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DIOPHANTINE EQUATIONS IN RECURSIVE
DIFFERENCE

R. L. GOODSTEIN

We determine the general solutions (in natural numbers) of a variety
of linear equations involving the recursive difference function z -y
which has the value 0 when z <y and is equal to the excess of x over y
when z>y. We assume a familiarity with properties of recursive dif-
ference, in particular the properties

r+Yy+2) =y+@=y), =@y =y=(@y=-2),
@+y) <2z = @=2)+{y=(=a)},
z = (@=y)+{z=(@=y)}
r(y—2) = xy=-2xz.
To illustrate the kind of results to be obtained, we consider first the
equation
(1) z+(y=2x) =a.

The general solution of this equation is

x=a=(u-v)
(1*) { Yy = a.;.(v;u)

where u,v are arbitrary parameters. For if z,y are given by (1*) then

T+ (y~x) = {a—’-(u—'—v)}+{(a—'-(v—'-u))-'—(a+(u#v))}

=a

(consider in turn the cases u <v, u>v), so that equation (1) is satisfied.
Conversely, since

z = {@+(y=2))=(y=2)
and

y=f{etrly=2)}=-(@=+y)
identically, therefore any solution z,y of (1) may be obtained from (1*)
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giving u the value y and v the value z. Similarly, the general solution of
the equation

(2) z=(x~y) =a

is

(2%) { z=a+(u=-v)

Yy=a+(v=-u).
We consider next the equation
(3) Ty =a.
The general solution of (3) is
(3%) z=a+{y=-(1-ayu}.
For if z satisfies 3* then
[y~ (1~a)u}=yl+[a~{y=(y=+ (1 =ap)}]

= a={y=(y=(1=-a)

r=Y

(consider in turn the cases a=0, a 2 1) so that all 2 given by (3*) satisfy
(3). Conversely, since

o = (x;y)+{y-'—(l;(x*?/))(?/*x)}

therefore any solution (x,y) of (3) may be obtained from (3*) giving u
the value y—~x.
It follows that the general solution of

(3.1) Ty = (@ = (T~ .. — (@ =) .. .) = Uy

is

(3.2) z, = ur—1+{u’r—.'(l'.'ur—1)vr}’ Isrzn,

where %, %g,. .., %, 1,01,%,...,7, are arbitrary parameters. For if we

write u,_, for x, ~u,,u,_, for x,_;=~u,_, and so on up to %, for x,-u,
then also x; = u,=wu,, so that

Tp=Up = Upy, Igrzn,

and by (2*) the general solution of this system of equations is (3.2).
We turn next to the equation

(4) z-a =y=b

of which the general solution is

(4%) y=(@=a)+{d=-(1=@=a)u}.
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We omit the verification that (4*) satisfies (4). That every solution of (4)
is contained in (4*) follows from the identity

y=(@=b)+{d=-(1=(y=b)b-y)}

which shows that if (z,y) is solution of (4) then this y may be obtained
from (4*) by giving « the value b~y.
Similarly, the equation

(5) a-x = a1y
has the general solution
(5%) y={o=(@=2)}+{1-(@=2)}u.

The verification that (5*) satisfies (5) is trivial. The generality of the
solution follows from the identity

y=f{o=(@=y}+{1=(@a=y)iy=a).
The solution of the apparantly more general equation
(6) a=-x =b-y

is readily derived from (5*). For we may suppose, without loss of gen-
erality, that a <b and so a=b-= (b~a) whence

b=y = (b=(b-a)=~z =b=(z+(b+a))
of which the general solution is (by (5*))

(6*) Yy = [bé{bé(x+(b+a))}]+[1+{b+(x+(b+a))}]u
={b=(@a=-2)}+{1=(a~=)}u.
Although the equation
(7) r+y =0

involves only elementary addition its general solution in natural numbers
is

T =a>u
(7%) { Yy=a=(a-u)

and so depends upon the recursive difference function. That (7*) is a
solution of (7) for any value of u follows from the identity

(7.1) (@~u)+{a=-(a~u)} =a
and that (7*) is the general solution is shown by the identity

{e+y) =y} +[=+y)=~{(x+y)~y}]l = z+y
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which reveals that any pair (x,y) which satisfy (7) may be obtained from
(7*) by giving « the value y.

From 7.1 we readily derive the general solution of
(8) Ty +xe+ ...+ X,y =a.
Write 8,=0, 8;,,=28;,+u; so that

8’0 = u1+u2+ .. +uk

where u,,u,,...,u, are arbitrary parameters, then the general solution
of (8) is
(8*) {xk = (a';"gk—l)'.—(a—'-sk)’ l§k-§n ’
Tpir = 08y .
For by (7.1)

(@~8)t{l@a=8_1)=~(@=~8)} = a=s,_4, I<sksn,
and so, by addition,
n
kzl{(a-'-sk-l)*(a*sk)}+(w—“8n) =a
which proves that (8*) is a solution of (8) for all u,,u,,...,u,. Con-
versely, writing X, ., =X, +x,, X,=0, we have
K= X}~ {Xpa=Xpn} = T,  0sksn,

so that any set of values (,,%,,...,%,,;) which satisfy (8) may be ob-
tained from (8*) by giving u; the value z;, 1<k <n.

As a final and rather more difficult example we consider the equation
(9) (To=1) + (X1 = Zo)+ ... + (X~ %) = a.
The particular case of (9), with n=1,

(9.1) (@=y)+(y=2) =a
has the general solution

z=u+ta(l=v), y=uta{l=(1-v)}

since
fu+a(l=v)}=[u+a{l=(1=2)}] = a(1=0)
and, if min(z,y) =z~ (x=y), so that min(x,y) is equal to the lesser of x
and v,
min(z,y) + {(z+y) + (-2l ~(y-2)} = =,
min(z,9) + {(z=9)+ =21+~ (1= @=2)} = y.
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Next we consider the particular case of (9) with n =2, namely
(9.2) @=y)+@y=2)+(z~2) =a.
Let [z,y,z] denote the left hand side of (9.2), let

min (z,y,2) = z=f{z=(y=(y=2)},

so that min (x,y,2) is equal to the least of z, y, 2, let

max(z,y) = +(y=2),
the greater of x,y, and finally let

u@,y,2) = 1=[1+{z-min(y,z)}]

so that u(zr,y,2)=0 if x<y and <z and u(x,y,2)=1 otherwise. Then
the general solution of (9.2) is

xz =t + [ap(u,v,w) = {max (v,w)=u}],
(9‘2*) y=t+ [a’;u(,v: w,u) = {ma'x (w,u) ;'U}] s

2 = t + [ap(w,u,0) = {max (u,0) ~w}],
u, v, w not all equal.

To show that (9.2*) satisfy 9.2 we consider in turn the six cases

(¢) u<v=sw, (B) usw<v, (y) v<wsu, (0) vSu<w,
(e) w<uszsv, (§) wsv<u.
In the first case u(w,v,w)=0, u(v,w,u)=u(w,u,v)=1 so that z=t¢,
y=t+{a=(w=v)}, z=t+a and therefore (9.2), with the same result in

the remaining cases. That (9.2*) is the general solution follows from
the identity

(9.3) x = min(x,y,2) + {[x,y,z]y(x,y,z)—'—(max (y,z);x)}
and the two corresponding results obtained by cyclic interchange of
z, ¥, z. Equation (9.3) shows that if (,y,2) is any solution of (9.2) then
the value of x may be obtained from (9.2%) by giving ¢ the value
min (z,y,2) and u, v, w the values z, y, z respectively.
To prove (9.3) we consider six cases of which
ysxs2 Y*z,
is typical; in this case the right hand side of (9.3) becomes
y+{xy.2l= (z=2)} = y+{(z~y) = (z-2)}
= y+@=y) ==

The proofs in the remaining cases are similar (or simpler).
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Finally, we remark that the general solution of (9) is expressible in
the form

09wt + o fmexu,m =o]. osisn,
b
where not all u, are equal, 057 <n,
palr,m) = 1={1=(z;~min(z,,n)} ,
min (z,,0) = %, min (z,,n+1) = ;= (%, ~min (z,,n)),
max (z,, 0) = Zos max(z,n+1) = 2, + (max (x,,m)= x'n+1) ’

2=z if r<i, al==w,,, ifrzi,
and

max(«,,0) = z,, max(z,,n+1) = max(z,,n),
i i

so that max,(x,,n) is the greatest value of «,, r+¢, 0<r=<n. The proof
follows the same lines as that of (9.2*), the part played by (9.3) being
taken by the identity

z; = min(z,,n) + {[:v,,n]m(x,, n) = {max (@, m) = xi}}, 0Z1=n,
i

where [z,,n] denotes the left hand side of equation (9).
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