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A NOTE ON FORMAL AND ANALYTIC CAUCHY
PROBLEMS FOR SYSTEMS WITH
CONSTANT COEFFICIENTS

JAN PERSSON

1. Introduction.

Let z=(zy,...,x,) be indeterminates and put 2®*=xz,"...x,% where
o =(%y,. . .50,) is a multiindex with integral non-negative components.
Let E be a finite-dimensional normed vector space over the complex
numbers C and let F,(Z) be all formal power series

(1) f@) = 3 fo2®
with coefficients in E, topologized by the semi-norms

lflk=z|fals k=0’13"->
lalsk

where |x|=o;+ ...+, and |-| denotes the norm in E. If there exists
a formal power-series g(x) such that f(z)=2g(z), we write f(zx)=0(z").
Differentiation of formal power-series is defined in the usual way.

Let 4, (E) be the set of power-series (1) which converge when z,,...,z,
are complex numbers and |z|=|z,|+ ... +|x,| is sufficiently small. Let
A (E,r) be the set of fe A,(F) which converge when |z| <7, equipped
with the norms

Ifll, = max|f(@)[, |z]=e<r.
We say that a linear mapping 7': 4,(%,) - 4,,(%,) is continuous if there
exist numbers r;, and 7,>0 such that 7': 4,(%,,r,) > 4,,(E,,7,) is con-
tinuous. This definition extends in a natural way to direct sums (see (5)
below).

Let ¢ and x=(x,,...,2,) be indeterminates or complex numbers as
the case may be, put D,=0/ot and D,=(D,,...,D,), D, =0[ox,, and let
P(D,D,) be a Ix! matrix whose elements are complex polynomials in
D,D,. Put

A.f = {Dg2f(0,2)}, O0=s<L,
where fe F, ,(¥) or 4,.,(E). Clearly, A;f=0 if and only if f=O0(%).
We shall be interested in the following Cauchy problems: given
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V’ We Fn+l(cl) or An+l(cz) ’
UeF,,(C) or 4,47,

find

respectively, such that
(2) PWD,D,)U(t,x) = V(t,x), U(t,x)— W(t,x) = O@F) .

We shall refer to these problems as Cauchy’s problem for formal power-
series and analytic functions respectively. In general these problems
have no solution unless we impose some consistency conditions on ¥V and
W which should be identically true when ¥V =PU and W — U =O0(t~) for
some U. Also, if L is small we cannot expect the solution to be unique.
In any case, if (2) combined with some consistency condition on ¥ and
W has a unique solution U depending continuously on ¥V and W, then

the operator Po4,

defined by (P®A)U = PUG AU,

where U € F,, ,,(E) or A, .,(E), has a continuous inverse. We shall prove
TuEOREM 1. If

(3) P@Ay: Fopy(C) » Fopun(C) @ Fo(CH)

has a continuous inverse, then

p(Dt’Dac) = detP(Dt’D:c)

has the form
N-1

(4) p(Dy, D) = ¢cDN + 'zo p;(D;)D/
J=

where ¢+0 1is a constant and the p; are polynomials. Conversely, if (4)
holds, then (3) has a continuous inverse.— If

(5) P@Ap: A4,4(C) > 4,,4(C) @ 4,(CH)

has a continuous inverse, then (4) holds and

(6) degreep; < N —j

so that N is the degree of p. Conversely, if this condition holds, then (5)
has a continuous inverse.

The converse parts of this theorem are consequences of the following
more precise statement.

TurOREM 2. Let P'(D,D,) be the I x1 matriz of minors of P(D,D,)
so that
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P'(Db-Da:)P(DbD::) = P(Dt’Dw)P/(DhD:c) = p(Dt’Dz)I

where I is the I x1 unit matriz. Let M be the degree of P with respect to
D, and suppose that

(7) Lz M+N,
(8) PW—V = O@L-M),
(9) pIW —P'V = O(t--N) .

Then if (4) holds, Cauchy’s problem (2) for formal power-series has a unique
solutton U such that the mapping

Frir(C) @ Fo(CB)3 V@ ALW > U e Fpiy(C)

18 conttnuous.— If, in addition, (6) holds, then Cauchy’s problem (2) for
analytic functions has a unique solution U such that the mapping

A, n(C)DA(CH3 TV DAW > Ued, (CY)
18 continuous.
REMARK. If
P=@QDM+..., M = degreeP, det@ + 0,

then N =IM so that (9) is a consequence of (8) and, by virtue of (8),
AW is a continuous linear function of A, W and 4;_,V. Hence, in
this case, (2) can be stated as

PU =V, U-W =0

without consistency conditions. In the general case, this is not possible.

2. Proof of Theorem 1.

Put {e=(x+ ... +¢,x, where {;,...,(, are complex numbers. The
equation PU =0 has exponential solutions
(1) U= Uyett®, Uyel, U,+0,
if and only if
(2) P(T, {)=0.

Let us first consider the case of formal power-series. If P @ 4, has a
continuous inverse then there exist an integer K and a number C such
that
Ul £ ClALUlk .
In particular,
[Tl (1+7%) £ Cy|U,| (1 +]e)P2(1+1EDE,
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where C,; is another constant. In view of (1) and (2) this means that
(3) p(r.0) =0 = |7 £ C,(1+|¢)E

with a third constant C,. Let us now write p in the form

(4) p(r,0) = Zp, O, pall) 0.

The polynomials p; cannot have a common zero { since this contradicts
(3). Assume that py(() has a zero {, and let { tend to £, in such a way
that py({)+0. Then at least one quotient p,({)/py({), j<N, tends to
infinity so that at least one zero v=1({) of p(7,)=0 tends to infinity,
and this again contradicts (3) so that py({) is a constant. This proves
the first direct part of Theorem 1.

Next take the analytic case. If P @ 4, has a continuous inverse, then
there exist numbers g,, ¢, and C > 0 such that

UM, = CliALU |,
In particular,
| U |er(FHEIn+D < 17710 (14 | 7])Eeeslél

where C, is another constant. In view of (1) and (2) this means that
p(7,8) =0 = |[7] = Cy(1+1C])
with a third constant C,. Hence p has the form (4) and
P(C) = O((1+¢)N)

which shows that degree p; < N —j. This finishes the proof of the second
direct part of Theorem 1. The converse parts follow from Theorem 2.

3. Proof of Theorem 2.
It follows from (1.4) that the formal Cauchy problem

(1) pIU—-P'V =0, U-W = 0@r)

has a unique solution U € F, ,(CY). We shall see that

(2) PU=V, U-W=0(@,

i.e. that U solves the formal Cauchy problem (1.2). In fact, by (1.9),
pl(U-W) = pIU—-P'V+P'V—-pIW = O(L-N)

so that, by (1.4),
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(3) U-W = 0@r).
Put Z=PU-V. Then
plZ = P(pIU-P'V)=0,
and (3) and (1.8) show that
Z = PU-W)+PW-V = O@r™) .

Since L— M = N, this shows that Z=0 so that we have (1.2).—If U
is a solution of (1.2) with V=0, AW =0, then p/U=P'PU=0 and
U =0(t") so that U =0. This shows that a solution is unique. It follows
from (1) that U is a continuous function of P’V and AyW and hence
a continuous function of ¥V and 4, W. This proves Theorem 2 in the for-
mal case. The proof in the analytic case is the same since, by the Cauchy-
Kowalevski theorem, (1) has a unique holomorphic solution U if p has
the properties (1.4) and (1.6). That P @ 4, has a continuous inverse
follows from the proof of the same theorem, reasoning as in the formal
case.
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