DIOPHANTINE EQUATIONS IN RECURSIVE DIFFERENCE

R. L. GOODSTEIN

We determine the general solutions (in natural numbers) of a variety of linear equations involving the recursive difference function $x \dot{=} y$ which has the value 0 when $x \leq y$ and is equal to the excess of x over y when x > y. We assume a familiarity with properties of recursive difference, in particular the properties

$$x + (y - x) = y + (x - y),$$
 $x - (x - y) = y - (y - x),$
 $(x + y) - z = (x - z) + \{y - (z - x)\},$
 $x = (x - y) + \{x - (x - y)\}$
 $x(y - z) = xy - xz.$

To illustrate the kind of results to be obtained, we consider first the equation

$$(1) x + (y - x) = a.$$

The general solution of this equation is

(1*)
$$\begin{cases} x = a - (u - v) \\ y = a - (v - u) \end{cases}$$

where u, v are arbitrary parameters. For if x, y are given by (1*) then

$$x + (y - x) = \{a - (u - v)\} + \{(a - (v - u)) - (a - (u - v))\}$$
$$= a$$

(consider in turn the cases $u \le v$, u > v), so that equation (1) is satisfied. Conversely, since

$$x = \{x + (y - x)\} - (y - x)$$

and

$$y = \{x + (y - x)\} - (x - y)$$

identically, therefore any solution x, y of (1) may be obtained from (1*)

Received October 16, 1964.

giving u the value y and v the value x. Similarly, the general solution of the equation

$$(2) x - (x - y) = a$$
 is

(2*)
$$\begin{cases} x = a + (u - v) \\ y = a + (v - u) \end{cases}$$

We consider next the equation

$$(3) x - y = a.$$

The general solution of (3) is

(3*)
$$x = a + \{y - (1-a)u\}.$$

For if x satisfies 3* then

$$x \div y = \left[\left\{ y \div (1 \div a)u \right\} \div y \right] + \left[a \div \left\{ y \div \left(y \div (1 \div a)u \right) \right\} \right]$$
$$= a \div \left\{ y \div \left(y \div (1 \div a)u \right) \right\}$$
$$= a$$

(consider in turn the cases a = 0, $a \ge 1$) so that all x given by (3*) satisfy (3). Conversely, since

$$x = (x - y) + \{y - (1 - (x - y))(y - x)\}$$

therefore any solution (x,y) of (3) may be obtained from (3*) giving u the value y - x.

It follows that the general solution of

$$(3.1) x_1 - (x_2 - (x_3 - \ldots - (x_n - u_n) \ldots) = u_0$$
 is

$$(3.2) x_r = u_{r-1} + \{u_r - (1 - u_{r-1})v_r\}, 1 \le r \le n,$$

where $u_1, u_2, \ldots, u_{n-1}, v_1, v_2, \ldots, v_n$ are arbitrary parameters. For if we write u_{n-1} for $x_n - u_n, u_{n-2}$ for $x_{n-1} - u_{n-1}$ and so on up to u_1 for $x_2 - u_2$ then also $x_1 - u_1 = u_0$, so that

$$x_r \dot{-} u_r = u_{r-1}, \qquad 1 \leq r \leq n \ ,$$

and by (2^*) the general solution of this system of equations is (3.2). We turn next to the equation

$$(4) x \div a = y \div b$$

of which the general solution is

(4*)
$$y = (x - a) + \{b - (1 - (x - a))u\}.$$

We omit the verification that (4^*) satisfies (4). That every solution of (4) is contained in (4^*) follows from the identity

$$y = (y - b) + \{b - (1 - (y - b))(b - y)\}$$

which shows that if (x,y) is solution of (4) then this y may be obtained from (4*) by giving u the value b - y.

Similarly, the equation

$$(5) a - x = a - y$$

has the general solution

$$y = \{a - (a - x)\} + \{1 - (a - x)\}u.$$

The verification that (5*) satisfies (5) is trivial. The generality of the solution follows from the identity

$$y = \{a - (a - y)\} + \{1 - (a - y)\}(y - a)$$
.

The solution of the apparantly more general equation

$$(6) a - x = b - y$$

is readily derived from (5*). For we may suppose, without loss of generality, that $a \le b$ and so $a = b \div (b \div a)$ whence

$$b - y = (b - (b - a)) - x = b - (x + (b - a))$$

of which the general solution is (by (5*))

(6*)
$$y = [b \div \{b \div (x + (b \div a))\}] + [1 \div \{b \div (x + (b \div a))\}] u$$
$$= \{b \div (a \div x)\} + \{1 \div (a \div x)\}u.$$

Although the equation

$$(7) x+y=a$$

involves only elementary addition its general solution in natural numbers is

(7*)
$$\begin{cases} x = a - u \\ y = a - (a - u) \end{cases}$$

and so depends upon the recursive difference function. That (7^*) is a solution of (7) for any value of u follows from the identity

$$(7.1) (a - u) + \{a - (a - u)\} = a$$

and that (7*) is the general solution is shown by the identity

$${(x+y) - y} + [(x+y) - {(x+y) - y}] = x + y$$

which reveals that any pair (x, y) which satisfy (7) may be obtained from (7*) by giving u the value y.

From 7.1 we readily derive the general solution of

$$(8) x_1 + x_2 + \ldots + x_{n+1} = a.$$

Write $s_0 = 0$, $s_{k+1} = s_k + u_k$ so that

$$s_k = u_1 + u_2 + \ldots + u_k$$

where u_1, u_2, \ldots, u_n are arbitrary parameters, then the general solution of (8) is

(8*)
$$\begin{cases} x_k = (a - s_{k-1}) - (a - s_k), & 1 \le k \le n, \\ x_{n+1} = a - s_n. \end{cases}$$

For by (7.1)

$$(a - s_k) + \{(a - s_{k-1}) - (a - s_k)\} = a - s_{k-1}, \quad 1 \le k \le n$$

and so, by addition,

$$\sum_{k=1}^{n} \{ (a - s_{k-1}) - (a - s_k) \} + (a - s_n) = a$$

which proves that (8*) is a solution of (8) for all u_1, u_2, \ldots, u_n . Conversely, writing $X_{k+1} = X_k + x_k$, $X_0 = 0$, we have

$$\{X_{n+1} - X_k\} - \{X_{n+1} - X_{k+1}\} = x_{k+1}, \quad 0 \le k \le n$$

so that any set of values $(x_1, x_2, \ldots, x_{n+1})$ which satisfy (8) may be obtained from (8*) by giving u_k the value x_k , $1 \le k \le n$.

As a final and rather more difficult example we consider the equation

$$(9) (x_0 - x_1) + (x_1 - x_2) + \ldots + (x_n - x_0) = a.$$

The particular case of (9), with n=1,

$$(9.1) (x - y) + (y - x) = a$$

has the general solution

$$x = u + a(1 - v), \quad y = u + a\{1 - (1 - v)\}$$

since

$${u+a(1 - v)} - [u+a\{1 - (1 - v)\}] = a(1 - v)$$

and, if $\min(x,y) = x - (x - y)$, so that $\min(x,y)$ is equal to the lesser of x and y,

$$\min(x,y) + \{(x - y) + (y - x)\}\{1 - (y - x)\} = x,$$

$$\min(x,y) + \{(x - y) + (y - x)\}\{1 - (1 - (y - x))\} = y.$$

Next we consider the particular case of (9) with n=2, namely

$$(9.2) (x - y) + (y - z) + (z - x) = a.$$

Let [x, y, z] denote the left hand side of (9.2), let

$$\min(x,y,z) = x - \{x - (y - (y - z))\},$$

so that min(x,y,z) is equal to the least of x, y, z, let

$$\max(x,y) = x + (y - x),$$

the greater of x, y, and finally let

$$\mu(x,y,z) = 1 - [1 - \{x - \min(y,z)\}]$$

so that $\mu(x,y,z)=0$ if $x \le y$ and $x \le z$ and $\mu(x,y,z)=1$ otherwise. Then the general solution of (9.2) is

(9.2*)
$$x = t + [a\mu(u, v, w) - \{\max(v, w) - u\}],$$

$$y = t + [a\mu(v, w, u) - \{\max(w, u) - v\}],$$

$$z = t + [a\mu(w, u, v) - \{\max(u, v) - w\}],$$

u, v, w not all equal.

To show that (9.2*) satisfy 9.2 we consider in turn the six cases

(
$$\alpha$$
) $u < v \le w$, (β) $u \le w < v$, (γ) $v < w \le u$, (δ) $v \le u < w$,
(ε) $w < u \le v$, (ξ) $w \le v < u$.

In the first case $\mu(u,v,w)=0$, $\mu(v,w,u)=\mu(w,u,v)=1$ so that x=t, $y=t+\{a\div(w\div v)\}$, z=t+a and therefore (9.2), with the same result in the remaining cases. That (9.2*) is the general solution follows from the identity

$$(9.3) x = \min(x, y, z) + \{ [x, y, z] \mu(x, y, z) \div (\max(y, z) \div x) \}$$

and the two corresponding results obtained by cyclic interchange of x, y, z. Equation (9.3) shows that if (x, y, z) is any solution of (9.2) then the value of x may be obtained from (9.2*) by giving t the value $\min(x, y, z)$ and u, v, w the values x, y, z respectively.

To prove (9.3) we consider six cases of which

$$y \leq x \leq z, \quad y \neq z$$

is typical; in this case the right hand side of (9.3) becomes

$$y + \{[x, y, z] - (z - x)\} = y + \{(z - y) - (z - x)\}$$

= $y + (x - y) = x$.

The proofs in the remaining cases are similar (or simpler).

Finally, we remark that the general solution of (9) is expressible in the form

$$(9^*) x_i = t + \left[a\mu_i(u_r, n) - \left\{ \max_i (u_r, n) - u_i \right\} \right], 0 \leq i \leq n ,$$

where not all u_r are equal, $0 \le r \le n$,

$$\begin{split} \mu_i(x_r,n) &= 1 - \left\{ 1 - \left(x_i - \min(x_r,n) \right) \right\}, \\ \min(x_r,0) &= x_0, & \min(x_r,n+1) &= x_{n+1} - \left(x_{n+1} - \min(x_r,n) \right), \\ \max(x_r,0) &= x_0, & \max(x_r,n+1) &= x_{n+1} + \left(\max(x_r,n) - x_{n+1} \right), \\ x_r^i &= x_r & \text{if } r < i, & x_r^i &= x_{r+1} & \text{if } r \ge i, \end{split}$$

and

$$\max_{i} (x_r, 0) = x_0, \qquad \max_{i} (x_r, n+1) = \max_{i} (x_r^i, n) ,$$

so that $\max_i(x_r, n)$ is the greatest value of x_r , $r \neq i$, $0 \leq r \leq n$. The proof follows the same lines as that of (9.2*), the part played by (9.3) being taken by the identity

$$x_i = \min(x_r, n) + \left\{ [x_r, n] \mu_i(x_r, n) - \left\{ \max_i (x_r, n) - x_i \right\} \right\}, \qquad 0 \leq i \leq n,$$

where $[x_r, n]$ denotes the left hand side of equation (9).

THE UNIVERSITY, LEICESTER, ENGLAND