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ASYMPTOTIC ESTIMATES FOR THE
FINITE PREDICTOR

A. DEVINATZ
1.

Let f2 0 be in L! of the circle group, f its Fourier transform and D, (f)
the determinant of the (z+ 1)-section of the Toeplitz matrix of f; that is

Dy(f) = det{f(i =)} jmo -
If u,=D,/D, _,, then it is a well known theorem of G. Szegé [4, p. 44] that

2n
1
oo~ 1 = exp— [ log(6) d,
nO

where the right hand side is to be interpreted as zero if logf is not sum-
mable. It is important to be able to estimate the rate of convergence
of u, in terms of smoothness properties of f. Various results along this
line may be found in work by G. Baxter [2], U. Grenander and M. Rosen-
blatt [3], U. Grenander and G. Szegé [4, § 10.10], and I. I. Hirschman, Jr.
[6]. It is the purpose of this paper to give some results of a general
nature which when specialized will yield the results of the above men-
tioned authors.

2.

Let us begin by recalling some well known facts. A more complete
discussion with proofs may be found in [4]. Throughout our discussion
we shall always suppose that f is a non-negative summable function with
log f also summable.

We may write f=|g|?> where g is an outer factor in H2. This means in
particular that we can take §(0)>0 and if 1/f e L! then 1/g € H% Also,
it turns out that u=g(0)%

The quantity y, is given by
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2n
L1
M o = min— [ 1plfds,
7T
0
where the minimum is taken over all nth degree polynomials,
n
p(0) = 3 P(k) e**, with p(0) = 1.
0

If u, is the minimizing polynomial, then u, may be characterized as
that unique ntt degree polynomial with %,(0)=1 for which

2n
@) f u,(0)e-"F(9)do = 0, 1<k<n.

0

There is another way to characterize w, which will be important for
what follows. If we set v,=wu,/u, then we claim that

2 2
®) [ 11-4(0p,g12 a6 = min [ 11— pgl2a0,

0 0
where the minimum is taken over all ntt degree polynomials

p(6) = 3 D(k) e* .

oM =

Indeed, the unique minimizing polynomial 4 is characterized by the fact
that

2n
1
?f{l—hg}e—i’“’gdo -0, O0<ksn.
nO

It is not hard to check that §(0)v, is the polynomial with this property.
Finally we note that

2n
1
— —_ — 4 2
(4) 1 — ufpy, 2n0f [1 - §(0)v,g|2db ,

which can be checked by a direct computation.

3.
Our object in this section is to prove the following:

TeEOREM 1. (a) If 1/fe L' and h is any positive trigonometric poly-
nomial of degree n with h=y >0, then
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2n
(5) Up = o < 5 [ 11f = h2f do,
Vs

where

1 2n

Y= expgy—tof logh do .
(b) If fzoc>0 then

(6) o 2 [(1fg) (O = 1~ plpn

(¢) If 0<x=f<f<oo and if s,=30(1/g)" (k)e™® with |s,[2<y<oo for
all n, then

(7

2

—_— )" (k) = 1- .
STy 2, (U@ < 1=

Proor. To prove (a) we first write k= |p|2, where p(0)=307(k)e*?,
2(0)>0 and 1/p € H2. This is just the well known Fejér—Riesz theorem
on the factorization of non-negative trigonometric polynomials. Hence,
recalling that f=|g|%, we get

270 27
1 1 —
il — h2 - 2|1 — pal2
2%] ILf = hi2f do 27%] IpP11/pg — pyl® do
27

> é’;_tof 11/2g — 1/2g (0) + 1/g (0) — pgl2df .

Since 1/(pg) € H?, it follows that 1/pg— 1/@(0) is orthogonal to
1/99 (0)—pg. Therefore,

. j 1f — hi2do 2 f 11/74(0) — pgl* 48

_271:

'y PN
1— 2
py fl P9 (0)pg|* db

2 f 1L = §(0)v,g17d8 = [1fp = Yuayly-
.

This gives our inequality in (a).
To prove (b) we have simply
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1 27
1 — plp, = . f [1—§(0)v,g| db
0

2n
1 A
= 5= [ 19 1/g - g0 2 & 3 1/g)" G-
no k>n
Finally, to prove (c) we have

27
. 1
21 @ s Eof [1[f ~ lea 212 6

1 2n
o)
2nx
0
l Jzz‘
0

27
1
[1f = lsul2f b < ﬁof 117 ~ leal2gl2d0

IIA

27
_ 1/ — 5|2 2 —s |2
M[ 11fg - 5] d6+0f lg5al? [1fg — | de]

1+ By T
< = [11fg - g(O)va 2o
0
2n
1
S | o = O 80 = (1 ) 21+ )

4.

We now want to indicate how we can use the previous elementary
estimates to obtain most of the results of the previously mentioned
authors. We start with the sufficiency part of a result of Grenander and
Rosenblatt [3] (see also [4; § 10.10]).

If f has no zeros and its periodic extension is real analytic, then

0y = ptn—p = 0("),
where 0<p<1.

Since f has no zeros, the periodic extension of 1/f is analytic. This
means that 1/f may be considered to be an analytic function on the circle.
Indeed, let logw be any determination of the logarithm function and set
Fw)=1[f(—1logw) for w=e®. The analyticity of 1/f implies that F
may be extended to be analytic in an open annulus {z: ¢ < |2| < 1/¢} with
0<p<1l. We can expand F in a Laurent expansion about zero to get

Fo) = 3 (1) )2,

N=—00

where
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Fi(z) = % (1/f)"(n) z»  converges for |2|>p,

Fyz) = ?0 (1/f)"(n) z»  converges for |z|<1/o.

It follows from this that the symmetric partial sums of 1/f converge
uniformly to 1/f and we may apply theorem 1 (a) to get

60 = tin—pt = O (‘ 3 1) we) -

k|>n

But (1f)" (k) = 0(¢¥) implies 8, =0(¢").

Our second example is a result due to Baxter [2].

If £>0 and 3|f(k)| |k|*< o0, 420, then 8,=o(n"2).

For fixed A4 the functions in this class form a Banach algebra with
spectrum the unit circle and hence f> 0 implies that 1/f is in this algebra.
If n is sufficiently large we get

nz"kg I(1[f)" (k)12 émz &2 1(1/f)" (k)] élkl): [&1* 1(1[f)" (R -
The result is now an immediate consequence of theorem 1 (a).

Finally we give an example of a result due to I. I. Hirschman, Jr. [5].
If 0<a<f=<f<oo and A>1, then 8, =0(n~*) if and only if

n*lklzz If(k)|2 = o(1).

The functions of this class form a subalgebra of the class of summable
Fourier series. Under a suitable norm they form a Banach algebra with
spectrum the unit circle [5]. Hence the result now follows from Theorem
1, since f is in the algebra if and only if 1/f is in the algebra.

REMARKS. (a) Let s,=3¢(1/g)" (k) ¢*°; then under the hypothesis of
Theorem 1(b) we have

2n
1
é;tof 80— G(0)0[2 40 = 0(3,) .

Indeed, from (4) we may write

1 2n $
{1 — plppt = [57; f g1 11/g — 4(0)v,|? dO}
0

[\

o } a0, 2 0] o ZI(I/g)‘(k)lzr
2710 " " k>n '
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Apply Theorem 1 (b) and we have our result. This result was obtained
in special cases by Baxter [2] and Hirschman [5].

(b) If f=|g|?, g outer in H? it is in general an undecided question as
to which smoothness properties of f carry over to g. Our Theorem 1
sheds a small amount of light on this problem. For example, if
feLip(4,2), then it is a well known result [1; p. 171] that

3 k)2 = O .
ki=n
The converse is also true. Hence if 0 <« £f< f < o0 and if s,, are the partial
sums of the Fourier expansion of f with s, >y >0, then an application
of Theorem 1 (a) tells us 6,(1/f) = O(n—%*) which in turn, by Theorem 1 (b)

tells us that .
kg |§(k)|2 = O(n=24).

This means we also have g € Lip(4,2).

5.

We would now like to sharpen and complete the results we have
previously obtained. We shall show that if 8, =y, —u goes to zero suf-
ficiently rapidly, then f-! has a summable Fourier series. Specifically
we shall prove the following:

THEOREM 2. If 32 ({2%04}} < oo and logf is summable, then 1/f has a
summable Fourier series.

Roughly speaking this result says that, unless f has no zeros and is
very smooth most of the time, then 4, cannot go to zero very much
faster than 1/n. This is to be compared with the results of the next
section. Note that if f>o« >0, then theorem 2 is an immediate con-
sequence of theorem 1 (b). Indeed we get

on+1 . on+1 R 3
S 1(1g) ()] < 2*"[2 (1g) (k)iz] < w-igingh, .
ont1 ont1

Summing both sides over n we get the result.

In case f is bounded above, it is not hard to show that theorem 2 is a
consequence of Theorem 1.1 of Baxter [2a]. Indeed, the general case can
be obtained by an application of an idea developed in this same paper
[2a]. This was pointed out to us by I. I. Hirschman.

For the sake of completeness we shall briefly review this material
(see also [5]). Let H be the Hilbert space generated by the one-sided
trigonometric polynomials p(6) =37 p(k)et® in the L? norm given by the
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measure fd, and let H, be the subspace generated by polynomials of
degree n. Using the notation of our previous sections, we find that the
polynomial v, —wv,_, is in the one-dimensional space H, © H, ;. It is
a simple matter to check that the polynomial €95, also is in this latter
space. Hence, there is a constant «, so that

(8) Vp—Vp_y = &, €M7, |
and therefore

v, =

n o 0,

td
M

Now, the polynomials u,}e™%, are the orthonormal Szegd polynomials
agsociated with f and hence from (3) and (4) we get

(9) 1—plu, = p E locge| 2 e -
k=n+1

PrOOF OF THEOREM 2. Let ||-||; be the It norm; i.e. for any function A
with summable Fourier series we write

iy = 3 k) .

—o0

From (8) we get [[v,/ly —[[on-ally = [l [¥n]ly = [0nlly + 04—l Consequently,

1= loal| Ioally S ol
and repeated iteration of this result gives

n

TT (1= o)
m+1

From the fact that ¥ {20y}t < 0o, it follows from (9), using exactly the
same kind of argument as used after the statement of theorem 2, that

3|0l < oo. Therefore IT7(1—|x|) converges and the sequence {|v,l}
is uniformly bounded by a constant C.
Returning to (8) we see that

n+p
“vn+p’_vn”1 = c z |0‘k|
n+1

loalls = llomlls -

and hence {v,} is Cauchy in the ! norm. From (4) it follows immediately
that the limit of this sequence in the ! norm is [§(0)g]-!. Therefore,
1/g and hence 1/f=1/|g|? have summable Fourier series.

REMARKS (a) The result we have just obtained contains the necessity
part of the Grenander—Rosenblatt result. Indeed, if 4, =0(¢™), 0<0<]1,
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then f is bounded away from zero and we may apply theorem 1 (b) to
show that (1/g)”(n)=0(¢"). This, in turn, shows that the periodic exten-
sion of 1/g is an analytic function of 6 and hence the periodic extension
of 1/f=1/|g|? is an analytic function of §. Now, 1/f can have no zeros
since this would preclude the possibility of f being summable. Hence f
is real analytic with no zeros.

(b) The statement Yo’ {2%04:}t < oo is clearly equivalent with the state-
ment 33 {4,/n}} <. Following the lead of Hirschman [5], it is natural
to conjecture that the class of functions which satisfy the condition

[1Ally = % 2n Y |7a(1c)|2}ir < o

n=0 |k|=2n

is a Banach algebra under the norm

Bl = c{lially+ lIAllg} ,

where ¢ is a suitably chosen constant and |-||; is the I norm. This is
indeed the case and moreover, the spectrum of this algebra is the unit
circle. The proof requires only a slight modification of the proof given
by Hirschman in a special case. It is easy to see that one gets an equiv-
alent norm by taking

*® A ]

e = 3 fa=t 3 i)
n=1 |k|=n

One interest in knowing that we have a Banach algebra stems from the

possibility of being able to get asymptotic estimates for ¢, in terms of f
rather than in terms of 1/f.

6.

It was pointed out by Grenander and Rosenblatt [3] that if f has
zeros, then in general we cannot expect d,, to go to zero faster than 1/n.
As they pointed out, a function for which §, goes to zero at precisely
this rate is f(0)=|1—e®|2. It is the purpose of this section to generalize
their results. If for any non-negative f with logf summable we set
0,(f)=1—p/u, then we have the following:

THEOREM 3. If f=f,|€®— 1|2, where f and f, are non-negative and sum-
mable and logf, is summable, then

(10) o}(f) = (Ur}+204(f)), r+s=n.

Proor. Let f=|g|? and f, = |g,|* where g and g, are outer factors in H?2.
From (4) we have
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27
1
= — — il 2
On(f) 2n0f |1 —§(0)v,g|*>db .

Let w, be the polynomial such that

2n
1
0,f) = 5 [ 11=gu(Omw,g,/2ds,
0

and set
r—1
PA0) = X (1 — kfr)eto .

k=0

From (3) it follows that v, has a minimizing property and hence

2n t
1 )

2(f) = {5— [ —p,(l—ewm1<0>wsgllﬁde|
no

1 7 :
(11) 1= [|1—p,(1—ei0){2d0 +
27'66
1T :
+5-1] Ip,u—e“)12|1-.<il(0)wsgl|2d0] :
7 0

Now, it is easily computed that
r
Pl —e€®) =1— (1)r) 3 ek,
k=1

Therefore,
[p(1—€®)| = 2,

2n
1
——f|l——p,(l—e“)|2d0 = 1r.
2n
0
If we use these estimates in (11) we get our result.

CoroLLARY. If f=f; TTi., |e" —e“i|i, and A=34;, then
0u(f) = O(Ufn + &upo(f1)) -

This is obtained by iterating (10) 4 times. At the first stage choose
r=[(n+1)/2] and s=[n/2], say, and then continue in this way with Jy,/y.
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