ASYMPTOTIC ESTIMATES FOR THE FINITE PREDICTOR

A. DEVINATZ

1.

Let $f \ge 0$ be in L^1 of the circle group, \hat{f} its Fourier transform and $D_n(f)$ the determinant of the (n+1)-section of the Toeplitz matrix of f; that is

$$D_n(f) = \det \{\hat{f}(i-j)\}_{i,j=0}^n$$
.

If $\mu_n = D_n/D_{n-1}$, then it is a well known theorem of G. Szegő [4, p. 44] that

$$\mu_n
ightarrow \mu = \exp rac{1}{2\pi} \int\limits_0^{2\pi} \log f(\theta) d\theta$$
,

where the right hand side is to be interpreted as zero if $\log f$ is not summable. It is important to be able to estimate the rate of convergence of μ_n in terms of smoothness properties of f. Various results along this line may be found in work by G. Baxter [2], U. Grenander and M. Rosenblatt [3], U. Grenander and G. Szegö [4, § 10.10], and I. I. Hirschman, Jr. [5]. It is the purpose of this paper to give some results of a general nature which when specialized will yield the results of the above mentioned authors.

2.

Let us begin by recalling some well known facts. A more complete discussion with proofs may be found in [4]. Throughout our discussion we shall always suppose that f is a non-negative summable function with $\log f$ also summable.

We may write $f = |g|^2$ where g is an outer factor in H^2 . This means in particular that we can take $\hat{g}(0) > 0$ and if $1/f \in L^1$ then $1/g \in H^2$. Also, it turns out that $\mu = \hat{g}(0)^2$.

The quantity μ_n is given by

Received August 22, 1964.

Research supported by grant No. GP-2089 of the U.S. National Science Foundation.

(1)
$$\mu_n = \min \frac{1}{2\pi} \int_0^{2\pi} |p|^2 f \, d\theta \,,$$

where the minimum is taken over all n^{th} degree polynomials,

$$p(\theta) = \sum_{k=0}^{n} \hat{p}(k) e^{ik\theta}, \quad \text{with} \quad \hat{p}(0) = 1.$$

If u_n is the minimizing polynomial, then u_n may be characterized as that unique n^{th} degree polynomial with $\hat{u}_n(0) = 1$ for which

(2)
$$\int_{0}^{2\pi} u_{n}(\theta) e^{-ik\theta} f(\theta) d\theta = 0, \qquad 1 \leq k \leq n.$$

There is another way to characterize u_n which will be important for what follows. If we set $v_n = u_n/\mu_n$ then we claim that

(3)
$$\int_{0}^{2\pi} |1 - \hat{g}(0)v_n g|^2 d\theta = \min_{0}^{2\pi} \int_{0}^{2\pi} |1 - pg|^2 d\theta,$$

where the minimum is taken over all n^{th} degree polynomials

$$p(\theta) = \sum_{i=0}^{n} \hat{p}(k) e^{ik\theta}$$
.

Indeed, the unique minimizing polynomial h is characterized by the fact that

$$\frac{1}{2\pi}\int\limits_0^{2\pi} \{1-hg\}e^{-ik\theta}\bar{g}\;d\theta\;=\;0,\qquad 0\leqq k\leqq n\;.$$

It is not hard to check that $\hat{g}(0)v_n$ is the polynomial with this property. Finally we note that

(4)
$$1 - \mu/\mu_n = \frac{1}{2\pi} \int_{0}^{2\pi} |1 - \hat{g}(0)v_n g|^2 d\theta ,$$

which can be checked by a direct computation.

3.

Our object in this section is to prove the following:

THEOREM 1. (a) If $1/f \in L^1$ and h is any positive trigonometric polynomial of degree n with $h \ge \gamma > 0$, then

(5)
$$1/\mu - 1/\mu_n \leq \frac{\nu}{2\pi\nu} \int_{0}^{2\pi} |1/f - h|^2 f \, d\theta ,$$

where

$$\nu = \exp \frac{1}{2\pi} \int_{0}^{2\pi} \log h \ d\theta \ .$$

(b) If $f \ge \alpha > 0$ then

(6)
$$\alpha \sum_{k>n} |(1/g)^{\hat{}}(k)|^2 \leq 1 - \mu/\mu_n .$$

(c) If $0 < \alpha \le f \le \beta < \infty$ and if $s_n = \sum_{i=0}^n (1/g)^i(k) e^{ik\theta}$ with $|s_n|^2 \le \gamma < \infty$ for all n, then

(7)
$$\frac{\alpha^2}{2(1+\beta\gamma)} \sum_{|k|>n} |(1/f)^{\hat{}}(k)|^2 \leq 1 - \mu/\mu_n.$$

PROOF. To prove (a) we first write $h = |p|^2$, where $p(\theta) = \sum_0^n \hat{p}(k)e^{ik\theta}$, $\hat{p}(0) > 0$ and $1/p \in H^2$. This is just the well known Fejér–Riesz theorem on the factorization of non-negative trigonometric polynomials. Hence, recalling that $f = |g|^2$, we get

$$\begin{split} \frac{1}{2\pi} \int\limits_{0}^{2\pi} |1/f - h|^2 f \, d\theta &= \frac{1}{2\pi} \int\limits_{0}^{2\pi} |p|^2 |1/\overline{pg} - pg|^2 \, d\theta \\ &\geq \frac{\gamma}{2\pi} \int\limits_{0}^{2\pi} |1/\overline{pg} - 1/\widehat{pg}(0) + 1/\widehat{pg}(0) - pg|^2 \, d\theta \, . \end{split}$$

Since $1/(pg) \in H^2$, it follows that $1/\overline{pg} - 1/\widehat{pg}(0)$ is orthogonal to $1/\widehat{pg}(0) - pg$. Therefore,

$$\begin{split} \frac{1}{2\pi} \int\limits_{0}^{2\pi} |1/\!f - h|^2 \, d\theta \, & \geq \frac{\gamma}{2\pi} \int\limits_{0}^{2\pi} |1/\widehat{pg}\left(0\right) - pg|^2 \, d\theta \\ & \geq \frac{\gamma}{2\pi\nu\mu} \int\limits_{0}^{2\pi} |1 - \widehat{pg}\left(0\right) pg|^2 \, d\theta \\ & \geq \frac{\gamma}{2\pi\nu\mu} \int\limits_{0}^{2\pi} |1 - \widehat{g}(0)v_n g|^2 \, d\theta = [1/\!\mu - 1/\!\mu_n] \gamma/\!\nu \, . \end{split}$$

This gives our inequality in (a).

To prove (b) we have simply

Math. Scand. 15 - 8

$$\begin{split} 1 - \mu/\mu_n &= \frac{1}{2\pi} \int\limits_0^{2\pi} |1 - \hat{g}(0)v_n g|^2 \, d\theta \\ &= \frac{1}{2\pi} \int\limits_0^{2\pi} |g|^2 |1/g - \hat{g}(0)v_n|^2 \, d\theta \, \geqq \, \alpha \sum_{k>n} |(1/g)^{\hat{}}(k)|^2 \, . \end{split}$$

Finally, to prove (c) we have

$$\begin{split} \sum_{|k|>n} |(1/f)^{\hat{}}(k)|^2 & \leq \frac{1}{2\pi} \int_0^{2\pi} |1/f - |s_n|^2|^2 \, d\theta \\ & \leq \frac{1}{2\pi\alpha} \int_0^{2\pi} |1/f - |s_n|^2|^2 f \, d\theta \leq \frac{1}{2\pi\alpha} \int_0^{2\pi} |1/\bar{g} - |s_n|^2 g|^2 \, d\theta \\ & \leq \frac{1}{\pi\alpha} \left\{ \int_0^{2\pi} |1/\bar{g} - \overline{s_n}|^2 \, d\theta + \int_0^{2\pi} |gs_n|^2 \, |1/g - s_n|^2 \, d\theta \right\} \\ & \leq \frac{1+\beta\gamma}{\pi\alpha} \int_0^{2\pi} |1/g - \hat{g}(0)v_n|^2 \, d\theta \\ & \leq \frac{1+\beta\gamma}{\pi\alpha^2} \int_0^{2\pi} |1/g - \hat{g}(0)v_n|^2 f \, d\theta = (1-\mu/\mu_n) \, 2(1+\beta\gamma)/\alpha^2 \; . \end{split}$$

4.

We now want to indicate how we can use the previous elementary estimates to obtain most of the results of the previously mentioned authors. We start with the sufficiency part of a result of Grenander and Rosenblatt [3] (see also [4; § 10.10]).

If f has no zeros and its periodic extension is real analytic, then

$$\delta_n = \mu_n - \mu = O(\varrho^n) ,$$

where $0 \le \varrho < 1$.

Since f has no zeros, the periodic extension of 1/f is analytic. This means that 1/f may be considered to be an analytic function on the circle. Indeed, let $\log w$ be any determination of the logarithm function and set $F(w) = 1/f(-i \log w)$ for $w = e^{i\theta}$. The analyticity of 1/f implies that F may be extended to be analytic in an open annulus $\{z: \varrho < |z| < 1/\varrho\}$ with $0 \le \varrho < 1$. We can expand F in a Laurent expansion about zero to get

$$F(z) = \sum_{n=-\infty}^{\infty} (1/f)^{n} (n) z^{n},$$

where

$$F_1(z) = \sum_{n=-\infty}^{0} (1/f)^n (n) z^n$$
 converges for $|z| > \varrho$,

$$F_2(z) = \sum_{n=0}^{\infty} (1/f)^n (n) z^n$$
 converges for $|z| < 1/\varrho$.

It follows from this that the symmetric partial sums of 1/f converge uniformly to 1/f and we may apply theorem 1 (a) to get

$$\delta_n = \mu_n - \mu = O\left(\sum_{|k| > n} |(1/f)^{\hat{}}(k)|^2\right)$$
.

But $(1/f)^{\hat{}}(k) = O(\varrho^k)$ implies $\delta_n = O(\varrho^n)$.

Our second example is a result due to Baxter [2].

If
$$f > 0$$
 and $\sum |\hat{f}(k)| |k|^{\lambda} < \infty$, $\lambda \ge 0$, then $\delta_n = o(n^{-2\lambda})$.

For fixed λ the functions in this class form a Banach algebra with spectrum the unit circle and hence f > 0 implies that 1/f is in this algebra. If n is sufficiently large we get

$$n^{2\lambda} \sum_{|k| > n} |(1/\!f)^{\hat{}}(k)|^2 \, \leqq \sum_{|k| > n} |k|^{2\lambda} \, |(1/\!f)^{\hat{}}(k)|^2 \, \leqq \sum_{|k| > n} |k|^{\lambda} \, |(1/\!f)^{\hat{}}(k)| \, .$$

The result is now an immediate consequence of theorem 1 (a).

Finally we give an example of a result due to I. I. Hirschman, Jr. [5]. If $0 < \alpha \le f \le \beta < \infty$ and $\lambda > 1$, then $\delta_n = o(n^{-\lambda})$ if and only if

$$n^{\lambda} \sum_{|k| \ge n} |\hat{f}(k)|^2 = o(1) .$$

The functions of this class form a subalgebra of the class of summable Fourier series. Under a suitable norm they form a Banach algebra with spectrum the unit circle [5]. Hence the result now follows from Theorem 1, since f is in the algebra if and only if 1/f is in the algebra.

Remarks. (a) Let $s_n = \sum_{i=0}^{n} (1/g)^{\hat{}}(k) e^{ik\theta}$; then under the hypothesis of Theorem 1(b) we have

$$\frac{1}{2\pi} \int\limits_0^{2\pi} |s_n - \hat{g}(0)v_n|^2 \; d\theta \; = \; O(\delta_n) \; .$$

Indeed, from (4) we may write

$$\begin{split} \{1 - \mu/\mu_n\}^{\frac{1}{4}} &= \left\{\frac{1}{2\pi} \int\limits_0^{2\pi} |g|^2 \; |1/g - \hat{g}(0)v_n|^2 \; d\theta\right\}^{\frac{1}{4}} \\ &\geq \; \alpha^{\frac{1}{4}} \left\{\frac{1}{2\pi} \int\limits_0^{2\pi} |s_n - \hat{g}(0)v_n|^2 \; d\theta\right\}^{\frac{1}{4}} - \; \alpha^{\frac{1}{4}} \left\{\sum_{k > n} |(1/g)^{\hat{}}(k)|^2\right\}^{\frac{1}{4}} \; . \end{split}$$

116 A. DEVINATZ

Apply Theorem 1 (b) and we have our result. This result was obtained in special cases by Baxter [2] and Hirschman [5].

(b) If $f = |g|^2$, g outer in H^2 , it is in general an undecided question as to which smoothness properties of f carry over to g. Our Theorem 1 sheds a small amount of light on this problem. For example, if $f \in \text{Lip}(\lambda, 2)$, then it is a well known result [1; p. 171] that

$$\sum_{|k|\geq n} |\widehat{f}(k)|^2 = O(n^{-2\lambda}) .$$

The converse is also true. Hence if $0 < \alpha \le f \le \beta < \infty$ and if s_n are the partial sums of the Fourier expansion of f with $s_n \ge \gamma > 0$, then an application of Theorem 1 (a) tells us $\delta_n(1/f) = O(n^{-2\lambda})$ which in turn, by Theorem 1 (b) tells us that

$$\sum_{k\geq n} |\hat{g}(k)|^2 = \mathit{O}(n^{-2\lambda})$$
 .

This means we also have $g \in \text{Lip}(\lambda, 2)$.

5.

We would now like to sharpen and complete the results we have previously obtained. We shall show that if $\delta_n = \mu_n - \mu$ goes to zero sufficiently rapidly, then f^{-1} has a summable Fourier series. Specifically we shall prove the following:

Theorem 2. If $\sum_{k=0}^{\infty} \{2^k \delta_{2^k}\}^{\frac{1}{k}} < \infty$ and $\log f$ is summable, then 1/f has a summable Fourier series.

Roughly speaking this result says that, unless f has no zeros and is very smooth most of the time, then δ_n cannot go to zero very much faster than 1/n. This is to be compared with the results of the next section. Note that if $f \ge \alpha > 0$, then theorem 2 is an immediate consequence of theorem 1 (b). Indeed we get

$$\sum_{2n+1}^{2n+1} |(1/g)^{\hat{}}(k)| \leq 2^{\frac{1}{2}n} \left[\sum_{2n+1}^{2n+1} |(1/g)^{\hat{}}(k)|^2 \right]^{\frac{1}{2}} \leq \alpha^{-1} 2^{\frac{1}{2}n} \delta_{2n}^{\frac{1}{2}} .$$

Summing both sides over n we get the result.

In case f is bounded above, it is not hard to show that theorem 2 is a consequence of Theorem 1.1 of Baxter [2a]. Indeed, the general case can be obtained by an application of an idea developed in this same paper [2a]. This was pointed out to us by I. I. Hirschman.

For the sake of completeness we shall briefly review this material (see also [5]). Let H be the Hilbert space generated by the one-sided trigonometric polynomials $p(\theta) = \sum_{i=0}^{m} \hat{p}(k) e^{ik\theta}$ in the L^2 norm given by the

measure $fd\theta$, and let H_n be the subspace generated by polynomials of degree n. Using the notation of our previous sections, we find that the polynomial v_n-v_{n-1} is in the one-dimensional space $H_n \ominus H_{n-1}$. It is a simple matter to check that the polynomial $e^{in\theta}\overline{v}_n$ also is in this latter space. Hence, there is a constant α_n so that

$$(8) v_n - v_{n-1} = \alpha_n e^{in\theta} \overline{v}_n ,$$

and therefore

$$v_n = \sum_{k=0}^n \alpha_k e^{ik\theta} \, \overline{v}_k$$
.

Now, the polynomials $\mu_n^{\frac{1}{2}}e^{in\theta}\overline{v}_n$ are the orthonormal Szegö polynomials associated with f and hence from (3) and (4) we get

(9)
$$1 - \mu/\mu_n = \mu \sum_{k=n+1}^{\infty} |\alpha_k|^2/\mu_k.$$

PROOF OF THEOREM 2. Let $\|\cdot\|_1$ be the l^1 norm; i.e. for any function h with summable Fourier series we write

$$||h||_1 = \sum_{-\infty}^{\infty} |\hat{h}(k)|$$
.

From (8) we get $||v_n||_1 - ||v_{n-1}||_1 \le |\alpha_n| \, ||v_n||_1 \le ||v_n||_1 + ||v_{n-1}||_1$. Consequently,

$$\left|1-|\alpha_n|\right| \, ||v_n||_1 \, \leqq \, ||v_{n-1}||_1 \, ,$$

and repeated iteration of this result gives

$$\left| \left| \prod_{m+1}^{n} (1 - |\alpha_{k}|) \right| \, \|v_{n}\|_{1} \leq \, \|v_{m}\|_{1} \, .$$

From the fact that $\sum \{2^k \delta_{2^k}\}^{\frac{1}{2}} \leq \infty$, it follows from (9), using exactly the same kind of argument as used after the statement of theorem 2, that $\sum_{1}^{\infty} |\alpha_k| < \infty$. Therefore $\prod_{1}^{n} (1 - |\alpha_k|)$ converges and the sequence $\{||v_n||_1\}$ is uniformly bounded by a constant C.

Returning to (8) we see that

$$||v_{n+p} - v_n||_1 \, \leq \, C \sum_{n+1}^{n+p} |\alpha_k|$$

and hence $\{v_n\}$ is Cauchy in the l^1 norm. From (4) it follows immediately that the limit of this sequence in the l^1 norm is $[\hat{g}(0)g]^{-1}$. Therefore, 1/g and hence $1/f = 1/|g|^2$ have summable Fourier series.

Remarks (a) The result we have just obtained contains the necessity part of the Grenander-Rosenblatt result. Indeed, if $\delta_n = O(\varrho^n)$, $0 \le \varrho < 1$,

118 A. DEVINATZ

then f is bounded away from zero and we may apply theorem 1 (b) to show that $(1/g)^{\hat{}}(n) = O(\varrho^n)$. This, in turn, shows that the periodic extension of 1/g is an analytic function of θ and hence the periodic extension of $1/f = 1/|g|^2$ is an analytic function of θ . Now, 1/f can have no zeros since this would preclude the possibility of f being summable. Hence f is real analytic with no zeros.

(b) The statement $\sum_{0}^{\infty} \{2^{k} \delta_{2^{k}}\}^{\frac{1}{2}} < \infty$ is clearly equivalent with the statement $\sum_{0}^{\infty} \{\delta_{n}/n\}^{\frac{1}{2}} < \infty$. Following the lead of Hirschman [5], it is natural to conjecture that the class of functions which satisfy the condition

$$\|h\|_2 = \sum_{n=0}^{\infty} \left\{ 2^n \sum_{|k| \ge 2^n} |\hat{h}(k)|^2 \right\}^{\frac{1}{4}} < \infty$$

is a Banach algebra under the norm

$$||h|| = c\{||h||_1 + ||h||_2\},\,$$

where c is a suitably chosen constant and $\|\cdot\|_1$ is the l^1 norm. This is indeed the case and moreover, the spectrum of this algebra is the unit circle. The proof requires only a slight modification of the proof given by Hirschman in a special case. It is easy to see that one gets an equivalent norm by taking

$$||h||_2 = \sum_{n=1}^{\infty} \left\{ n^{-1} \sum_{|k| \ge n} |\hat{h}(k)|^2 \right\}^{\frac{1}{4}}$$
 .

One interest in knowing that we have a Banach algebra stems from the possibility of being able to get asymptotic estimates for δ_n in terms of f rather than in terms of 1/f.

6.

It was pointed out by Grenander and Rosenblatt [3] that if f has zeros, then in general we cannot expect δ_n to go to zero faster than 1/n. As they pointed out, a function for which δ_n goes to zero at precisely this rate is $f(\theta) = |1 - e^{i\theta}|^2$. It is the purpose of this section to generalize their results. If for any non-negative f with $\log f$ summable we set $\partial_n(f) = 1 - \mu/\mu_n$ then we have the following:

THEOREM 3. If $f=f_1|e^{i\theta}-1|^2$, where f and f_1 are non-negative and summable and $\log f_1$ is summable, then

(10)
$$\partial_n^{\frac{1}{2}}(f) \leq (1/r)^{\frac{1}{2}} + 2\partial_s^{\frac{1}{2}}(f_1), \qquad r+s=n.$$

PROOF. Let $f = |g|^2$ and $f_1 = |g_1|^2$ where g and g_1 are outer factors in H^2 . From (4) we have

$$\partial_n(f) = \frac{1}{2\pi} \int_0^{2\pi} |1 - \hat{g}(0)v_n g|^2 d\theta.$$

Let w_s be the polynomial such that

$$\partial_s(f_1) = \frac{1}{2\pi} \int\limits_0^{2\pi} |1 - \hat{g}_1(0) w_s g_1|^2 d\theta ,$$

and set

$$p_r(\theta) = \sum_{k=0}^{r-1} (1 - k/r)e^{ik\theta}$$
.

From (3) it follows that v_n has a minimizing property and hence

$$\begin{split} \partial_n^{\frac{1}{2}}(f) & \leq \left\{ \frac{1}{2\pi} \int_0^{2\pi} |1 - p_r(1 - e^{i\theta}) \hat{g}_1(0) w_s g_1|^2 \, d\theta \right\}^{\frac{1}{2}} \\ & \leq \left\{ \frac{1}{2\pi} \int_0^{2\pi} |1 - p_r(1 - e^{i\theta})|^2 \, d\theta \right\}^{\frac{1}{2}} + \\ & + \frac{1}{2\pi} \left\{ \int_0^{2\pi} |p_r(1 - e^{i\theta})|^2 \, |1 - \hat{g}_1(0) w_s g_1|^2 \, d\theta \right\}^{\frac{1}{2}} \, . \end{split}$$

Now, it is easily computed that

$$p_r(1-e^{i\theta}) = 1 - (1/r) \sum_{k=1}^r e^{ik\theta}$$
.

Therefore,

$$|p_r(1-e^{i\theta})| \leq 2,$$

$$\frac{1}{2\pi} \int\limits_0^{2\pi} |1-p_r(1-e^{i\theta})|^2 \; d\theta \; = \; 1/r \; .$$

If we use these estimates in (11) we get our result.

Corollary. If
$$f = f_1 \prod_{j=1}^k |e^{i\theta} - e^{i\theta_j}|^{2\lambda_j}$$
, and $\lambda = \sum \lambda_j$, then
$$\delta_n(f) = O(1/n + \delta_{\lceil n/2^{\lambda_j} \rceil}(f_1)).$$

This is obtained by iterating (10) λ times. At the first stage choose r = [(n+1)/2] and s = [n/2], say, and then continue in this way with $\partial_{[n/2]}$.

REFERENCES

- 1. N. I. Achieser, Vorlesungen über Approximationstheorie, Berlin, 1953.
- 2. G. Baxter, An asymptotic result for the finite predictor, Math. Scand. 10 (1962), 137-144.
- G. Baxter, A convergence equivalence related to polynomials orthogonal on the unit circle, Trans. Amer. Math. Soc. 99 (1961), 471-487.
- 3. U. Grenander and M. Rosenblatt, An extension of a theorem of G. Szegö and its application to the study of stochastic processes, Trans. Amer. Math. Soc. 76 (1954), 112-126.
- U. Grenander and G. Szegö, Toeplitz forms and their applications, Berkeley and Los Angeles, 1958.
- 5. I. I. Hirschman, Jr., Finite sections of Wiener-Hopf equations and Szegö polynomials, to appear in J. Math. Anal. Appl.

WASHINGTON UNIVERSITY, ST. LOUIS, MISSOURI, U.S.A.