KT,UT,,0U0,,7,>|ge X{z,|veN}}, where I',=U{4,,|ve N},
0,=1{y,,, |ve N}, gw)=<4,,.9,,), and x, € C(6,) for all ve N. At least
one g, € X{z, |» € N} has the property that 4, ,c M,, y,, , ¢ M, for all

Josv =

veN. But then I'\UI, < M,, 6,u6, < L\M,.

Lemma 8.9. If I'c L, 6< L, and no strong classical deduction {I,0,r)
exists, then there 18 a truth-assignment M on L suchthat ' M and 6 < L\ M.

Proor. If no classical deduction (I',0,7) exists, then there exists a
sequence {(I,,0,> |n=0,1,2,...}, where I'\=TI, 6,=0, I',,,=I,0l},
0p41=0,U0,, for n=0,1,2,.. ., and such that for all £=0,1,2,...:

(1) kg€ X{4,0{4,} | v € Ny},
Iy, = {Y, | v € Ny, and hy(v) = 4,},
Onge = {Par(v) | » € Ny, and hy(v) € 4,},
Nzk = UC(sz),
{4,,yy=v forall ve Ny,

and no strong classical deduction (I'yUI%,,,05,U0,,,,7) exists.
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(2) hopsr € X{z, | v € Nopia}s
‘I-'hgk+1= U {Af' I S 'N2k+1}’

Oh,,,+l ={y, | » € Nogsa}
N2k+1 = 0(62k+1)’
{4,,9,) =haj.1(v) for all v € Nyy,

and no strong classical deduction (I'y Ul 05410, ,7) exists.

Let I',=U{I', |7n=0,1,2,...} and 6,=U{6, |n=1,2,...}. Now we
claim that I',cM and 6, L\M, where M={z |ze L and A H z}
and A=A(T,).

Assume that x, is basic with respect to @: @(x) iff either x € I', and
zxéM,orxel, and xe M.

zy € A(L) is impossible: If z,e A(I',), then xye M by the definition
of M, and if z,€ 4(8,)n M, then there exists an n such thatx, € A(I",n8§,),
and consequently (I,,0,,9) is a strong classical deduction.

Assume that zy={{4;y,)|¢€l}eC(L). Chose k such that z,€e
Iy uby. If xgely, then A;c M implies hy,((4;y;))=4; and con-
sequently y; € I}, and y;€ M, for all je I, and we have xye M. If
Zy € Oy, then AcM and y ¢ M, where (4,y)=hy, (x,), and con-
sequently x, ¢ M.

9. Relations between the weak and the strong classical derivations.
THEOREM 9.1. sy H w; and H L 2 H, “L,

Proor. The theorem follows from the fact that the weak classical
deductions are special cases of strong classical deductions.

ProposiTioN 9.2. wi H s, ¢ff A(L) s finite.

Proor. That w; H s, if A(L) is finite, is a consequence of the next
theorem 9.3.

Assume that A(L) is infinite and w; H s;. Define
Z={(Agx)y|Ac AL) forall ze A(L).

Then we have Z,w; H « for all x € A(L), and consequently there exists
a weak classical deduction ({Z,},{%,}, %), where z,ec A(L). Assume
8o={Zo}UT,, 04 U0, ,7yy basic with respect to @: P(d) iff

0= {F}ul,0'ub" )
is a weak classical deduction, I', 6’, 6’ are finite sets,
I'c A(L), 0 < A(L), 60" ={-ryl|lyel’}

for some I"< T, and I'n6’=d. Notice that we have assumed
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P({Zo}, {20}, 7)) -

(1) my=0 and [{Z,}ul,]n[0,'Ub,']+D. This contradicts that @D(d,).
(2) my = {{{Fo} U Ty, 00 U B U {2}y |24} U
U {{{Zo} U T U {@o}, 05 U 0", 7'},

where A=A, for some A< A(L). Since I'y, 6," and 0, are finite sets and
A(L) is infinite, there exists a z, € 4 such that

D({Zp} U Ty, 0" U 04" U {2o},7,)) ,

which contradicts that J, is basic with respect to @.

(3) m= {<{9_”o} UTU{yo}, 0y’ U0, Uiz} ) | 2 € A(L)}, where — py,€6,".
Since 6," and 0," are finite and A (L) is infinite, there exists a zy€ A(L)
such that @({{Zy} Ul U{ye}, 0, Uby" U{ze},7,>), which contradicts that 4,
is basic with respect to @.

TueoreMm 9.3. If UC(L) is finite or denumerable, then H- % = H-,°L,

Proor. Let (4,,y,), n=0,1,2,..., be an enumeration of the elements
of UC(L), which repeats each element infinitely many times.

Since H-;*% < H-;°L is generally true, we only have to prove that
H YL 2 H %2 Assume that I'H-;*L 2 does not holds. Then there exists
a sequence (I',,0,,u,> »=0,1,2,..., such that weak classical deduc-
tions (I,,0,,%7) do not exist for any »=0,1,2,..., {I,00,ny=
(I,{z},x), and for all n=0,1,2,... the following conditions hold:

<F2n+l7 02n+1’u2n+1> = <r2n’ 02n7u2n>’ if W, € A(L)’
= (I',,u4,0,,U{y},y), where {4,y) € w,, if u, € C(L).
<I'2n+2’ 92n+2’u2n+2> = <F2n+1’ 02n+1’u2n+1>’ 1f <Amyn> ¢ UO(F2n+1);

= <F2n+lu{yn}’62n+1’u’2n+1>’ if <An’yn> € UC(F2n+1)
and no weak classical deduction (I, ,U{y,},

O2n 41, Usp 1) XiStS;

= <F2n+1, 02n+1U{Z},Z>, where z EAm if <An1yn> €
UC(T,,.;) and there exists a weak classical de-
duction (Lo 41U {Yn}, Oap+1> Uan+2)-

Let I',=U{I',|7n=0,1,2,...} and 6,=U{0,|n=0,1,2,...}. We
claim that I';cM and 6, L\M, where M={y |y L and A H y}
and A=A(T,).

Assume z, basic with respect to @: ®(x) iff xe ', and ¢ M, or
z€l,and re M.

x, € A(L) is impossible: If x, € A(I",), then x, € M by the definition of
M, if xye A(6,)n M, then there exists an n such that x,e A(I',n0,),
and consequently (I,,0,,0) is a weak classical deduction.
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If e C(0,), then xy=u, for some n, and A< Iy, ., ¥ € 04,4, for some
{4,y) € x,. But then Ac M, ye L\ M, and consequently xz, ¢ M.

If xy € C(I',) and (4,y) € z,, then there exists an n such that {(4,y)=
{AD,,Yn), and xy € Iy, ;. We have either y € I, ., or z € 0,,, ., for some
ze 4, and since {4,y) was an arbitrary element of x, this proves that
xoe M.

THEOREM 9.4. If A(L) is finite, then H- L = H°L,

Proor. Follows from the fact that w; H s, (proposition 9.2).

10. Application to first order logic.

The purpose of this final section is briefly to indicate how the theory
of the previous sections may be applied to formal logic, and to show
how some of the theorems are related to well known results. In order to
simplify the exposition, only first order logic with a single binary rela-
tion R and variables x;,%,,..., but with no constants or functions, is
considered. N denotes the set of positive natural numbers.

DerintTION 10.1. & is the smallest set of formulas which satisfies all
of the conditions:

(1) R(x;,x;) belongs to £ for all 4,j € N.

(2) If A belongs to & then — A belongs to £.

(3) If 4 and B belong to & then (AaB), (AvB) and (4 = B) belong
to £.

(4) If A belongs to & then Vx,4 and 3 ;4 belong to & for all < € N.

ProposrrioN 10.1. Let M be a set such that M x M is a prelogic con-
taining only atomic elements, and let F be the set of functions N — M.
Then there exist exactly one function u and one prelogic L such that (defini-
tions 3.5, 3.6 and 3.7 are used):

(1) A(L)=M x M.

(2) u maps F xP onto L.

(3) s R(@s, ;) =<[f(0), f(§)) for all fe F,4,jeN.

(4) ulf, —~Ay= —pulf,A) for all fe F, A P.

(5) 1, (AaB)y=u(f, AYnu(f, B for all fe F, A,Be 2.

(6) udf,(AvB))=uf,4) vy u{f,B) for all fe F, A,BeP.

(7) ulf, (4= B)y=ulf,4) = u{f,B) for all fe F, A,BeP.

(8) u(f, Vo d)=V {u(g, 4> | g € F and g(j)=f(j) for all je N\{}}
forall feF,ieN, AeP.

(9) 1, 3o,dy = 3,{u(g, 4> | g€ F and g(j)=/(j) for all je NN\(i}}
foradll feF,1eN, AeP.



24 ANTON JENSEN

DerFiNtTION 10.2. An inferpretation of & is a quadruple (M, f,p,L",
where M satisfies the conditions of proposition 10.1, and (using the
terminology introduced in proposition 10.1) fe & ; ¢ is the function
P — L such that ¢[d]=u(f,A) for all Ae P, and L' is the smallest
prelogic containing the image of & by ¢.

DeriniTION 10.3. Let I'c # and 4 € . The formula 4 is a minimal
consequence of I' (written I'H A), if ¢[I"]H ¢[A4] for all interpretations
(M,f,p,L). The formula 4 is a weak classical consequence of I" (written
I'HwA) if o[I'TH *£ p[A] for all interpretations (M,f,p,L). The formula
A is a strong classical consequence of I' (written I'H-2A) if I'H,°L A
for all interpretations (M,f,p,L).

THEOREM 10.2. Let I'c P, A € 2. If there exitists an intuitionistic Gentzen
type proof of the sequent I' - A (see [1], or [3, chapter X V1), then 't A.
If there exists a classical Qentzen type proof of the sequent I' > A, then
v A.

TaroreM 10.3. Let (M, f,p,L) be any interpretation of P such that f is
untvalent and M contains a denumerable set of elements which are not
images of N by f, let ' P and A e P. If o[I'|H ¢[A], then there exists
an intuttionistic Gentzen type proof without cut of the sequent I' -~ A.
If @[I"1H % p[A], then there exists a classical Gentzen type proof without
cut of the sequent I' ~ A.

Theorem 10.3 may be proved using strong variants of theorem 4.1 and
theorem 7.3. (Proposition 4.6 is an example of a strong variant of theo-
rem 4.1.)

THEOREM 10.4. The weak and the strong classical relations of conse-
quence are identical on P.

Theorem 10.4 is proved by applying theorem 9.3 to an interpretation
(M.f,p,L) which satisfies the conditions of theorem 10.3 with the
extra condition that M is denumerable. Theorem 10.4 is a variant of
the Gédel completeness theorem, and it is natural to consider theorem
9.3 as a generalisation.
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