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THE RANGES OF
CERTAIN CONVOLUTION OPERATORS

EDWIN HEWITT

1. Introduction.

A typical result of this note is that £,(G)*2,(G)=28,(G), 1<p<oo,
where @ is an arbitrary locally compact group. Several similar equali-
ties are obtained: for the exact results, see (3.2)—(3.6). Our basic idea
is borrowed from Paul J. Cohen’s interesting paper [1]. (N. Th. Varo-
poulos [5] has also made use of Cohen’s construction to show that every
positive functional on £,(¢) is continuous.) We have benefited from
conversations with Irving L. Glicksberg, Andrzej Hulanicki, and Kenneth
A. Ross.

While our main concern is with algebras of measures operating by
convolution on the Banach spaces £,(G), our main “factorization” theo-
rem is most economically stated and proved for Banach algebras operat-
ing on Banach spaces. The needed definitions, statements, and proofs
appear in Section 2, the applications to convolution operators in Section 3.
All terms and notation not explained here are as in the monograph [2].

2. The general factorization theorem.

(2.1) DerFIiNITION. Let A be a complex or real Banach algebra with
elements y, v, g, 7,... and norm ||-||. Let L be a complex or real Banach
space with elements z,y,2,... and norm |||-|||. We suppose that A is
real if L is real. We suppose that there is a mapping of 4 x L into L,
and we write the image of (u,x) as pex. We suppose that this mapping
has the following properties:

(1) (u+v)er=(pex)+ (vex)=pex +vex;
(i) (Eu)sx=t(uex)=p+(tx) for all ¢ in the scalar field of L;
(iii) (puv)ex=pe(vex);
@iv) |[|gsz|l| Sclipll+]||x]||, where c is a real constant =1.
(v) We also suppose that for every finite set {uy,...,u,} <4, every
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z € L, and every positive real number a, we can choose a single element
» € A such that |jv|| <d (where d is a positive constant) and |vu; —pu,ll <a,
j=12,...,m, and |||pex—z||| <a.

Thus A has a bounded approximate left unit, which also acts restrict-
edly like an approximate left unit under ..

(2.2) CoxnsTrUCTION. Let A4, be the algebra obtained from 4 by ad-
joining a unit &, and with the customary norm |ju+tef|=|lul|+[t|. For
u+tee A, and x e L, let (u+te)sx=pex+txr. Properties (2.1.i)-(2.1.iii)
are evident for the extended operation «, and (2.1.iv) holds because ¢ = 1.

(2.3) LEMMA. Let d be a real number = 1. For pe A such that |ul|<d,
let p(u) be the element of A, defined by

o) = (o) [o + kg(— ¥ 24t

Then we have:

. [ 2 1 7

(11)<P(M)—[2d+18+2d+1u] ;

(iii) |||@p(p)ex — ||| £ (24+d)c|||usx — =||;
and

(iv) §+d- < lp(u)] < 2+ dL.

Proor. The infinite series 33>, (— 1)¥(2d)~*u* obviously converges in
A, as A is complete and ||u*||<d*. Since

(c+ (2a)71) (2 + 3 (~ D<) %) = &+ (=1 d)-ospnt,
k=1

(i) holds. Now let = be an arbitrary element of L. The definition (i) and
a trivial computation show that

2d ®
P =z = oo o S (e 2,
=1

so that
2d +

(1) le(u)ex — ||| =
k=1

For each k, we have
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M=

lukow = all] < 3 |||jdez — Loz

T

1

k
2) S 3 oluflluee ~ =i
< ckd¥|[|pez — 2|| .

Substitution of (2) in (1) yields

IA

2d +1
lg(m)ez — 2|l ( *

“ar- .9k o —
- )(Ef'” )nmx 2|

= ¢(2+d7)[[|pex — ||
< 3clllpex — |||,

which is (iii). The inequalities (iv) follow at once from (i) and the relation

_ 2d 1
£= q’(”)(2d+18 +2d+1”)‘

(2.4) LEMMA. Let a be an arbitrary positive number and z an arbitrary
element of L. Let d be an upper bound on the norms of approximate units
in A as in (2.1.v). There is a sequence (u, ), of elements of A with norms
=d and having the following properties. Write

(i) 0, =30_,(2d)k1(2d + 1)Fp, + (2d)*(2d+ 1)~"¢ for n=1,2,3,...,
and og=c¢.

Then o, exists in A, and
(ii) ||loy ez — a3t e2||| £ 27"a for n=1,2,3,....

Proor. Using (2.1.v), choose as u, any element of A4 such that ||u,||<d
and ||| ez —2||| =(2¢(2+d~1))ta. Then
1 N 2d
R I LT I

Thus o7 is the ¢(u,) of Lemma (2.3), and (2.3.iii) implies that
lllo7'ez — ag*ezlll < (2+dYelllpmyez — 2ll| < 2a.

Thus (ii) holds for n=1.

We define p,,us,... by finite induction. Suppose that u,,us,. . . %y
have been defined so that ¢! exists in A4, and satisfies (ii) for n=1,2,
...,m. To see how y,,,, should be chosen, consider any element ' in 4
of norm =d and define
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m

(1) Gy = 3 ()1 (20 4+ 1)Fp, + (2d)m(2d+1)m+0p" 4
k=1
+ (2d)™+1(2d + 1)~ m+Dg,
That is, o},,, is what o,,., would be if 4’ were p,,,. We rewrite (1):

1 2d

2 = ' ,
( ) U"H-l (2d+l”+2d+18)rm
where

Ty = i”: (2d)k-1(2d + 1) *@(u)p, + (2d)™(2d +1)—™¢ .
k=1

We can apply Lemma (2.3) with L replaced by 4 and ¢=1 to infer that
llp(u e — pall = (2+ a7l pae — el -

Consider the condition
(3) l” g, — pill is sufficiently small for £=1,2,...,m .

The set £ of invertible elements of A4, is an open set and the mapping
% — x~! is a homeomorphism of E [this is an elementary property of
Banach algebras with unit]. Hence if (3) is satisfied, |z,,—0,| is ar-
bitrarily small, 7;! exists, and ||z;!—o0,}| is also arbitrarily small.
By our hypothesis (2.1.v) on 4 and L, we can satisfy (3) and also the
condition

(4) |||’ ez — 2]]| is sufficiently small ,

with a single x4’ € A of norm not exceeding d.
Using (2) and the preceding remarks, we find

= ||[(zmie(@"))ez — a,tez|]

2 (T p(u)) oz — (0, @(w'))s2l]] +
(5) + (o5 p(u')) ez — ot ezll]
el — ol el 112111 +

+ cllol- |llg(u') sz — 2||] -

’ _
‘ ( l(o'm-i-l)_l 2 — o'ml'zl I l

IIA

Notice now that
lpw)l £ 2+d-1  (2.3.iv)
and
Hew')ez — 2||| £ (2+dYe|||u' oz — 2||] (2.3.iii) ,

and that |||2||| and ||6;}|| are fixed. Thus if (3) and (4) are satisfied by u’,
the right side of (5) can be made less than or equal to 2-™+Va, We take
any such y’' as u,., and so complete the induction.
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(2.5) THEOREM. Let z be any element of L, and let a be any positive
number. There exist elements o € A and y € L with the following properties:

(i) z=0y;

(i) ye(A.z) [closure in L];
(iii) ||ly—zll|=a;

(iv) |loll = 4.

Proor. Since the case z=0 is trivial, we exclude it in what follows.
We use the notation of (2.4). Let y, =0,z for n=1,2,3,..., so that
GpoYp=2. Adding (2.4.ii) from m+1 to m+k, we have

1Ym = Ymilll = 27"a

for all m and k, which proves that (y,)5.; is a Cauchy sequence in L
and so has a limit y € L. Hypothesis (2.1.v) implies that ze (4+z) ,
and so plainly y, and y are in (4+z) . Adding (2.4.ii) from 1 to m, we
see that

Ym—2lll < a,

and so ||ly—=z|||£a. Finally, (2.4.i) shows that lim
and is actually the element

nsooOn €Xists in A,

(1) o =3 (2dy-12d+1)Fp e d.
k=1

It is clear that ||o||<d. It is also clear that

z = lim g,.y, = <1im an)-(limyn) =0ey.

n—>oo n—>oo n—>»00

(2.6) NoTEs. (a) Suppose that the approximate units of (2.1.v) can
always be chosen from a closed subset C of A that contains real positive
linear combinations of its own elements. Then it is obvious that ¢ in (2.5)
can be taken to be in C.

(b) Conditions (2.5.iii) and (2.5.iv) can be changed, if one likes. Re-
place o by |jo||~lc=0" (note that ¢+ 0 if 2+0) and y by |jo|y=y’. Then
we have z=0"+y’, y' € (4+2) , and ||o’||=1. Condition (2.5.iii) is weakened
into

ly =zl = [lloll=1|(lllzll| +@) + .

For d=1, the inequality |||z|||c2(|||2]|| + @)1= |lo|| shows that |||y —z[||
can be made arbitrarily close to (1—c-)|||z]||.
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3. Applications.

(3.1) Let G be a locally compact group. Let 4 be any Banach sub-
algebra of the algebra M(G) of measures on @, and let L be a space
L,(@), for 1 = p<oo. The operation « of (2.1) is taken to be convolution:
ueof becomes wxf, defined as usual by

@ = [ Fy) duty) -
G

Theorem (20.12) of [2] shows that uxfe £,(G) and that (2.1.iv) holds
with ¢=1. Properties (2.1.i)-(2.1.iii) are evident.

Theorem (20.15) of [2] shows that 4 contains an approximate unit for
L,(@) if for every neighborhood U of the identity in G, there isa uec 4
such that u(U’)=0, w(U)=1, and £ =0. In fact for fe £,(G) and a >0,
there is a U such that

luxf—flp <a

for all u € M(@) such that u(U’)=0, u(U)=1, and = 0. Not all Banach
subalgebras of M(@) containing u’s with arbitrarily small supports admit
approximate left units for themselves, however. To apply (2.5) an ap-
proximate left unit for A4 itself is of course needed.

(3.2) TurOREM. Let A be a Banach subalgebra of M(G) with the following
property. For every {u,,...,p,} <A, every neighborhood U of the identity
n G, and a>0, there 18 a nonnegative measure v in A such that v(U)=1
and »(U')=0 and

v *p; — pill<a  for je{l,2,...,m}.
Let f be any function in £,(G), 1Sp<oo, and b any positive number.
Then there exist a nonnegative measure o of norm 1 in A and a function
g € £,(G) such that:
(i) f=0xg;

(i) g e (Axf)

(iii) llg —fllp, =b;

(iv) g ¢s real-valued if f is.

Proor. Apply (2.5), taking note of (2.6.a).

(3.3) CoroLLARY. For every f in £,(@), 1=<p<oo, neighborhood U of
the identity in G, and a >0, there exist functions g € £,(G) and h € L(G)
such that:

(i) f=hxg;
(i) g€ (L@ *h);



THE RANGES OF CERTAIN CONVOLUTION OPERATORS 153

(iii) llg —fll, <a;
(iv) Jghdi=1 and K(U')<{0};
(v) g s real-valued if f is.

(3.4) REmMaRrks. Crudely speaking, (3.3) asserts that 2,(G)*8,(G)=
¥,(G). Theorem (2.5) is applicable to a number of function spaces other
than £,(@). For example, let €,,(G) be the bounded, right uniformly
continuous, complex-valued functions on @. Then the analogue of (3.3)
holds with £,(G) replaced by €,,(G) and |||, by the uniform norm
[I*ll.- Thus too we have £,(G)*€,(Q)=C, (G).

A slightly different situation arises for convolutions on the right,
since the modular function for G must enter. With no wish to flog a
dead horse, we state the results briefly.

(3.5) THEOREM. Suppose that 1 <p <oo. Let &, ,(G) denote the space of
all Borel measurable, complex-valued functions on G for which

(@) [1olly, = J o (@) A(x)~1?" dA(x) < oo,
where p'=p[/(p—1). The space &, ,(G) is a Banach algebra under convo-
lution [h*k(x) = [gh(xy) k(y~)dA(y)]. Let f be any function in &,(GF), U any
neighborhood of the identity in G, and a any positive number. There exist
Junctions g € 8,(G) and h € & () such that:

(ii) f=gxh;

(iii) g € (bx2y (@) 5

(iv) llg—fll,<a;

(v) lIklly, =1 and k(U")<={0};

(vi) g ¢s real-valued if f is.

Proor. Theorem (2.5) has an obvious ‘right-handed” version using
approximate right units for 4 and L and the condition (u»)ex=ve(ex)
instead of (2.1.iii). Theorem (20.13) of [2] shows that the convolution

mapping (f,9)>[f=*g

for fe Q,(@) and g € &, ,(G) satisfies (2.1.i), (2.L.ii), and (2.1.iv). Theo-
rem (20.15) of [2] shows that approximate right units exist.

(3.6) For convolutions g*h where g is merely bounded, we have yet
another result. Let ©,,(@) be the space of bounded, left uniformly con-
tinuous, complex-valued functions on G. Let 8}(G) be the space of all
functions % on @ for which A* [h*(x) =h(x~1)] is in £,(G). Then the ana-
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logue of Theorem (3.5) holds with £,(Q) replaced by €,(&), & ,(G) by
2,(G), and [|*]l, by I*[l,

(3.7) FAILURE OF THE THEOREM FOR £,(@)*£,(G). For p>1and ¢>1,
the functions in £,(G)*2,(G) may be a small subspace of both £,(G)
and £,(@). For example, let G be a compact group and p=g=2. Then
L,(@) * £y(G) is the space of all complex linear combinations of continuous
positive-definite function on @, a space that can be characterized in a
quite concrete way, as M. G. Krein has shown, ([3], Theorem 12). In
the Abelian case, this space is just the space of functions on G' with ab-
solutely convergent Fourier series. Naturally £,(G@) is a Banach algebra
under convolution (G is compact) and it has approximate left and right
units ([2], (20.15)). These approximate units are not bounded in the &,
norm, however; if they were, then Theorem (2.5) would apply and
(@) * y(G) would be 2,(G). Notice nonetheless that the identity

lim |lpg; +f — flls = 0,
U-—>{e}

which holds for each f e 2,(#), allows us to apply the uniform bounded-
ness principle. The norms of the operators f— @y *f on L£,(G) have a
common bound, but the number ||py|l; (Which may or may not be finite)
cannot possibly be bounded.

(3.8) OPEN PROBLEMS. For 1<p<2, an inequality

(@) If*glla= Ay Ifllp ll9lle

for f e £,(@) and g € £,(GF) may or may not obtain. The relation (i) with

A, =1 is simple to check if G is compact. It has been established for

G=BL(2,R) by Kunze and Stein ([4, Theorem 9]). No inequality (i)

holds for @= R, as Kunze and Stein also show ([4, p. 61]). For groups G

such that (i) holds, it would be interesting to know what ,(G)*2,(G) is.
Young’s inequality ([2, (20.18)]) is

(i) €,(@)*LH(F) =),

where 1<p<oo, 1<g<oo, and 1/r=1/p+1/g—1>0. This inequality at
once raises the problem of determining exactly what the set £,(G)* £, *(G)is.
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