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RECURSIVE FUNCTIONS AND REGRESSIVE ISOLS

J. BARBACK
1. Introduction.

The reader is assumed to be familiar with the concepts and main

results of the papers listed as references. We shall use the following
notations:

e = the set of all non-negative integers (numbers),
/A = the collection of all isols,
A* = the collection of all isolic integers.

Myhill [5] associated with every recursive combinatorial function f(z) a
function F(X) from A into A, called the canonical extension of f(z); we
shall write Ci(X) for the canonical extension of f(x). Nerode [8] as-
sociated with every recursive function f(z) a function F(X) from A into
A*; we shall write Dy(x) for Nerode’s extension of f(x). In the special
case that f(x) is recursive and combinatorial, Dy(x)=CH{X) for X € 4.
It was proved in [7] that for a recursive function f(x), the function
D4X) maps A into A if and only if f(x) is eventually combinatorial.
Regressive isols were introduced in [1]. Let Ay denote the collection of
all regressive isols. It is known that e Az <, where both A —¢ and
A— Ay have the cardinality of the continuum.

This paper deals with the following problem:

Which recursive functions f(x) have the property that Dy(X) maps
Ap into Ap?

A function f(x) from ¢ into ¢ will be called increasing if

r<y = fl&) =fy), forumyes;

and eventually increasing if for some number n, the function g(x)=
f(z+mn) is increasing. The main result of this paper is as follows. For a
recursive function f(x) the function D/(X) maps Ay into Ay if and only
if f(x) is eventually increasing.
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Our presentation will make use of the theory of infinite series of isols.
Infinite series of isols were introduced and studied in [1].

2. Regressive isols.

We shall here recall the concepts of a regressive function, regressive
set and regressive isol.

DEeriniTIONS. A function ¢, from ¢ into ¢ is regressive if it is one-to-one
and there exists a partial recursive function p(x) such that

(1) ot < dp,
(2) p(ty) =t and (Vn)[p(tp+1) =1a] .

A set is regressive, if it is finite or the range of a regressive function.
An isol T is regressive, if it contains at least one regressive set.
For every partial recursive function f(x) with of < df, let

fo@) ==, and fr(2) = f(f"(@)).

Let ¢, be a regressive function. By [1, pp. 80, 81] there exists a partial
recursive function p(x) which satisfies, besides (1) and (2) the conditions

(3) ep < ép,
4) (V) [z edp = (@n)[p"i(z)=p™=)]].

DerFiniTiON. Every partial recursive function satisfying (1), (2), (3)
and (4) is called a regressing function of ¢,,.

NorarioN. Let p(x) be a partial recursive function satisfying (3)
and (4). Then

p*(@) = (uy)[p'+(x)=p¥(x)], for zedp.

We note that in the event p(x) is a regressing function of ¢,, then p*(x)
is a partial recursive function with

dp* = bp, ot < dp* and (Yn)[p*(t,)=n].

3. 3ra,.
We shall here recall the definition given in [1] of the infinite series
Xra,, in case a, is a recursive function of n and 7' a regressive isol.

Norarions. Let j, £ and ! denote the well-known recursive functions
defined by
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J,y) = z+ix+y)e+y+1),
j(k(n), l(n)) = n .

For any number n, »(n)={x | z<n}.
For any number n and sets ¢ and o,

jin,0) = {j(n,y) |yeo} and j(,0) = {j(z.y) |z€d & yeo}.
We note that the function j maps &2 one-to-one onto e.

DerFiniTION. Let a,, be any recursive function of » and 7' any regres-
sive isol. If 7 is finite, say T'=k,

Sra, =>a, (0 for k=0).
k
If 7 is infinite, "<

Sra, = Req §j(t,,,v<an>),

where t, is any regressive function ranging over any set in 7.

By [1, Proposition 3] ¥,a, depends on the regressive isol 7' and not
on the particular regressive function whose range is in 7. Also, Y a,
is always an isol [1, Theorem 1] and in fact we shall prove in § 4 that it
is always a regressive isol.

DeriniTiON. Let a,, be any function from ¢ into &. The function s(n)
such that 5(0) = 0"

8(n) = Y a; for n>0,
<n
is the partial sum function of a,.

One can easily verify that if the function a, is recursive and com-
binatorial then so is its partial sum function s(n). The main result of [1]
is Theorem A, stated below. It is essentially this theorem which enables
us in § 5 to express DJT) (where f is a recursive function and 7' a re-
gressive isol) as the difference of two infinite series each summed with
respect to the regressive isol 7'+ 1.

THEOREM A. [1, p. 86] Let a, be a recursive combinatorial function and
s(n) its partial sum function. Then, for every regressive isol T,

ZT Ay = Cs(T) .

4. Fundamental properties of 3 ,a,.

Norarion. Parentheses will be omitted according to the rule that
association is to the right. Thus fg(x) means the same as f(g(x)).
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THEOREM 1. For every recursive function a,, rpa, s a function from
Ap into Ap.

Proor. Let 7' be any regressive isol. We have already noted that
Ypa, is an isol and therefore we restrict our attention here to proving
Ypa, is regressive. If either 7' is finite or a, is identically zero from
some number on, then ¥ a, is finite and therefore regressive. Now as-
sume 7T is infinite and @, is positive infinitely often. Let ¢, be any
regressive function ranging over any set in 7. Let f(x) denote the
strictly increasing recursive function ranging over the set {n |a,>0}.
Then

g J(tnv(@y) € Sray,
(o] . (o] .
%J(tmv(an)) = %j(tf(n)”'(af(n))) .
We wish to prove 3, a, is regressive. We proceed to show that

I 0)s - + 530y @y — 1),5 (b 0)s - - 53 (pays Bpy— 1), - - -

represents a regressive enumeration of the set 33°j(t,,v(a,)).

Since ¢, is a regressive function of n and f(x) is a strictly increasing
recursive function it readily follows that #,,) is also a regressive function
of n. Let p(x) be any regressing function of #,. We observe here that
for every number n, p*(t;,))=n. Let o=3j(0p,¢) and for x € o define

q(z) by,

z, for p*k(z)=0 & l(x)=0,
q(x) = | j(Pk(®), 4porm-1y— 1), for p*k(x)>0 & Uz)=0,
j(k(x)’ l(x) - 1)1 for l(x) >0.

Clearly o is r.e. and therefore g(x) is a partial recursive function. Since
ot,< dp it follows that 35°j(t,,»(a,)) <dq. It is readily seen that g(x) is a
regressing function for the above enumeration of 33(t,,v(a,)).

THEOREM 2. Let a, and b, be recursive functions. Then for every re-
gressive isol T,

ZT (a’n+bn) = ZT an""ZT bn .

Proor. If T is finite the statement is clear. Now assume that 7' is
infinite. Let ¢, be any regressive function ranging over a set in 7. If
for each n we let o,={z+a, | z<b,}, then
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gj(tmv(an)) €eSra,,
S i(tus(bw) € Sz b,

S i(tnrlan +b0) € Sr (@ +b)

%j(tm 'V(a/n + bn)) = %j(tmv(an)) + i;j(tn’ Gn) .

Therefore in order to complete the proof, it suffices to prove

(5) “gj(t @) | 3 im0

8

(6) ?j(tn,w ) = 3

0

Let p(x) be a regressing function of ¢,. Set

8= {j(@,y) |[r€dp & Y<ayum}
and
7= {j(®y) |redp & Y2 ay}-

Then 6 and 7 are disjoint r.e. sets with

%j(tn’v(an)) <4 and %j(tn’cn) < n-.
This verifies (5). Concerning (6), let
q(x) = j(k(w)’l(x)+ap‘k(x))’ for » €j(dp,e) .

Clearly g(x) is a partial recursive function. Also, if g(x) =g¢(y) for some x
and y belonging to dqg, then

q@) = q(y) = k(@) = k(y) & Ux)+apum = UY)+apag
= k(z) = k(y) & Ux) = Uy)
— zT = Y.

Therefore q(r) is also one-to-one. It now readily follows that
Ey(tmv(bn)) <dé¢ and g: Za(tmv(bn)) - J(tman)

This verifies (6) and completes the proof of Theorem 2.

We obtain the following as an immediate corollary of Theorem 2.

Math. Scand. 15 — 38
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CoroLLARY 1. Let a, and b, be two recursive functions such that for all
n,a,<b,. Then for all regressive isols T,
21' (bn_a’n) = 21’ bn—zT Ay .
Noration. Let
ag+ay+a,+ ... denote D, a,.
T

ProrosiTiON 1. Let a, be a recursive function and u any number. Then
for every regressive isol T, T+ 1 1s also a regressive isol and

Utagta;+a,+... = utagta+a,+... .
T+1 T

Proor. Left to the reader.

5. The extensions C((X) and Dy (X).

With every recursive function f(x), Myhill [6] associates two specific
recursive combinatorial functions f+(z) and f—(x), called the positive and
negative parts of f(x), respectively. These functions have the property
that for all z, f(z)=f*(x)=f-(x). The Nerode extension of f(z) to A
may then be given by

DyX) = O (X)-Cs—(X), for Xed.
It can be proven that if f+(x) and f—~(z) are any two recursive combina-
torial functions, such that for all

f@) = fHz)=f(z),
then

(1) DyX) = Cyu(X)—Cy(X), for XeAd.

In this section we wish to give a representation of D(T) (for f a recur-
sive function and T a regressive isol) as the difference of two infinite
series, each summed with respect to the regressive isol 7'+ 1. In view
of (7) it will be sufficient to describe a method whereby C/(T) (for f a
recursive combinatorial function and 7' a regressive isol) can be ex-
pressed as an infinite series summed with respect to 7'+ 1.

DeriniTION. Let f(x) be a function from ¢ into e. The functions
d(n) = f(n+1)=f(n),

e(0) = £(0),
e(n+1) = d(n),
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are the d-difference and e-difference functions of f(x), respectively. We
shall also write d,, for d(n) and e, for e(n).

It is an easy consequence of the above definition that the d-difference
and e-difference functions of recursive functions are also recursive. In
addition, if f(x) is recursive and combinatorial, then so is d(z) and we
have for all x,

n<zx

THEOREM 3. Let f(x) be a recursive combinatorial function. Let d(x) be

the d-difference function of f(x). Then for all regressive isols T,

CAT) = f(0) + Zp dy

Proor. Let s(n) be the partial sum function of d(n). Since d(n) is
recursive and combinatorial, so is s(n). Also, we have for all

(8) 8(:13) = gdn s
(9) f(x)=f(0)+§dn’
(10) f(@) = f(0)+s(x) .

Identity (10) concerns only recursive combinatorial functions and there-
fore yields by a well-known theorem of Myhill

(11) CX) = f(0)+Cy(X), for Xed.
By applying Theorem A to (8) we obtain
(12) OS(T) = ZT d,n, fOl‘ T € AR .

Combining (11) and (12) we obtain the desired result
CT) = f(0) + Xpd,, for Tedy.

CoroLLARY 2. Let f(x) be a recursive combinatorial function and e(x) its
e-difference function. Then for all regressive isols T,

C](T) = 2T+len .
Proor. Use Theorem 3, Proposition 1 and the definition of e,,.
CoroLLARY 3. Let f(x) be a recursive function. Let f+(x) and f—(x) be
any two recursive combinatorial functions such that, for all x, f(x)=

fH@)—f~(x). Let et(x) and e~(x) be the e-difference functions of f+(x) and
(), respectively. Then for all regressive isols T,

Df(T) = Emen*‘—Zm en” -
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Proor. Use (7) and Corollary 2.

Lemma 1. Let f(x) be an increasing recursive function. Let f+(z) and
f(x) be any two recursive combinatorial functions such that, for all x,
f@y=f*(@x)—f-(x). Let e(x), et(x) and e~(x) denote the e-difference func-
tions of f(x), f+(x) and f—(x), respectively. Then for all x,

et(x) 2 e~(x),
e(x) = et(x)—e(z) .
Proor. Left to the reader.

ProrosiTioN 2. Let f(x) be an increasing recursive function and e(x)
its e-difference function. Then for all regressive isols T,

D(T) = 21'+1 €n -

Proor. Since every recursive function can be expressed as the dif-
ference of two recursive combinatorial functions, the desired conclusion
will follow from Lemma 1, Corollary 3 and Theorem 2.

CoROLLARY 4. Let f(x) be an increasing recursive function. Then for
all regressive tsols T,
DT)e Ay,

Proor. Use Proposition 2 and Theorem 1.

6. The principal theorem.

Let f(x) and g(z) be any two recursive combinatorial functions. Then
it is well-known that both of the functions [f+g](x) and fg(z) are also
recursive combinatorial and moreover for all isols X,

(13) Crig(X) = CX) +Cy(X) ,
(14) Cpy(X) = CHC,(X)).
We shall use (13) and (14) in proving the following two lemmas.

Lemma 2. Let f(x) be a recursive function and h(x) a recursive combina-
torial function. Then

(15) Dy (X) = D(Cy(X)), for Xed.

Proor. Let f+(x) and f-(x) be any two recursive combinatorial func-
tions such that for all z,

f@) = fH@x)—f-().
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Since A(z) is recursive and combinatorial, so are f+h(x) and f-h(z), and
for all z,

(@) = f+h(x)—f-h(x) .
From (7) it now follows that for all isols X,

(16) DAX) = CpulX) - Cy(X) ,

(17) Dp(X) = Cpaa(X) = Cpp(X) .

In view of (14), (17) yields

(18) Dy (X) = Cpi(Cp(X))—C;(Ci(X)), for Xed.

We can now obtain (15) from (16) and (18). This completes the proof
of Lemma 2.

Lemma 3. Let f(x) be a recursive function. Let f™(x) and f~ (x) be any
two recursive functions such that

f(@) = (@) —f (), for zee.
Then

(19) DyX) = D~(X)-Dj(X), for Xed.

Proor. Let g+(x) and g—(x), and ht+(z) and h—(x) be any two pairs of
recursive combinatorial functions such that, for all x

(200 [ (@) = gt@)—g(2) and f7(2) = hH@)—h(2) .

It readily follows that [g++h~](x) and [g—+ht+](z) are also recursive
combinatorial functions and such that, for all

(21) f(@) = [g*+h7](@)—[9~+ht](@) .
In view of (7), (20) and (21) imply that for all isols X,
(22) DAX) = Cpu(X)-C(X) ,

(23) DyX) = Cp(X) - Cp—(X) ,

(24) Dyx) = Cp3~(X) = Cpyps(@) .

Application of (13) to (24) yields
(25) DHX) = [Cpr(X) + Cp(X)] - [C ) (X) + Cri(X)], for XeA.

Algebraic rearrangement of (25) together with (22) and (23) give (19).
This completes the proof of Lemma 3.

TureorREM 4. Let f(x) be a recursive function. Then the following condi-
tions are equivalent.
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(26) f(x) is an eventually increasing recursive function.
(27) Dy(X) maps Ay, into Ap.

Proor. We first prove that (26) implies (27). Let f(x) be an eventually
increasing recursive function. Obviously for every finite regressive isol ¢,
D((t) is finite and hence also regressive.

Suppose now 7' is an infinite regressive isol. Let » be a number such
that g(x)=f(x+n) is an increasing recursive function. Both f(z) and
g(x) are recursive functions. Also, it is well-known that x+n is a re-
cursive combinatorial function of 2 with canonical extension X +n. We
can now conclude from Lemma 2, that

(28) Dy(X) = DX +mn), for Xed.
Since 7' is an infinite regressive isol, so is 7'—n. Substitution in (28) gives
(29) D,(T—n) = DAT) .

In view of Corollary 4, D/(T) is a regressive isol. This gives (27) and
completes half of the proof.

We shall prove that (27) implies (26) by proving the following state-
ment.

Let f(x) be a recursive function which is not eventu-
(30) ally increasing. Then there exists a regressive isol 7'
such that D,(T) is not an isol, that is DJT) € A*—A.

Let f(x) be a recursive function which is not eventually incre&sing;
Define the functions

4(0) = f(0),

A(n) = f(n)—f(n—1) for n>0,
a, = max(0,4(n)),
n = max(0, —A(n)) .

o
|

A(n) will not map ¢ into e. However, it readily follows from the recur-
siveness of f(x) that a, and b, are recursive functions of n. Also, it fol-
lows that

(32) va)f@) = 32— b
ﬂg@ nsx
Set

fa(x) = Za’n and fv(w) = an .

nsz ns=x



RECURSIVE FUNCTIONS AND REGRESSIVE ISOLS 39

Then f*(x) and f”(x) are increasing recursive functions such that, for
all z

(33) f@) = f (@) —f ().
By Lemma 3, (33) yields
(34) DyX) = Di~(X)—Dy~(X), for Xed.

f () and f~ (x) are increasing recursive functions; in view of their defini-
tions they will have a, and b,, as their respective e-difference functions.
Therefore (34) and Proposition 2 imply

(35) DUT) = 3741 8n—214+1bn,  for Tedp.

It now follows that in order to prove statement (30), it suffices to
prove the existence of a regressive isol 7', such that

(36) not [y Z Dpi1by,].

This will be our approach here and we shall use a technique introduced
in the proof of [3, Theorem 95].

We first observe that the recursive functions a,, and b,, are each posi-
tive infinitely often. This follows from (32) and the fact that the func-
tion f(x) is recursive and not eventually increasing. Therefore the sets
{n|a,>0} and {n |b,>0} are each infinite and recursive, and by (31)
are disjoint. Let g(n) and h(n) denote the strictly increasing recursive
functions ranging over {n | a, >0} and {n | b, > 0}, respectively.

Let p,(x) be a function of the two variables ¢ and z not necessarily
everywhere defined such that every one-to-one partial recursive function,
and no other function, appears in the sequence {p;}. We shall now define
a regressive function ¢,, such that if 7+ 1=Req(ot), then 7' will be an
infinite regressive isol satisfying (36).

Set t,=1. Assuming that ¢,,...,f,_, with £>1 have already been
defined, we define #, by setting

b = J(tk-1,%) »
where u,, is determined as follows:
Case 1: k¢ pog and k & gh. Set u,=0.
Case 2: kepg, say k=g(i). Let h(0),...,h(s) be all those h(r)’s with
h(r) < g(i). Now put u, equal to the smallest number w such that for
each v with 0 =v<ayy,

j(j(tk—l’w)’v) ¢ (poj(th(o)’o),- .. :psj(th(s)’o)) .

Case 3: k € oh, say k=h(i). Let g(0),...,9(s) be all those g(r)’s with
g(r) <h(i). Now put u; equal to the smallest number w such that either
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03 J(j(tg-1,w),0) is undefined ,
or p;j(j(ty—y,w),0) is defined and
pij(j(tk—liw)’o) ¢ {j(tg(n)’v) l nss & v< ag(n)} .

The existence of u, in Case 2 follows because j maps £2 one-to-one onto e.
We obtain the existence of u, in Case 3 because each of the functions p;
is one-to-one.

Let

T=9t, T =1—() and T = Reg(t').
To complete the proof we will verify:

(i) ¢, is a regressive function,

(ii) 7" and T'+1 are regressive R.E.T's,
(iii) 7' satisfies (36),
(iv) T is an isol.

Re (1). It follows from
J@.y) = Hx+y)(x+y+ 1)+
that z <j(x,y) for >0. By the definition of ¢ we have
to>0 and  (Vo)@U)tya =ity w)]
Hence t,<t,<#;< ..., and therefore ¢ is a one-to-one function. Let

tos for z=t,,

9@) = k(z), for wx+t,.

It readily follows that g(x) is a regressing function of #,. Hence ¢, is a
regressive function.

Re (¢3). Set ¢',=t,,;. Then ¢, is obviously also a regressive function.
Since 7=pt and t'=¢t’, 7 and t’ are regressive sets. Also, 7' €T and
v € T+1, and therefore 7' and 7'+ 1 are regressive R.E.T.s.

Re (iit). Since ¢, is a regressive function ranging over a set in 7'+ 1,
we have

(37) ?j(tm”(a'n)) € 21'+1 Ay 5
(38) éj(tn,vwn» € Sre1 bn-

In addition, since the functions g(n) and A(n) range over all the positive
a, and b,, respectively, it follows that
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oo (o)
(39) %](tn’v(a’n)) = %J(ty(n): 1’(ag(n))) 5

(40) Eﬂ(tn’v(bn)) = o%j(th(n)i1’(bh(n))) .

We wish to prove that 7 satisfies (36). Let us suppose otherwise,
namely

(41) 2T+1 bn é ZT+1 Ay, -

Then in view of (37), (38), (39) and (40) it follows that there would
exist a one-to-one partial recursive function p(z), such that

(42) %j(th(n)’v(bh(n))) < 61) )

(43) p(ga‘(thw,v(bhw))) < 3 it tg) -

We shall prove that this is not possible. Suppose the index of p(z) in our
enumeration of all one-to-one partial recursive functions is ¢, that is,

p(x)=p;(x). Then from (42) and (43) we would have in particular for
some number 7,

(44) J(tr@, 0) € 0p;
(45) Pij(tna 0) € (J(tgr> 0)s- « -2 J(tgtrr Ty — 1)) -

The functions g(n) and h(n) have disjoint ranges and therefore either
h(i) <g(r) or g(r) < h(s).

Suppose that A(7) <g(r). By Case 2 of the construction, ¢y, is so defined
that for each v with 0=v<ayp,

j(tg(r)’ 'D) ¢ {pnj(th(n)» 0) l h(n) < g(’l‘)} .
Since A(¢) <g(r), this implies
pij(th(i)’ O) ¢ (j(tg(r)’ 0)’ e ’j(tp(r)’av(r) - l)) )

which would be false in view of (45). Therefore A(7) < g(r) would not be
possible.

Suppose now that g(r) <h(¢). By Case 3 of the construction, #, is so
defined that either p,j(f4),0) is undefined or p,j(f),0) is defined and

(46) Dij(th@ 0) € {J(tsm ) | g(n) <h(i) & v<ayy}-.

In view of (44) we may assume that p;j(¢4,0) is defined. Since g(r) <
h(7), (46) yields
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DiJ (@ 0) & (JEn 0)s- - 25y @y —1))

which would be false in view of (45). Therefore g(r) < k() would also not
be possible.

We can now conclude that there exists no one-to-one partial recursive
function satisfying conditions (42) and (43). Therefore the inequality
of (41) is false and 7" will be a regressive R.E.T. satisfying (36). This
completes the proof of (iii).

Re (tv). An infinite set is retraceable, if it is the range of a strictly
increasing regressive function. As a consequence, the function ¢, men-
tioned in the proof of (¢) is a strictly increasing regressive function, and
hence 7 is a retraceable set. It is proved in [4] that every retraceable
set is either recursive or immune.

We now prove that 7 is not a recursive set. Suppose otherwise, then
the strictly increasing function ranging over z, namely f,, would be
recursive. Since g(n) and A(n) are also recursive functions, it would then
be an easy consequence that

% -7 (ta(n)’ v(a’a(n))) and %.7 (th(n)’ v(bh(n)))

are infinite r.e. sets. However, then these sets would be recursively
equivalent, contrary to our above remarks.

Since 7 is retraceable and not recursive, t is immune. Since 7 €T +1,
it follows that 7'+ 1 and hence also 7' is an isol. This verifies (iv) and
completes the proof of Theorem 4.
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