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MERGELYAN’S THEOREM ON UNIFORM
POLYNOMIAL APPROXIMATION

LENNART CARLESON

1.

Consider the set £=[—1,1] on the real axis and the class C(E) of con-
tinuous functions on —1<¢=< +1. A proof by means of linear functionals
of Weierstrass’ approximation theorem would run as follows. Let L(f)
be a linear functional on C such that L(z")=0, n =0, that is

+1
(1.1) ftn du(t) = 0.

-1
Multiplying by z-*, |2| > 1, we find after summation

first for [z| > 1 and then by analytic continuation for z ¢ [—1,1]. Then by
a simple residue calculation (cf. Lemma 5 below) we find u=0.

The corresponding problem for the set E={z | |z|=1} has a different
structure. Here we wish to prove that a continuous function f on F
with a continuous analytic extension to |z| <1 can be uniformly approxi-
mated by polynomials. The starting point is the same:

(1.3) f tn du(t) = 0
ltj=1

which again yields (1.2) for |2|>1. But now we wish to conclude
ffd,u=0. We then need some form of the F. and M. Riesz’ theorem to
the effect that du=kd0 where k is L-limit of polynomials. There are
now rather simple proofs of this theorem (see e.g. Garding and Hérman-
der [3]) but an explicit construction of an approximating polynomial
is clearly simpler than any functional proof.

For a general compact set Z the problem of uniform polynomial
approximation was solved by Mergelyan [4].
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MERGELYAN’S THEOREM. Let E be compact set in the plane whose com-
plement Q2 is connected. Then the set of uniform limits of polynomials on E
18 precisely the set of continuous functions on E which are analytic at interior
points of E.

Mergelyan’s proof consists of an ingenious and delicate explicite con-
struction which should be compared with the proof for the circle. Through
the work of in particular Bishop [1], there is now also a functional proof
of the theorem. Bishop’s main idea was to base the proof on a corre-
sponding result of Walsh [5] for harmonic functions. The proof in [5]
is however not complete. A simplification of Bishop’s proof can be ob-
tained using ideas from Dirichlet algebras which in the general case was
observed by Glicksberg and Wermer [2] and others.

In this situation it has seemed desirable to have available a self-
contained direct proof of Mergelyan’s theorem, based on functionals and
as little function theory as possible. We shall even give a proof of this
type for the existence of a solution of the Dirichlet problem. It should
be stressed that the present paper contains very few new ideas; in the
paper there have only been collected and adopted proofs already available
in the literature. A great number of people have given contributions; the
references given are by no means complete. For further references see
Wermer [6].

We keep in the following the assumptions and notations from the state-
ment of Mergelyan’s theorem. The results are not always given in the
most complete form, since our only goal is to obtain a proof that is as
simple and clear as possible.

2.
LeMMA 1. Let « be a real measure on E. Then

1

F |90

u(z) = Jlog

converges absolutely a.e. in the plane. If u(z)=0 in 2, then u(z)=0 in Q
at every point of absolute convergence.

Proor. Let u'(2z) be the corresponding potential generated by |d«|.
Since clearly f f 1o|<r% (2)dxdy < 00, w'(2) < oo a.e. Assume u(z)=0, z€ L,
and consider a point 2z, € 92 where %'(z,) < cc. To simplify the notations
we take zy=0. Take é>0 but small. Since 0 € 912 there is & non-negative
measure o with support in 2 such that
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o({fz | ri<lzl<ry}) = rp—ry for O<ri<r,<é,
and
o = 0 outside 2| < §
By our assumption u(z)=0, z € Q,

0—-fu(z)da(z)=f f{ flog

ltl<e [¢lze

do(2) } do(l) .

Here ¢ >0 will be kept fixed (<3) as 4 > 0. Now clearly

J' log

uniformly in || Z¢ while in |{|<p

do(z) _)k)gll'l 60,

1
Eflog do(z) < 6] og ICI da(z)

1 1

=3 flog———lr_ M_”dr
1
=1 — +C,
°g af g|1—r/|<:|| = logig +
where

C = su lo
T>I()) gll_t]

Hence as 6 -~ 0

f log 1 L aa(0)| =

lc L (l"g]_cl +0) da(@)],

where by assumptlon the right hand side tends to zero as g — 0.

LemMA 2. Let « and u be as in Lemma 1. If u(z)=0 a.e. in the plane,
.then x=0.

Proor. Let g € C* with compact support. From the well-known for-
mula

ng(z) log dxdy = g({)

|2 C |
it follows by integration with respect to dx(f) that
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0 = [o0) da(0),
which yields x=0.

Lemma 3. (Solution of simultaneous Dirichlet problems.) Let ¢(z)e
C(9Q). Then there is a sequence of polynomials P,(z) such that Re {P,(z)}
converges, uniformly on E, to ¢(z) on C(0R2) and to a harmonic function at
interior points of E.

Proor. Let « be a real measure on 02 such that [{"dx=0. Multi-
plying by z~*/n, n2 1, and summing we get a logarithmic potential u(z)
which vanishes in 2. By Lemma 1 %(2)=0 a.e. on 92. If E has no
interior points, it follows from Lemma 2 that « =0, which proves Lemma 3
in this case. As will be still more pronounced later in the proof, the pos-
sibility of interior points causes considerable difficulties. The harmonic
measure 4, will be of fundamental importance.

Let @ be the class of continuous functions ¢ on 92 that admit a con-
tinuous harmonic extension U, to the interior points of £. By the maxi-
mum principle, @ is closed under uniform convergence and U, is uniquely
determined by ¢. Let a be an interior point. U (a) is a positive linear
functional of ¢ of norm 1. By the Hahn-Banach theorem, there is a
measure 4,, [|d4,]=1, so that

(2.1) Uya) = [ ¢(0) a0

oQ
Since U=1 if ¢=1, 1,20. Apply (2.1) to ¢({)=log|1/({—z)|, where
zef. If §, is the Dirac-measure at a, (2.1) can be written u,(z)=0,
z € 2, where u, is the potential generated by 8,—41,. Furthermore, if
2o € 02, by semi-continuity,

f log

Hence u,(z,) converges absolutely and by Lemma 1, u,(2)=0, z€ Q.
We now return to the proof of the lemma. Since

‘dla(C) lim f log 5 dA(l) =

z—>2 I | 0 al
zef]

< o0,

1
—Cldzamal = f ds] log | —

1
[Jvs]:-

A, vanishes on the subset of 022 where the potential generated by |d«|
diverges. Hence
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0= f w(z)dAy(z) = f da(£) f log |~

| do(2)

= Jdcx(() log -C—_—a‘ = u(a) .

Hence u(a)=0 at all interior points of Z. Since also u(z)=0 at a.a.

boundary points, we find by Lemma 2 «=0. Hence @ =C(92), which
proves Lemma 3.

3.

Lrevmma 4. Let u be a complex measure on 052. The integral

converges absolutely a.e. in the plane. If F(z)=0 in Q, then F(2)=0 in Q
at every point of absolute convergence. (Compare Lemma 1.)

Proor. Since by Fubini’s theorem

du (@)
Mde wdy [0 <

the first part of the lemma is obvious.
Now assume F(z)=0 in Q or, equivalently, [{"du=0 and let 2, € 02
be a point of absolute convergence of F. Following a suggestion by

J. Wermer, we take a positive integer m and choose by Lemma 3 poly-
nomials P, (z) so that

(a) Pp(z)=0,
(b) Re{P,(2)}—m|e—z|= -1, z€dQ.
The function
hi(2) = (€7Fm® — gm0 [(z —zg) = (€77 —1)/(2—2,)
is an entire function, and by (b)
(3.1) h(2)] < {L:L_i_‘ 2.

Finally ,,(z) > — (2 —2,)~! pointwise, z € 2. We find using (3.1) and the
absolute convergence of F(z,)
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du(z)

0= fh (2)du(z) - —f

by Lebesgue’s theorem on dominated convergence. This completes the
proof of Lemma 4.

LemMMa 5. Let u and F be as in Lemma 4. If F(z)=0 a.e. in the plane,
then u=0. (Compare Lemma 2.)

Proor. Since for every g € Cy?

[ L pdeay = g,
we get by integration with respect to du({)

0 = 90 du(t)
and hence u=0.

4. Proof of Mergelyan’s theorem in the case of no interior points.
We assume [5("du({)=0 and shall prove u=0. The corresponding
function F(z) vanishes in 2 and by Lemma 4 a.e. on é2=E. Hence by
Lemma 5 u=0 as asserted.
We observe that this proof in fact only requires Lemma 3 with the
first five lines of its proof. This case corresponds to Weierstrass’ approxi-
mation theorem on [—1,1].

5.

In the general case we cannot assert x =0 but need a form of the F. and
M. Riesz theorem (Glicksberg and Wermer [2]). This is given in Lemmas
7 and 8.— We need a preliminary lemma concerning harmonic measures.

Levmma 6. Let a and b be points in the same open component c of E.
Then A, and A, are absolutely continuous with respect to each other. Every
measure u on 0K therefore has a decomposition

(6.1) du = dh,+do,

into absolutely continuous resp. singular parts with respect to any harmonic
measure in C.

Proor. Let u(z) 20 be harmonic in ¢. Harnack’s principle shows that
there exists a number K >0, depending on a and b but independent of «,
such that K-u(a) <u(b) < Ku(a). Applying this to
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u@) = [ p(0) dA ),
where 0 < ¢ € C(0R2), the assertion follows.

Lemma 7. Suppose fﬂ {"du(l)=0 and decompose du=dh,+do, into

absolutely continuous and singular parts with respect to some harmonic
measure A,. Then separately

fC”dhc=fC"dac -0, n=01,..,

jzdf2=0, z&¢.

that s,

Further for aec

(5.2) fZ’_‘_(?=chL—C and fdam 0.

Proor. We choose @ € ¢ and observe the Parseval relation
(5.3) f Re(P)? di, — f Im(P)? dA,

which holds for all polynomials with P(a)=0. It follows from (2.1)
applied to ¢(¢)=Re{P(()?}. Let S, be closed subsets of the support S of
o.such that [g_g |da,| - 0, n — oo, and choose by Lemma 3 polynomials
P, such that

Re(P,(0)) 2 2%, (€S, Re(P,)z0, (eoQ,
f Re(P,)?dl, < 2-%" .

By Schwarz’s inequality |Re(Pn(a))|=U Re(P,)dA,| <2-". We replace
P, by P,(z)—P,(a). This implies by (5.3)

> [1Pedi, < o
and so "
P,(2)—>0 ae. (4,).

Hence by bounded convergence and since ¢ » — 0 a.e. (a,),

0= f & &P du(r) - f o dh, .

This proves the first assertion for dh, and so for do,.
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For the last assertion, we observe that

e—P n(&)

a—_

—Pn(@) _ ,~Pn(0)
oo [0 - [ au(0) .

a—_ -

Since P, (a)=0 we find, letting n — oo,

au(t) + |

[40) _ [t
a—{ a—¢{
which is (5.2).
Lemma 8. If f(2) satisfies the conditions in Mergelyan’s theorem and if
J20C?dh,=0 then [f()dh,=0.

ProoF. Choose A=2Maxg|f({)] and consider the branch g({) of

log(f+A), real for real arguments. Choose polynomials P,({) such that
[Re(g—P,)| < 27, ([e€dQ.

As above, we may assume P,(a)=g(a), a €c, and we deduce as there
lim Im(P,) = Im(g) a.e. (h,) .

Hence by bounded convergence

ffdhc - f(f+A)dhc - iﬁf&n«) dh, = 0.

6. Proof of Mergelyan’s theorem.

We consider the given function f() and polynomials as functions in
C(2RQ). Let a functional vanish for all polynomials, that is

[ rauey=0.

2

We wish to prove f F(©)au(g)=0.

Let ¢,,¢y,...,C,,... be the (open) components of E. We write du=
dh,, +do,. By Lemma 7 and 8

f fdh, = 0.
Since f dhe,(£)/(£ —2) =0 outside ¢,, it follows by (5.2) that

da,,
f;:Z_—O, z€C, 2ER.
We make a similar decomposition do,, =dh,,+do,, and find f fdh,,=0
and (since [ dh,(¢)/(z—¢)=0 in ¢,)
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do,,
—32 =0, Ec,UCy, 2€0.
fz—;‘ ZEC UC,y, 2

We obtain

d,u = zdhc,, + do,

where the series converges in the sense of total variation and

ffdhc, —0, »=102,...,

and

0, =zeueg, 2€0.

fdo(c ) _
z—C -
From the last relation and Lemmas 4 and 5 it follows that c=0. Hence
f fdu=0 which completes the proof.
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