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EXTREMAL PROPERTIES OF THE SUCCESSIVE
DERIVATIVES OF POLYNOMIALS AND
RATIONAL FUNCTIONS

Q. I. RAHMAN

If p(z)=37_,a,2" is a polynomial of degree n such that |p(x)| <1 in the
unit interval [—1,1], then by a theorem of S. N. Bernstein [1]

(1) 1p'(@)| £ n(l—2?)~

for —1<z<1. For the n-th Tchebycheff polynomial this becomes an
equality at certain points of the interval. However, this formula is not
useful if 1—22 is small. The following result due to A.Markoff [5] is
complementary to the above estimate.

MARKOFF’S THEOREM. If p(z) is a rational polynomial of degree n such
that |p(z)| £ 1 in the unit interval [—1,1], then in the same interval

(2) [P'(x)] = n?.

Since the Tchebycheff polynomial is extremal in both of the above cases
we cannot hope to get sharper estimates by restricting ourselves to real
valued polynomials. But if we assume in addition that p(z) does not
vanish in the unit circle |z| <1, then we do get a refinement of (1). Thus
Erdos [3, Theorem 2] proved the following

THEOREM A. Let p(2) be a real valued rational polynomial of degree n
having mo root in the interior of the unit circle. If |p(x)| =1 in the unit
interval —12x=1 and 0<c<1 then for —1+c<xz<l—c,

(3) |p' ()] < (4/c*nt
for n>mn,.

This estimate is very much better than (1) and is best possible in the
sense that nt cannot be replaced by any function tending to infinity more
slowly.
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It is natural to ask for the result corresponding to (2) when p(z) satisfies
the hypotheses of Theorem A. Erdos [3, Theorem 1] has given an answer
to this question in the special case when the zeros of the polynomial are
all real. He proves:

THEOREM B. Let p(x) be a polynomial of degree n satisfying the inequality
p(x)| =1 for —1=x=1. If p(x) has only real roots none of which lies in
the interval —1, +1, then for —1<x <1,

(4) 1p’(2)] < fen .
This is the best possible result.

We shall suppose p(z) to satisfy the hypotheses of Theorem A, and
determine a bound for |p’(x)| over the closed interval —1<2<1. Since
p'(z) may have zeros inside the unit circle it is of interest to determine a
bound for |p”(x)] and in general for |p®(x)| where p®(x) is the k-th
derivative of p(x) with respect to z.

THEOREM 1. Let p(z) be a real valued rational polynomial of degree n
having no root in the circular region |z| <(1—1/n2}. If |p(x)| <1 in the
unit interval —1<x =<1, then for n>1 and —1 =<z =1 we have

(5) [p®(x)| < A(n,k) k! n*,

where A(n,k) is a constant which depends only on n,k, and is less than 1.7
for small k and sufficiently large n.

The polynomial

Pl) = 3 @=1)a+1

n

satisfies all the hypotheses of the theorem and

M = —

PO = g ™

" _ n(n—1)
L S

1" _ 3"‘(”’_1)(”_2)
O

etc., where the sign a, meaning asymptotically equal to, refers to
n — o; k being fixed, in (5), n¥ cannot be replaced by any function
tending to infinity more slowly.

Our next result is an analogue of Theorem 1 for the L? norm.
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In an attempt to generalize Markoff’s theorem (loc. cit.) Potapov [6]
has proved the following

TrEOREM C. If p(2) is a rational polynomial of degree n, then there exists

a constant B such that
1 1/3
< Bn? ( [ b dx) ,
1

1 1
®) ( [ @ dx)
1

for every 6z 1.

/8

We prove
THEOREM 2. If p(2) is a real valued rational polynomial of degree n
having no root in the interior of the unit circle, then for every 21,

1/8

1 1/8 1
) ( flzﬂ"(x)l"dx) éouc)k!nk( | |p<w>r’dx) :
—1 -1

with C(k) depending only on k.

Finally, we prove a result which is a refinement as well as an extension
of Theorem A. Malik [4] has proved the following

THEOREM D. Let f(z) be a rational function which is the quotient of two
real valued polynomials p(z) and q(z) of degrees m and n respectively. If
J(2) has neither zeros mor poles inside the unit circle and |f(x)| =1 for
—l<z<]l, then for —1+c<xz<l—c,

(8) If' @) < 7 {2(m+n)}/2
(9) If"(@)] < c72{2(m +mn)}>2
for m>my and n>n,.

We note that the bound for |f'’(x)| can be considerably improved.
In fact, we prove the following

THEOREM 3. Let A=max(m,n)>1. Then under the conditions of Theo-
rem D,
(10) [f®(x)| < D(A) k! Ak/2 ¢k

where D(A)<2 for A26. If A=1, then
If®@)] < k! (¢ + fc7*+1) .

(10) gives a better estimate for |f''(x)| than (9).
Now consider
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f@) = et (z2—1)n(1 + )]

where [nt] denotes the greatest integer not exceeding n*. This is a poly-
nomial of degree m=2n+ [n¥]. Writing z=oan-* we have

If(z)] = 6‘*(l—a2/n)”(l+a/ni)ln*l < e-to-2t+a < 1.
Also
£7O)] > eHn+nt])

If"(0)] > e~}[nt)(5n+ 3[nt]-2),

etc. It follows that for small k the bound given by (10) is correct (except
for a constant multiplier) for m — co.
We start with the proof of Theorem 3.

Proor or THEOREM 3. It is enough to establish the conclusion for
0<z<1. To get it for —1<x <0 we may consider the function f(—z).
Suppose A>1. Let (2,);-,, (§,),—; denote respectively the zeros and poles
of f(z). If z,==,+1y, is complex, then Z, will also be a zero of f(z).

Putting

p=a+(l—a)i~tcosgp,
¢ = (1—a)itsing,

we have for 0<a<1 and 0Z¢<2n
(a+(1—a)iter—z,)(a+ (1 —a)A-teiv—7,)
(e+(1—a)i?cosp—z,)(a+(1—a)i*cosp—z,)

(p—=,+(@-9)))(p—=,+(q+y,))
(p —Z, —y”’b) (p —Z, + yp?')
_ <{(1p—ao,,)2+q2 +9.° 20y, H{(p—=,)* +¢* +y.° + 2q:t/,,}>*
{(p—=,)2+y,r2)?

q2
+ 2 2
(p—x,)?+y,
(1—-a)2A-1sin2gp
(@+(1—a)i* cosp— x,)2+y,
sin?g
@12

1

A

Il

14

IA

(11)

In case z, (==,) is real, then



EXTREMAL PROPERTIES OF THE SUCCESSIVE DERIVATIVES ... 125

a+(l—a)i-te®— -—{l 1 (1—a)?sin?p }*
a+(1—a)A~t cosp—2z, h ).(a+(1 a)A~t cosp—zx,)?

sinZp ¥
(12) R

Hence for 0<a<1 and 0 ¢ <27 we have
. Sin2(p m/2
(13) fpla+1-an-ten) s A" fptar (1—ajict cong)
On the other hand, if {,=¢£,+ ¢7, is complex, then with the same notation
as before for 0<a<1 and 0<¢p<2xn
(a+(1—a)i-teir—()(a+(1—a)i-telr—L)
(a+(1—a)At cosp—C)(a+(1—a)d

qt q*n,? ¥
>(1+2 _4
B ( - (p—¢, )2 +n2  {(p-§)+ nﬁ}z)

3
1-2— % )
(p— 5)2+m

=
(1 2(a+(1 (la);):};;lsznzg)z_l_m >
=

sin?¢
1—2 ) ,
(AF—1)

and if £, (=¢,) is real, then

(14)

a+(l—a)i-tele—¢,
a+(l—a)i? cosp—¢,

(15) > 1

so that

in2
(16) |g(a+(1—a)i-teiv) 2 {1— 2sin’g )"

/a
(7*-——-1_)2} |q(a+(1—a))~.—} cOS(p)l.
From (13) and (16) we get for 0<a<1 and 0Z¢<2n

) |fra-aien] s e 20

If k is an integer, then

2 sin%¢ | ~"/4
=y

; k f(w)
fO@) = 2mi s (w—a)*+ W,

|w—a|=(1—a)| A~

and from (17) we get
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2n
Ll k2 sinZp \m?2 2 sin%g \ —n/4
®(a)] < — 14— 1--
& @) "‘2n(1—a)kof ( +<A*—1)2) ( (/“-Uz) v

from which (10) follows.

If A=1, then there are three different possibilities.

(i) m=1 and n=0. In this case f(xz) is of the form ¢,(x—c,) where
leo] 21 and |c;] £1/(1+|cy|). Consequently |f'(z)|=]c,| < 3.

(ii) m=0 and n=1. The function f(x) has the form c4(x —c,)-! where
les| < |es] — 1 and

If®(@)| = k! leg|(cq] — |a])*-2

= k! (Jegl = 1)(Jeg] — L +¢)*-1
S kle®ke(k+1)-%-1.
(iii) m=1 and n=1. Here f(x) has the form cz(x—=z,)(x—&;), where

lesl < (1€ = 1)(J24| + 1)1
and
If®@)| < leg| oy —&il k! | —&|F1

< (162 = D) (J&y] + 1) (Joea| + [£1]) B! (1€4] +0—1)7F
< k! (cF+ ek,
This completes the proof of the theorem.

REMARK. Quite a few theorems in function theory which were first
proved for functions with only real zeros have been found to be true for
functions whose zeros satisfy a condition of closeness to the real axis
(see for example [2, chapters 8 and 10]). If we suppose that f(z) is the
quotient of two polynomials of degrees m and » respectively which are
not necessarily real valued but have their zeros in the angular regions
defined by

lyl £ AA-¥(|=|-1)
where A is a positive constant, then we can verify as above that for
0<a<land 0=Z¢<2n

) 24 . in2 m/2 24 . -n/2
[f(a+(1—a,)}.—iew)|_s_(1+7|sm¢|+%) (I—Tlsmq)l) .

Hence in this case also, we have for —1+¢=<z<1—c¢,
f®(x) = O(Atfc)k as A — oo and k is fixed .

Proor or THEOREM 1. If p(z,)=0, where z,=2,+1y, is complex, then
(2—2,)(2—2,) is a factor of p(z) and for 0<p<2n
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(1+n-eo—z,)(1+nteir—2)
(I—n-i—z)(I-n1—7,)
[z,2+ (1 +n! cosp)?—2z,(1+n1 cosg)+y,2+n2sinZp}® —4n—2y 2sinZp]}
B 22y + (1—n P —2z,(1-n)
< 224+ (1+n1cosp)?—2x,(1+n1cosgp)+y,2+n-2sin?ep
- z2 4y + (1=n ) =2 (1=n)

2 (1—2,)(1+cosg)
na2+y2+(l-n1)2-2z(l—n-1)"

(18) =1+

It is clear that if x, > 1, then the right hand side of (18) does not exceed 1.

For z,<1 it is at most 1+ (1+cosg)/(n—1). For this we have to show
that
1—=x, 1

<
z2+y2+(1—-n1)2-2z(1-n"1) = 2(1-n?)

or
x”2+y”2 Z 1-n-2

which is true by hypothesis. If the zero z,(=x,) is real, then

l 1+n-lew—g,

-1
l-n1l-x,

_h 2 (1—2,)(1+cosg) ¥
- { n x,z—zx,(l—n—l)+(1-n—1)2}

1+ cosg\?
§(1+—+——(p) .
n—1

Summing up we obtain for 0= ¢ < 2z,

14cosg

. n/2
pL+nte)] 5 (1422 ) " jp1 =)

n+cos<p)”/2
19 S|—- .
(19) "'( n—1

If k is an integer such that 1<k <n, then

k! p(w)

*(1) = — f 2 qw,

p(1) Py (0= 1)L w
Jw—1|=n-1

and from (19) we get

n+ cosw)”/zd
n—1

k!
*) (1) < — nk
(20) [p®(1)| = 27“:'”‘ Of (
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If 0<a =1, then the polynomial p(ax) satisfies all the hypotheses of the
theorem, and it follows from (20) that

n+ cos @\™/?
-—~—————) de .
n—1

2n
1
(21) [p(a)| S k! <n/a)k§zof (

Thus for 0<b<x <1 we have

2
1 n/2
22)  |p¥()| S k! (n/b)"—2—7—tof (”+°°S"’) dp = k! D(n/b),

where

1 7 7+ cos g\ ™2
) (B5)
b

0
Let b=1—mn-% Then we get

(23) |p®(x)| < k! D(1—n-t)"knk

for 1-nt=z<1.
Besides, in the same way as for Theorem 3 we get

de

3 k 1 1— in? n/2
()] < k!( n f{ = (1—a)?sin®p

—-a Dt —na — (1 —a)ni)?

for a =0 provided
a+(l—a)ynt < (1—n-2)t.

Thus for 0£a<1—-n"t we obtain
1 T 3
(24) |[p®(x)| < k! n"% f (1+n %sin2¢)"2 dp .
0
(23) and (24) together give the desired result. Note that for n>1,
1 #Hn+1)
D < (l+————I) -1.0635 .

n——

Proor or THEOREM 2. If z,=1,+4y, is complex and p(z,)=0, then
(z—2,)(z—%,) is a factor of p(z), and for 0<a<1,05¢p<2n

1 (1-a) )}
= {1 ta (a—x,.)2+yf}

S (T4n ),

(a-+i(l -yt —z)(@+i(l —ajnt —3)
(a - z,,)(a - Zv)

Hence
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Ip(a+i(1—am-)| < (1+n-1)"2 |p(a)] .

In fact, if w=wu+ v is a point on the boundary € of the rhombus having
end points at —1, +1, —i/nt and i/n}, then

(25) [p(w)| £ (1+271)"2|p(u)| .
But for —1<z<1,

p(w)

(*) S bl
P = 2m (w —x)k+1

Therefore by (25)

( n+ 1)}(k+1)

pP@) £ S (1pnpnen D j Iptw)] du
7 (1 —z)et1

k! (4 1)ik+D 1
< Z(Q4np V)@ 7 91178 J. 8 '
T n (1+n7%) (1—z)e+1 (..1 |p(w)| d“) :

by Minkowski’s inequality. Consequently

1
26 [ PP dx
< Ifi (1 +n1)ir+D 626—1(”,.1_ 1)Hk+18 Jj_ﬂ,_ fll (w)]® du
= T A (1 _w)(k+l)d A p

1
< {Callyy m [ 1pul du
21

with C,(k) depending only on k.
While proving Theorem 1 we have actually shown that for 0<x <1

1 \¥r+D
|p®(x)| < (l +;z_l) 1.0635 k! (n/x)k|p(x —z[n)| .

Hence
1 1
(27) [ P9 de < (Co@pn® [ p@)tde.
Y —
Similarly '
-1 1
(28) [ 1o d < (Cyopn® [ p@)pde.
-1 -1

From (26), (27) and (28) the result follows.

Math. Scand. 15 —9
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I am thankful to Professor R. P. Boas, Jr., for various suggestions and
criticisms.
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