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STRONGLY SUBHARMONIC FUNCTIONS

LARS GARDING and LARS HORMANDER

The purpose of this note is to give a short proof of the F. and M. Riesz
theorem [1] by proving a corresponding fact concerning subharmonic
functions in any number of variables. Our result could also be used to
prove various generalizations of the Riesz theorem, such as those given
by Stein and Weiss [2], but we shall only give one such application here.

Let Q={x; xe R |x|?=2,2+... +,2<1} be the unit ball in R, let
dw be the normalized orthogonally invariant measure on 02 = {z; |z|=1}
and let P(z,w)=(1-|z|?)/|x—w|® be the Poisson kernel of Q. Then
P(z[r,w) is the Poisson kernel of the ball x| <. Let u be a subharmonic
function in 2. We first recall some simple classical facts.

(i) The smallest harmonic majorant of  in {z; |x|<r<1}is

(1) h(x) = f P(z|r,w) u(rw) do

and increases with r. The smallest harmonic majorant in 2 is h(z)=
limA,(x). By Harnack’s theorem, 4 is finite if and only if the mean values

1(0) = M) = [ u(re) do
are bounded and then A(0)—£,(0) — 0, that is
2) f (hrw)—u(ro)) do > 0, r->1.
(i) If

fu+(rw) do £ C < oo, 0sr<1,
where u+=max (u,0), then « has a finite harmonic majorant by (i) and
j lu(re)| dw

is bounded since M, (|u|)=2M (ut)—M (u) and M (u) increases. Pas-

sing to the limit in (1) we see that there exists a measure du on 0£2 such
that
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h(z) = f P(z,0) du(w) .

Let g(w) be continuous and put f(x)=[P(x,w)g(w)dw. Since
P(ro,w’')=P(ro’,w), we have

[#r) g() doo = [ fre) du(@)

where the right side tends to [g(w)du(w) as r - 1. Hence du(w) is the
weak limit of the measures h(rw)dw and by (2) also of u(rew)dw. In
particular, du is unique. We say that du is the boundary measure of »
(and k). Notice that dy increases with . Applying this to the sub-
harmonic function |k(x)| =< [P(x,w)|du(w)|, we see that |du| majorizes
the boundary measure dv of |4|. Since for continuous g we have

wig)| = lim| [ hraw)g(@) do| < tim [ hro)] lgtw)] do = »(g),

we also have |du|<dv so that |du|=dv. Hence |du| is the boundary
measure of || and by (2) also of |u|. If we form the Lebesgue decompo-
sition

(3) du = Nw)do + dp (o),

where A is summable and du, singular with respect to dw, then
(4) h(rw) > Aw), -1,
for almost all w. Further,

(5) [ o) -2@) do > [ @), r->1.

In fact, let f(z) be the Poisson integral of the measure A(w)dw. Then (5)
holds with A(w) replaced by f(rw) and an approximation of 4 by continu-
ous functions shows that )

[1fw)-2@) do >0, r1.

Our purpose is to give conditions which guarantee that the boundary
measure of a subharmonic function is absolutely continuous. Before
stating our result we recall the following simple consequence of Jensen’s
inequality:

(iii) If » is subharmonic, if ¢ is convex and increasing on R and
@(—oo)=limg(¢) for ¢ - — oo, then g(u) is subharmonic.
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THEOREM. Let u be subharmonic in £, let ¢ be a non-negative convex
increasing function on R such that @(t)/t — co as t - oo, @(t) - ¢(—o0)
as t - —oo and assume that

(6) f:p(u(rw))dw <0 <o, 0sr<l.

Then u has a boundary measure (3) with du,< 0 and the boundary measure
of p(u) is absolutely continuous and equals p(A(w))dw. In particular,

(7N lin: f |lp(u(ro)) — p(A(w))| do = 0.

ReEMARK. One might say that the function ¢(u) is more subharmonic
than w. This motivates the following definition. A subharmonic func-
tion v 2 0 is said to be strongly subharmonic if ¢=(v(x)) is subharmonic
for some ¢ as described above. Examples: if f(2) is analytic, then log|f(z)|
is subharmonic and hence |f(z)| is strongly subharmonic. If u,(x),...,
u,(x) is a conjugate system of real harmonic functions, i.e. satisfy
> 0u;[0x; =0, Ou;[0xy, = 0wy fox; for j,k=1,...,m, then |u|=(u?+ ... +u,2)}
is strongly subharmonic. In fact, it is proved in [2] that |u|? is subhar-
monic for p = (n—2)/(n—1). The theorem may be expressed as follows:
if v(x) is strongly subharmonic and has a finite harmonic majorant in
|z| < 1, then its boundary measure is absolutely continuous. This explains
the title of the paper.

Proor. (6)implies that M (u*) is bounded and hence  has a boundary
measure du. Let B <92 be open with measure m(E) and let 0<g(w) =<1

be continuous and vanish outside E. Put «(s)=supit/p(t) for 25> 0.
Then

f u(rw)g(w) do £ «(s) f p(u(rw))g(w) do + sfg(w) dw
so that, by (6),
J g(0) du(w) < Ca(s)+s m(E) .

Putting s=(m(K))-}, the right side tends to zero with m(E). Hence
duy,<0. Let dv be the boundary measure of ¢(u). Then

(8) lim f(p(u('rw)) g(w) dw = f g(w) dv(w)
r—>1

for every continuous g. By virtue of (2) and (4), there exists a sequence
r; - 1 such that u(r;w) - A(w) almost everywhere. Hence, taking g=0
in (8) and applying Fatou’s lemma, we conclude that
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9) dv(w) = (p(l(w)) do .

In particular, p(A(w)) is summable. Since du,=<0,
w(@) < f Pz, 0) o) do,
so that, by Jensen’s inequality,

@(u(x)) = f P(x,a))tp(l(w)) do .

This implies the inequality opposite to (9). Since (7) follows from (5)
applied to @(u(x)), the proof is finished.

The theorem implies the following theorem of F. and M. Riesz [1]:
if f(z) is analytic in the unit disc and [|f(re®)|d6 is bounded then f has
an absolutely continuous boundary measure du(f). In particular,
f(e®)=limf(re®), r > 1, exists for almost all 6, du(6) =f(¢*)df and

[1re®-fe a0 >0, ro1.

In fact, |f(2)| is strongly subharmonic and has a finite harmonic
majorant so that its boundary measure dv is absolutely continuous.
Since dv 2 |du| (actually dv=|du|), du is also absolutely continuous.

It follows in the same way that if u=(u,,...,u,) is a conjugate system
of harmonic functions in 2 and |«| has a finite harmonic majorant in 2,
then the boundary measure du of u is absolutely continuous, du=
w(w)dw, and [|u(rw)—u(w)|dw — 0 as r — 1. This is essentially the basic
result of [2].
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