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A GENERALIZATION OF THE
C(X)-CHARACTERIZATIONS OF TOPOLOGICAL SPACES

AUDUN HOLME

1. Introduction.

If C(X) denotes some kind of algebraic system of continuous complex-
valued functions on X, we have a number of well-known theorems which
very roughly can be expressed in the following way: If C(X) and C(Y)
are isomorphic, then X and Y are homeomorphic, where X and Y belong
to some suitably restricted class of topological spaces. It is enough to
cite classical instances proved by Gelfand-Kolmogoroff, Stone, Milgram
and Kaplansky respectively. It was shown in [1] how to obtain a general
theorem of this kind which for instance contained the theorems of Gel-
fand-Kolmogoroff and Stone as very special cases. Since the lattice, semi-
group and ring of all real-valued functions on X are equivalent for deter-
mining the topology on X ([8]) it is not surprising that a great part of
the above-mentioned situations may be given a unified treatment. The
purpose of the present note is to show how the z-ideals of [1] may be
used in order to prove a general theorem, which includes the correspond-
ing theorem of [1], as well as for instance the theorems of Milgram [5]
and Kaplansky [6].

The examples given at the end of this paper do not present a complete
list of applications of the theorem, and do not present the results in their
most general form. In particular, generalizations of Examples 3 and 4
may be found in [8].

I should like to thank Professor K. E. Aubert for his help during the
preparation of the present note.

2. Preliminaries.

A commutative semigroup 8 is said to be equipped with an z-system
if there is defined an operation 4 — 4, on the subsets of S such that

AcAd, AcB,=> A,cB, AB,<c B,n(4B),.

The subsets of the form A4, are called the 2-ideals of S (or only the ideals
of 8, when no confusion can arise.) This generalizes the concept of an
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ideal in a commutative ring, a semigroup ideal in a commutative semi-
group, and l-ideal in a distributive lattice L, L being considered as a
semigroup under A. Furthermore the family of convex, lattice-closed
subgroups in a lattice-ordered abelian group @ forms an z-system if G
is considered as a semi-group under the operation acb=|a|a|b|. The
z-system on § is said to be of finite character if the set-theoretic union
of any chain of z-ideals is again an a-ideal. Two semigroups 8 and 7,
each with z-systems denoted respectively by y and z are said to be (y,2)-
isomorphic if there exists a semigroup-isomorphism ¢ of S onto 7 such
that ¢(4,)=(p(4)), and ¢~Y(B,)=(p~Y(B)), for AcS, BST. For the
theory of x-ideals and further special cases, we refer to [1].

3. Characteristic semigroups of functions.

Let X be a topological space, and let S(X) denote a commutative
semigroup (with respect to some operation) of functions from X into a
set T'. Let S(X) be equipped with an z-system, and denote by .# some
family of z-ideals in S(X).

We shall say that S(X) is a characteristic semigroup of functions with
respect to £ if the following conditions are satisfied:

(1) To every 4, € . there is associated one and only one element a in X.
We write A,~a. Put
for B X. A (B) ={A4,eF; 1beB, A,~b}

(2) ({a}) is non-empty for every a € X.
For two ideals 4, and B, in .# there exists an element a in X such
that

(3) A,~a and B,~a if and only if there exists an ideal C, € .# such
that C,c4,n B,.

We write 4,~B,_ if A, ~a and B, ~a for some a € X. Clearly this defines
an equivalence relation in . If 4,, B,, C, and a satisfy (3), then
C,~a.

Now, let S(X;) be a characteristic semigroup of functions from X into
T with respect to the family £, of z;ideals in S(X,); i=1,2. If
@: 8(X,) > S8(X,) is an (x,,%,)-isomorphism of S(X,) onto S(X,) such
that ¢(Sf,) =S, then there exists a bijective transformation @: X, - X,.
In fact, for a, € X;, denote by [4,,] the equivalence class of all ideals
in £, associated to a,. By (3) the equivalence classes of ., and .#, are
in 1-1 correspondence by g, in particular [4, ] is transferred by ¢ to
some [4, ] in £,. There exists by the definition of ~ an a, in X, such
that [4,,] is the totality of ideals in .#, associated to a,. Put ®(a,)=a,.
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The conditions (1), (2) and (3) do not deal with the topology on X,
and of course a characteristic semigroup of functions in the above sense
does not determine the topological space X up to homeomorphism. To
establish the correspondence between the topology on X and the algebraic
structure on S(X), it is necessary to add some new conditions. The fol-
lowing two conditions (4) and (5), or their duals, (6) and (7), seem to be
the appropriate ones:

(4) Let F be closed in X, a ¢ F and let 4, be an ideal in .# associated
to a. Then 4,2 N/ (F).2)

(5) For every a in X it is possible to choose an ideal R, (a) associated
to a such that the following implication holds for every fe S(X)
and every B X:

f€ R,(b) for every be B = fe R,(b) for every be B.

(6) Let F be closed in X, a ¢ F, and let A, be an ideal in .# associated
to a. Then 4,4 U/ (F).

(7) For every a in X it is possible to choose an ideal R, (a) associated
to a such that the following implication holds for every fe S(X)
and every B X:

f & R,(b) for every be B = f¢ R,(b) for every be B.

LeMMA. Let S(X) be a characteristic semigroup of functions from X into T
with respect to F. Let B X. If 8(X) satisfies (4) and (5), then

(8) aeB < 34, ~a, A,=2()HB)),
and if S(X) satisfies (6) and (7), then
9) aeB <34, ~a, A, #B).

Proor. Assume a € B. We note that R,(b) € o/(B) for every b € B. If
(4) and (5) are satisfied,

fe[) #(B) = feR,(b) for every be B = fe R,(a).
On the other hand, if (6) and (7) are satisfied, then
feU A (B) = f&R,(b) for every be B = fé R (a).

Thus => is proved in (8) and (9). Conversely, assume a ¢ B. The re-

1 We put (& for N4, e d; and |J& for U eor4,.
zesf “z el “a
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maining part of (8) then follows from (4), the remaining part of (9)
from (6).
We may now prove the following

THEOREM. Let S(X,) be characteristic semigroups of functions from X,
into T with respect to the family #; of x;-ideals in S(X;), i=1,2. If
: 8(X,) = 8(X,) is an (xy,%,)-tsomorphism of S(X,) onto S(X,), such
that @(F1)=S,, and if S(X,) satisfies either (4) and (5) for i=1,2 or satis-
fies (6) and (7) for i=1,2, then X, and X, are homeomorphic.

Proor. We shall show that @ as defined above is a homeomorphism
under the assumptions of the theorem, i.e., that for every B,cX;,
&(B)=®(B,). We first note that
(10) A(D(By)) = ¢((By)) .

This follows at once by the definition of @. In fact, for B,, € o/(P(B,))
there exists D, €./, such that B, =¢(D,). Let K, ~®(b), b, € B,
and let D, ~a,. Then &(a,)=®D(b,), and a,=b, since P is bijective.
Thus D, € &/(B,). On the other hand, let D, € </(B,;). By the defini-

tion of @,
E, = ¢D,) ~ ®b,), where D, ~ b eB,.

Assume now that (4) and (5) are satisfied. Then by the lemma
@weB, < 140 ~a, AP 2 (\A(B) < 14D ~ a,,
o(43) 2 ¢(N#(BY) = N fH(BY) = 343 ~ Day),
A? 2 NA(P(By) < ¢lay) € D(B,) .
Finally assume that (6) and (7) are satisfied. Then
@, €B, < 4P ~a, AP cUHA(B) = 34D ~q,,
o(4D) s o(U(BY) = Up(/(By) < 342 ~ 0(ay),
A2 ¢ U(9(B) < P(a)) e DBy .
This completes the proof.

4. Special cases.

A characteristic semigroup of functions satisfying (4) and (5) represents
a generalization of the concept of a characteristic semigroup of functions
with an z-system of finite character introduced in [1]. We show below
that the finite character assumption is redundant.

Let X denote a compact Hausdorff-space, and S(X) a semigroup (with
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respect to some operation) of complex continuous functions defined on X.
The semigroup S(X) is equipped with an z-system. In [1] S(X) is referred
to as a characteristic semigroup of functions if the following two condi-
tions are satisfied:

(11) To every closed F< X and a ¢ F there exists h € 8(X) such that
h(a)+0 and A(b)=0 for every b € F.

(12) A subset in §(X) is a maximal 2-ideal if and only if it is of the form
R (a)={f € 8(X); f(a)=0} for some a € X.

Put R (a)~a. Here the correspondence between the maximal z-ideals
and X given by ~ is 1-1 by (11), and (1), (2) and (3) follow. Condition
(4) follows by (11), (5) is satisfied since the functions in S(X) are continu-
ous. We get the following (Theorem 30 in [1])

CoroLraryY. If for two compact Hausdorff spaces X and Y, semigroups
S(X) and 8(Y) of continuous, complex functions satisfying (11) and (12)
with an x,y-system, respectively, are (x,y)-isomorphic, then X and Y are
homeomorphic.

In the next two examples we turn to characteristic semigroups of
functions for more general classes of topological spaces than the above
compact Hausdorff spaces.

Exampre 1. (Hewitt [4]). Denote by C(X) the ring of all continuous,
real functions defined on a topological space X. (Pointwise operations in
C(X)). Assume that X is completely regular and real compact, i.e., that
X is a completely regular space such that every free maximal ideal in
C(X) is hyperreal ([2]). Denote by .# the set of all real ideals in C(X).
Since X is real compact, clearly

S = {M(@)},ex, where M(a) = {feC(x); f(@)=0}.

Put M(a)~a. As above, (1), (2) and (3) are satisfied. Since X is com-
pletely regular, (4) is satisfied, and since the functions in C(X) are con-
tinuous, (5) follows. Clearly the image by an isomorphism of a real ideal
is again a real ideal, and we conclude by the theorem that a completely
regular real compact space is determined to within homeomorphism by
the ring of continuous, real functions defined on it.

ExampLE 2. (Pursell [7]). Let R(X) be a ring of functions from the
regular space X to a field K (Pursell assumes only that K is a division
ring) such that
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(13) Z(f) is closed for every fe R(x).

(14) F closed in X and a ¢ F = 3 fe R(X) such that a ¢ Z(f) and Z(f)
contains a neighbourhood of F.

(15) If fe R(X) does not vanish on the closed set F, then there exists
a function g € R(X) such that f(a)g(a)=1 for a € F.

(16) For each z € X there exists a function f € R(X) such that Z(f) = {=}.

Under these conditions, the maximal fixed ideals in B(X) may be given
an algebraic characterization (see [7]). This means that if R(X) and R(Y)
are rings of functions from the regular spaces X, Y into the fields K and
K', and if R(X), R(Y) satisfy (13)—(16), then the family

S = {{fe RX); f(a)=0}}, aeX,
is preserved by an isomorphism of R(X) into R(Y) in the sense that
pl#) = {fe R(Y); f(b) = 0}}, beY.

With ~ defined as in Example 1, conditions (1), (2) and (3) are obvious,
(4) follows from (14), and (5) is equivalent to

Z(f) 2B = Z(f)y)=2B for BgcX, feRX).
This follows from (13). We conclude that X and Y are homeomorphiec.

ExameLE 3. (Milgram [6]). Let X be a compact Hausdorff space, and
let 8(X) be the semigroup of all continuous real functions defined on X,
under pointwise multiplication. An 0O-ideal I in S(X) is a semigroup-
ideal in S(X) which satisfies:

(17) To each f e I there corresponds a g in S(X), g+ 0, such that gf=0.
(0 denotes the zero functions.)
(18) For f,, f, in I there exists e;, in S(X) such that e, f;=f, and
exfa=/fs
The set of 0-ideals is preserved under a semigroup iéomorphism. Fur-
thermore, there is a 1-1 correspondence between the closed subsets of X
and the 0-ideals in 8(X), the 0-ideal I(F) corresponding to F < X being
the collection of the functions f in S(X) vanishing on some neighbour-
hood V; of F. Clearly the maximal 0-ideals are those corresponding to
points. Now, let §(X) be equipped with the 2-system of the semi-group-
ideals, let .# denote the set of all maximal 0-idelas, and put, for I € £,
I~aif I corresponds to @ in the above sense. Clearly (1), (2) and (3) are
satisfied. If F is closed and a ¢ F, there exists a closed neighbourhood
V of a such that VnF =¢. By Urysohn’s lemma we find % € S(X) such
that h(b)=0 for be V, h(c)=1 for c € F, and (6) is satisfied. Finally, if
f € 8(X) vanishes on a neighbourhood V of a’ € 4, then there exists an
Math. 8cand. 16 —11
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interior point @ in ¥ such that a € 4, and f vanishes on a neighbourhood
of a. Thus (7) is satisfied. We thus conclude that a compact Hausdorff
space is determined to within homeomorphism by the semigroup of all
continuous real functions defined on it.

ExamprLE 4. (Kaplansky [5]). Denote by L(X) the lattice of all con-
tinuous real functions on the compact Hausdorff space X. Choose some
fo € L(X) and denote by .# the set of all proper, prime l-ideals in L(X)
which contain f,. Put P;~a if f e P;and g(a) <f(a) imply g € P,. Lemma
3 of [4] expresses that (1) is satisfied, Lemma 4 and 5 that (3) is satisfied.
(2) follows by the fact that for every a € X,

Pya) = {f € L(X); f(a)<fo(a)} € F

and Pa)~a. Let F be a closed subset of X, a ¢ F, and assume that
@ ~a, @ e #. Then since @+ L(X), f(a) <M for every fe @, for some
M < co. Since X is compact, fo(b) >m for every b € F for some m > — oo,
There exists b € L(X) such that h(a)=2M, h(b)=m for every b € F, thus
h & @ and h € No/(F) and (4) is satisfied. (5) follows since every f e L(X)
is continuous. If X and Y are two compact Hausdorff spaces such that
L(X) and L(Y) are isomorphic as lattices under ¢:L(X) > L(Y),
choose f, € L(X) and define £ as above. Then

o(F) = {P,e L(Y); P, proper prime l-ideal and ¢(fy) € P;}.

We conclude that L(Y) is a characteristic semigroup of functions, with
respect to ¢(.#), which satisfies (4) and (5), and X and Y are homeo-
morphic.
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