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ON AN INEQUALITY FOR LAURENT POLYNOMIALS

WARREN STENBERG

In connection with investigation of Toeplitz matrices of Laurent poly-
nomials Spitzer and Schmidt [1] have shown that

1/n

(1) hm < min, max,|f(re®)|

f F7(e®) d6

whenever f is a Laurent polynomial in 2, that is, a function of the form
(2) f(z) = Pz)[z",

where P(z) is a polynomial and m is a non-negative integer. They have
further shown that the inequality (1) is in fact equality in the three
cases: m=0; P(z) has at most two non-zero coefficients; all the coeffi-
cients of P(z) are real and positive. They remarked that this author
had found a counter-example to demonstrate that the equality does not
hold in (1) for all Laurent polynomials, f. The purpose of the present
paper is to exhibit this counter-example.

To this end we first observe that the expression on the left-hand side
of (1) is equal to
n

n

o f f(2) dz

n—>oo

for every rectifiable Jordan curve, C, separating the origin from oo.
This expression is in turn less than or equal to

MC(f) = MaX,o |f(z)l .

Introducing the notation

M (f) = max,|f(re?)|,
we now have
n

f fYE)d8| < ming M(f) S min, M,(f).

n—»oo
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It will be shown that the equality does not in general hold in the last
inequality.
We will exhibit a function f of the form

f(z) = P()[z,
where P(z) is a polynomial of degree 3, for which
minC’MC'(f) < miner(f) .

Let f(z)=P(z)/z where P(z) is a polynomial of degree three with
P(0)+0 and consider the level curves of f(z), that is, the curves

If(2)l = K.

For very large K this curve will consist of two simple closed curves,
approximately circles about zero and about infinity. For very small K
this curve will consist of three simple closed curves, approximately
circles, about the roots of P(z). Intermediate between these two stages
there are some values of K for which the topological nature of the level
curves changes, i.e., for which the curves have self-intersections. The
self-intersections occur at the roots of the derivative of f(z).

)
_

In order to construct a counter-example we shall attempt to find a
polynomial P(z) of degree three so that the three roots z,,2,,2; of the
derivative of f(z)=P(z)[z

(i) are distinct;
(ii) lie on the same level curve of f(z) (that is, for some K, |f(z,)|=
Ky, n=1,2,3);
(ili) do not lie on a circle with center at the origin.

o

Fig. 1.
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Under these circumstances it is hoped that the level curve f(z)=K,
will have the character exhibited in figure 1, where the shaded region
represents {z | [f(2)| = Ko}

If this situation occurs then we will have our counter-example. It is
clear from the figure that any simple closed curve C enclosing the origin
on which |f(2)| <K, must lie entirely in the shaded region and hence
must pass through the three points z;,2,,25.

It will still remain to show that the level curve through z,,2,,2; actually
has the behavior depicted in Fig. 1 instead, say, of that of Fig. 2, which
would permit of a circle with center at the origin lying in the shaded
region.

Fig. 2.

To this end it will suffice to show that for n=1,2,3, the function |f(z)|
has on the ray emanating from the origin through z, an absolute minimum
at z,. The function

2228 4 4422 — 292 + 88

2

f2) =

has the roots of its derivative located at
1, =143, —1-1,
so that conditions (i), (iii) are satisfied. Moreover at each of these roots
f)] = 125
so that (ii) is also satisfied. It now only remains to be verified that
|21, O<t<oo, n=1,2,3,
has an absolute minimum at {=1. It will be seen, in fact, that
Ref(tz,)| and  [Tmj(tz,)

each has an absolute minimum at z, for n=1,2,3. For n=1, this is
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clear since f(#), 0 <t <oo, has 1 as the only root of its derivative and is
unbounded in the neighborhood of 0 and of cc.
In the case n=2,

J(—1+1)) = —44(t+ 1/t) — 29 — 44i(2— 1+ 1ft)

whence it is easily seen that the absolute values of both the real and
imaginary parts have absolute minima at ¢=1. The same result also
holds in the case n=3 since z,=2,.
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