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REMARK ON EIGENFUNCTION
EXPANSIONS FOR ELLIPTIC OPERATORS
WITH CONSTANT COEFFICIENTS

J. PEETRE

Introduction.

The purpose of this paper is to establish analogues of well-known re-
sults in Fourier series and Fourier integrals associated with the names
Fejér, Lebesgue and Riemann for the eigenfunction expansion corre-
sponding to a semi-bounded self-adjoint realization 4 of an elliptic
operator a with constant coefficients in a domain 2 of R*. We start
(Section 2) with the convergence of L, functions, 1<p<2, and the
special case Q=R" Here straight forward estimates of the spectral
functions involved lead at once to the desired goal. Applying next (Sec-
tion 3) a known asymptotic formula for the difference of two spectral
functions we obtain as a simple corollary the same result for L, functions
and general 2. Finally (Section 4) we exhibit some concrete examples
in the case 2 = R™ which show that the L, case is somewhat pathological,
compared to the L, case. Roughly speaking, we find that the convergence
of the eigenfunction expansion for L, functions is somewhat influenced
by the differential geometry of the surfaces a(§)=4. In the L, case such
a phenomenon is not believed to occur although we give no concrete
evidence in this direction.

1. Notation.
Let

a=aD) =3 aD,
1ilsm

where j=(jy,....Jn); 3] =J1+ ... +Jn
Di = (—i)1(3)ox,)7 . . . (0]ox,)™
be a formally self-adjoint and formally semi-bounded elliptic operator

with constant coefficients in B"; that is @;=a,; and pX j,,ma]{f >0 for any
real £=(&,...,£,)+0. Let 2 be a domain in R*. Let 4 be a semi-
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bounded selfadjoint realization of a in the Hilbert space L,(£2). Re-
placing, if necessary a by a+ const., we may assume that the lower
bound is >0, i.e. that A is positive. For any f e L,(2) we define then
its Riesz mean of order « =0 (with respect to A4) by

i
(L.1) Ex@)f = o [ (1- /2> Bof d
0

where A =[7’AdE(4) is the spectral resolution corresponding to 4. It is
known that E*(A) is an integral operator, that is £*(1)f is given by

(1.2) B@)f(x) = [ e@,2,9) ) dy

Q

where the kernel e*(4,z,y), the spectral function of order «, actually
belongs to C®(2 x 2); therefore E*(1)f can also be defined for distribu-
tions f satisfying proper growth conditions at the boundary of 2, for
example, possibly, for fe L,(2).

If Q = R" there is only one realization. In this case £*(4) is a convolu-
tion operator so that e*(4,z,y) depends on x—y. Indeed, we have

(1.3) e(A,x,y) = *(Az—y)

= @y [ etenigg de,
A=A
§(3.8) = (1-a(&)/a)y,

where xf=x,&,+ ... +x,£,. (Here and in the sequel * denotes Fourier
transforms with respect to x.)

We recall that if f e L,(£2) then a Lebesgue point (of power p) of f is
a point x such that

1/p
(1.4) (r-n | |f(y)—f<x)|ﬂdy) =o(1), 0.
le—y|=rnQ

We shall use the letters C and ¢ to denote constants, different in differ-
ent contexts.

2. The case 1S<ps2, 2=R".
Our main result reads as follows.

THEOREM 2.1. Let A be the unique realization of a tn Ly(R"). Let
feL,R"), 1sp=s2.
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i) Then
(2.1) Ex(A)f(x) = f(x)+o(1), A->oo,
at any Lebesgue point x of f, provided
(2.2) x> n-1)p.

(Analogue of Fejér-Lebesgue’s theorem.)
ii) Moreover
(2.3) EX()f(x) = o(—drm-aim) ] s oo,

at any point x such that f vanishes in a neighborhood of x. In particular
(2.4) EXN)f(@) = o(1), Ao,

at such a point x, provided
(2.5) a2 (n-1)p.

(Analogue of Riemann’s localization principle.)
The proof depends on the following
Lemma 2.1. There exists a constant C such that

Ani/(om)

T3 G lp+ljg =1,

1/q
(2.6) ( f [(p“(l,x)lqu) <¢
|z|=r

when A is sufficiently large.

For the proof of Lemma 2.1 we need a second

Lemma 2.2. Let N be an integer >o+ 1[p. There exist two functions
@ (A, x,t) and @,*(A,x,t), depending besides A and x thus also ont, 0<t<1,
such that with some constant C':

(27) <P“(l;x) = (Poa(l:x,t)'l'wf(l,%t) )
(2.8) ”@o“(l:’f,t)”Lp < Ctetl/p Jniem) s
(2.9) 1D3$,%(2,,0)ll, £ Ct=1/p=N jnip=Noim,—|j| = N,

when, in the last two formulas, A is sufficiently large.
The idea to make this decomposition of ¢*4,z), though not very es-
sential, we take over from the theory of interpolation spaces (cf. e.g. [5]).

Proor THAT LEMMA 2.1 = THEOREM 2.1 (cf. Alexits [1, pp. 240-246]).
We consider first the case of 7).

Obviously it suffices to consider the case x=0. It is also clear that
(2.1) holds (regardless of the value of &) when f e C3(R"). Replacing, if
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necessary, f by f—f(0)g where g € C3(R"), 9(0)=1, we may thus assume
f(0)=0. Thus we have to show that

1/p
(2.10) (r-” f | f(x)|1’dx> —o(l), r-0,
implies =
(2.11) jqo«(a,x)f(x)dx =o(l), i-oo.

Let X be the Banach space of measurable functions f such that

(2.12)
1/p 1/p
Ifllx = max (sull) (r-" J |f ()P dx) , ( f |f ()P dx) )< oo
= lol<r lelz1

Every fe L,(B") satisfying (2.10) belongs to the closure in X of
XNnCP(R™) and (2.11) holds in this sub-space. Therefore we only have
to show that

(2.13) sup, lp(h, 2) - < o0,

where

lgllx = | l:;g . ‘ f g(x)f (x)dx ‘

is the norm dual to ||f||x. Indeed, we easily deduce using Holder’s
inequality, (2.6), (2.12), (2.2):

|[#1.2) 1(0) dz|

=
k<0

¢*(4, ) f(x) dx

2k§ | xl <ok+1

+ f p*(4,z) f(x) dz

lelz1

l/q 1/p
= Z( f lqv"‘(l,w)lqu) ( f |f(@)|? dw) +
x|z 2% || s 2k+1

k<0

1/q 1/p
+( [ lw“(l,x)l“dw) ( | lf(w)l”dw)
le]=1 |z|=1

k
(;_llmz yn/p An/(om) ) <0,

Y ( ’Eo 1 4 (Al/m2k)a+1/p + 1 4+ Ala+1/p)im

A

This settles the case of i).
It is now clear how to extend the argument to the case of ii). Instead
of X we use the Banach space Y defined by
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1/p
(2.14) ||flly=( [ If(w)lf'dx) <o, f=0 if ¢|<R,
|z|=R

where R is a fixed number. We leave the details to the reader.

REMARK 2.1. From the above proof follows, in view of Banach—
Steinhaus’ theorem, that the following condition is necessary and suf-
ficient for the analogue of Fejér—Lebesgue’s theorem to hold (cf. [1, pp.
240-246], where the case p=1 is considered in detail):

1/q 1/q
(2.15) zzk/mm( f ](p“(l,x)lqu) +( f |<p°‘(l,x)|qu) <0.
k<0
|| =2k lz|=1

In the case of Riemann’s localization principle the corresponding condi-
tion reads:

1/q
(2.16) ( f ](p“(}.,x)]qu) <0.
lej=R
Proor THAT LEMMA 2.2 = LEmMMA 2.1. Since a is elliptic, we have

(2.17) de

@)=

é Cln/m

when A is sufficiently large, so that, by Hausdorff-Young’s theorem, in
any case

(f lp*(A,)|2 dx)llq < Canitmp) |
Therefore (2.6) is trivial if #A1™ <1 and we may concentrate on the case

rAt/m > 1, We now obtain, using (2.7), the triangle inequality, Hausdorff-
Young’s theorem, (2.8), (2.9):

1/q
( | |«pa<z,x)|q)
|27

< ([ e thas 012 do) 4 r-3([ ol 1gy2 1,25 e dr)
S 1o (hE5 Ol + O 5 IDigye(h 83l

j =
=< C(txtp An/mp) 4 p—N fatl/p-N J(n/p—Nym)

Taking ¢ = (rAY/™)-1 we get (2.6) for the case rAY/" > 1.
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Proor or LEMMA 2.2. We give only an outline of the elementary but
rather technical argument. Since a is elliptic, a(£)=4 implies

1/Cam < |g| < CAm
when 1 is sufficiently large. It follows that then
(2.18) |Dia(&)| < Car-lilm
We also note that (cf. (2.17))

(2.19) g

wsa®sa

SO —¢ymm, 1<t <t’<1,

Let now g(u) be a function of one variable such that

o(w) =1 if u<l—t¢
{g(u) =0 ifu>1-%
lo®(u)] £ Ct—, v<N, if 1—tsusl—}.
Set
o(€) = o(a(£)/2) .
Using (2.18) we see that
(2.20) |Diw(E)| < C|A|-lilm¢-lil |51 <N .
Define
Po*(4,6:8) = (1-w(é) §(4,8),
$17(4,&; 1) = w(§) §(4,8) .

Now (2.7) is obvious. Using (2.18), (2.19), (2.20), it is easy to verify
(2.8) and (2.9) too. We leave the details to the reader.
The proof of Theorem 2.1 is complete.

RemaRrk 2.2. If a is homogeneous, the most important case, the above
proofs, in particular the proof of Lemma 2.2, become much simpler; for
then ¢*(4,x) is homogeneous in A-™ and « so one can take A=1.

We also mention the following

THEOREM 2.2. Let f € L,(R"), p>2.
i) Then (2.1) holds at any Lebesgue point x of f, provided

(2.21) x> j(n-1).
ii) Moreover
(2.22) EX(3) f(2) = o(adn-D-am) 3 > oo,

holds at any point x such that f vanishes in the neighborhood of x provided
again (2.21).



REMARK ON EIGENFUNCTION EXPANSIONS FOR ELLIPTIC OPERATORS ... 89

The proof is quite similar. We have to use the inequality

Va An/(pm)
[ o d"’) =0 p+1fg =1,

1 + (AY/my)x+t-n@-1/p)
|z|zr

(2.23) (

which follow easily from (2.6). We omit the details.

3. The case p=2, 2 arbitrary.

Let A be an arbitrary realization of a in L,(£2) where 2 too is arbitrary.
We denote, in this Section, by A4, the unique realization in L,(E") and
use Ey*(4), e*(4,%,y) in a similar way. Using a Tauberian theorem
Ganelius (unpublished; cf. Bergendal [2], Theorem 3.1.2) has shown
that for any f e Ly({2) holds

(3.1) E*()f (@)~ Eo*()f (@) = o(A4m-b-dim) ] oo
Combining this with Theorem 2.1 we obtain the following

CoroLLARY 3.1. The conclusions of Theorem 2.1 hold for any realization
A of a and any f € Ly(R2).

This makes more precise some of the results on eigenfunction expan-
sions given by Bergendal in [2, pp. 38-41]). (Actually in [2] is considered
also the convergence of derivatives of £*(A)f etc.; this type of extensions
we here disregard entirely.)

REMARK 3.1. An equivalent way of stating this is as follows:
H
(3.2) ( [ e,z e,z ) dy) = O(e-D=Im), ] oo
Q

Indeed, in view of Banach-Steinhaus’ theorem, (3.1) implies (3.2).
Conversely, (3.1) follows from (3.2) since when fe Cy(£2), which is a
dense sub-set of L,(2), we have an even stronger result:

(33) EXNf(@) - ESA)f(x) = O(A°), Ao,
for any s. To prove (3.3) we use the identity
EXA)f - B A f

- (= (5= ()5 v () 5)-

- (anmf- (=) %)L )) :
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With the aid of the spectral resolutions of 4 or 4, respectively we see
that each of the terms is O(4°) in D(4¥*) or D(A.*) respectively. Taking
k> p/(2m) we obtain the pointwise estimate (3.3) by ‘“Sobolev’s lemma”
(cf. Nilsson [4] where essentially the same idea is used). (Actually,
Ganelius proves (3.1) with O instead of o, and the improvement to o is
due to Bergendal, who, however, to this end also uses a Tauberian argu-
ment, which is thus completely unnecessary.)

REeMARK 3.2. We do not know whether the analogues of Corollary 3.1
or formulas (3.1) and (3.2) hold true in L,, or not. For p=1 the following
weaker result is known (cf. [2, Theorem 3.11])

(3.4) Supg [eX(4,2,y) — e*(4, 2, y)| = o(Ar-1-a)/m) A= o0

b

where K is any compact sub-set of Q.

4. On the case p=1, 2 =R": Examples,

We return to the situation of Section 2, taking p=1. Denote by x,
(“the critical index’’) the greatest lower bound on « for the conclusions
of Theorem 1.1 to hold. We consider the dependence of %, on a. Clearly
by Theorem 1.1 we have », <n—1 for any a. It is now a quite remark-
able fact that for some particular operators a it may happen that s, <n—1
or even x;=4%(n—1) (which was the bound on « given by Theorem 1.1
in the case p=2; in this case such a phenomenon is believed not to
occur). Indeed we shall see that x, depends in general on the differential
geometry of the surfaces a(£)=A. We shall not formulate this as a precise
result but rather look at some illustrative examples.

ExampLr 4.1. We take
(4.1) a(é) = &2 = &2+ ... + &%

thus a = — A where A4 is Laplace operator. Here, as we shall see, »,=
3(n—1) and we get thus back a classical result on “spherical’”’ summability
of multiple Fourier integrals due to Bochner [3] (cf. also the recent
survey article by Shapiro [6]). We have apparently to prove the follow-
ing estimate

(4.2) lg*(4, )| = C

ln/m

"""—_‘_“*—‘1 " (lemlxl)“""l’ (XI = x+ %(n— 1) N

which is thus sharper than (2.6), with ¢g=occ. The proof of (4.2) is usually
(cf. e.g. [5]) obtained by expressing ¢*(4,z) in terms of the Bessel func-
tion Jg(u), herewith f= o+ }n, and then applying the well-known asym-
ptotic formula
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(4.3) Jy(u) = cu¥ cos(u—m[4—Bn[2)+O(u¥), u—oo.

Here, following a suggestion of Lars Garding, we shall give another more
direct method, which will be used also in the other examples below.
Since, in this special case, ¢*(4,z) is rotation invariant in z, and homo-
geneous in z and A-™, it is sufficient to estimate it on just one ray issuing
from 0, say the (positive) x, axis, and for A=1. We write (1.3), with a(£)
given by (4.1), as

1
#(1,2) = @) [ eimhs ( (1— (&%) dé, .. .dsn) dé, ,

-1 £o2+. . +en S 1612
z=(2,,0,...,0). Making a change of variables we see that the inner
integral becomes of the form ¢(1—¢,2)*. Thus

(4.4) .
o*(1,2) = cfeimlfl (12 dE,, @ = (2,,0,...,0), o = a+}n—1).
41

Applying now Lemma 2.1 and Lemma 2.2, in the case of one variable
(or, alternatively, using Bessel functions including formula (4.3)), we get

1

*(1,2)| £ 0 —oe
lp*(L,2)] = € P

z = (24,0,...,0),

from which, passing back to general x and A, follows the estimate (4.2).
ExampLE 4.2. Nothing essential is changed if we replace (4.1) by

(4.5) a(é) = |E™ = (62+ ... +§,2)™2 (m even);

thus a=(—4)™2. Again »,=}(n—1), and the proof is quite similar as

in the case m=2 (Example 4.1). We therefore omit the details.
ExampLE 4.3. Much more interesting is the case

(4.6) a(f) = &™+ ... +§,™ (meven).

Now we get, in the same way as in Example 4.1, instead of (4.4),

1
(4.7) PL,2) = o [ et (1-gm) dg,,
-1

x = (2,,0,...,0), & =a+(n-—1)m,
and thus instead of (4.2)
(4.8)
lg*(4,2)| = C

Anim

1+(ll/mlxl)a'_ﬂ’ € = (2,,0,...,0), & =oax+(n—1)m.
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Write now (4.7) as

1
w(La) = o [ e=f (1-£2) g+

-1
1

+cfeim1€1 (1 —512)”" ((1 + 512_,_ . +§12(§m—1))a'_ (%m)a) d§1 .
-1

One sees readily, using a technique similar to the one based on Lemma
2.1 and Lemma 2.2, that the first term is the dominant one so, using

(4.

3) we see that the exponent a’'+1=a+(n—1)/m+1 in the denomi-

nator of (4.8) cannot replaced by a larger one. Therefore, in view of
Remark 2.1, we have x, > (n—1)(1—1/m). From the proof we also see
how this is connected with the fact that the surface &™+ ... +¢,m=1
is very “flat” at the points (+1,0,...,0) if m is large. This justifies our
previous statement on the influence of the differential geometry of the
surfaces a(&)=A.
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