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FOLNER’S CONDITIONS FOR AMENABLE
SEMI-GROUPS

I. NAMIOKA

1. Introduction.

In [3], Felner gave interesting necessary and sufficient conditions for
a group to be amenable. Naturally one wonders whether these conditions
can be generalized to semi-groups. Felner’s necessary condition was
generalized to semi-groups by Frey in his thesis [4] by means of a massive
calculation more or less modelled after the original proof of Fglner. In
section 3, we give a vastly simpler proof of the Folner—Frey theorem.
It turns out that this theorem is a direct consequence of ‘‘strong amen-
ability”’ of amenable semi-groups. The notion of strong amenability
was investigated by Day in [1], in which he raised the question whether
Folner’s necessary condition was a consequence of strong amenability
or not. In section 4, we discuss generalizations of Fglner’s sufficient
condition. The general picture is unsatisfactory in that the conditions
of section 3 and 4 are different unless the semigroup in question possesses
the right cancellation law, in which case all the conditions are equivalent.
In section 5, we shall strengthen Fglner’s necessary condition for amen-
able groups. This section was motivated by a lemma of Hewitt in [5].

We wish to thank Professor Day for having read our original version of
section 3 and suggesting a simplification. The incorporation of his idea
resulted in the reduction of the number of lemmas by one. We also wish
to thank Professor Hewitt for the conversations we had on the subject of
the present paper and for pointing to us the existence of Frey’s thesis.

2. Preliminaries.

Let S be a semi-group, that is, a set in which an associative binary
operation (denoted by -’) is given, and let /,(S) be the set of all real valued
functions f on 8 such that

S{f)]: se8} < .
For each f in [,(8), let
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Ifll = X {f(s)]: seS}.

Following Day [1], we shall introduce the convolution f,-f, of elements
f1 and f, of [,(S) by the formula:

Jirfa®) = 2 {fi(s)fa(se): 818, = 2}

The convolution turns /,(S) into a (real) Banach algebra. Now define a
map I:8 - ,(S) by 1 i ,
s=¢',

T = o it ss .

Then I(s,-8,)=1(s,)-I(s,), and, because of this fact, we shall systemati-
cally fail to distinguish s and its image I(s). An element f of [;(S) is called
a finite mean if f(s) 20 for each s in 8, {s: f(s)> 0} is finite and ||f] =
>{f(s): s€S}=1. We shall use @ to denote the set of all finite means.
It is obvious that @ is a convex subset of [,(S); in fact, @ is the convex
hull of S.

A semi-group 8 is called ‘“‘right amenable’ if S admits a “right invariant
mean”. Instead of introducing more notation in order to define right
invariant means, we shall adopt the following definition of right amen-
ability, which can be easily seen to be equivalent to the more traditional
definition (cf. Day [1, p. 515]).

2.1 DEFINITION. A semi-group S is right amenable if and only if there
is a net {f,} in @ such that, for each s in S, the net {f,-s—f,} converges to
0 weakly in 7,(S).

In the definition above, if ‘“weakly’ is replaced by “in the norm”,
we have a definition for strong right amenability of 8. In [1], Day proved
that right amenability and strong right amenability are actually equiv-
alent. Since this fact is essential for our proof of Felner’s theorem, we
shall state and prove Day’s result for convenience of the readers.

2.2 THEOREM. (Day.) A semi-group S ts right amenable if and only if
there is a met {f,} in @ such that, for each s in S,

tim, |5 —f,)| = 0.

Proor. Let E be the product (1,(S))S; then E is a locally convex linear
topological space under the product of the norm topologies. Define a
linear map 7': [,(S) - E as follows: For fin /,(S) and for s in S, T'(f)(s) =
f+8—f. Now the weak topology on Z is the same as the product of the weak
topologies (see, for example, [6; p. 160]); therefore, from definition 2.1,
8 is right amenable if and only if 0 is in the weak closure of T'[®]. Since
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E is locally convex and T[®] is convex, the weak closure of 7'[®] is
identical with the closure T'[®]- of T'[®] relative to the given topology,
i.e. the product of the norm topologies. Hence 8 is right amenable if
and only if 0 € T[®]-, which is precisely the content of theorem 2.2.

2.3 REMARK. From the proof above, we see that the semi-group 8 is
not right amenable if and only if there is a continuous linear functional
on (1,(8))° separating 0 and T'[S] strongly; more explicitly stated: S is
not right amenable if and only if there are a finite number of bounded
functions u,,...,u, on § and the same number of elements ¢,,. . .,t, of S
such that

inf i(ui(s-ti)—ui(s)): seS} >0.
=1

This is the well-known criterion of Dixmier [2].

3. Necessary conditions.

For a finite non-empty subset 4 of S, we define a member u, of @
as follows:
c(d)! if sed,
lu‘A(’s) = 0 if s ¢ A ,

where, in general, ¢(M) denotes the cardinality of the set M. If y,
denotes the characteristic function of the set 4, then u,=c(4)1y,.
In the sequel, a ‘“finite subset” always means a ‘finite non-empty
subset’’.

3.1. LEMMA. Let f be a member of @; then f can be written in the form
f=20 1 ipa; where each A; 1s finite,

A‘iDA'lH‘l’ i=1,...,n‘—1, 2i>0, 'i=].,...,n,

n
zﬂi'——l.

t=1

and

Proor. Let 0<a,< ... <a, be the distinct values of the function f.
Let 4;={s: a;<f(s)}. Then clearly

A, 24,5 ... 04,
and

n
[ =04+ (@—a)pa+ .. + (@ —Cp)ta, = 21 Aitra s
=

for some positive A’s. Finally,
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n n
1=73{f(s): se8} = ‘21/%2 {pa(s): se S} = ,lei .
i= i=

In what follows, for a subset 4 of S and for a member s of S, 4-s
denotes the set

{t: t =a-s for some member a of 4}.

3.2 LEmmMA. Let A be a finite subset of S and let s be a member of S.
Then
c(d)yr ifteds~4,

0 ifte A~ A-s,

(Ba°8—pq)(t) {
0 for all other t .

v A IV

Proor. Observe that
past) =3 {uy(s): 8'-s=t} = c(d) (A n{s': &-s=t}).
From this it follows that

)

c(4)?r ifted-s,
0 if tgAd-s.

v

(a-5)(t) {

The lemma is now clear.

3.3 Lemma. Let a function f in @ be expressed as in lemma 3.1. Then,
Jor each s in 8,

*) If-s—fll 2 z Jyo(dys ~ Ae(4,) .

Proor. If f e @ is expressed as in lemma 3.1, then

n
fs=f =213i(.“4,~‘3—.“4;) .
i=
Let
B =U{4;~4;-5): j=1,2,...,n};

then, by lemma 3.2 each A,(u ;s —p,4,) is non-negative on S~ B. Now,
for any ¢ and j, 1514, jZn,
(Ai's ~Ai) n (Aj NA’-'S) = g )

because either A;=A; or A;2A; (hence A;-s>A;-s) holds. Conse-
quently each 4;-s~A4; is contained in S~ B. Hence,
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If-s=fll 2 2{(f-s—f)t): teS~B}
= gll«cZ {(na;s—pa)(t): t € 8~ B}

= i)"iz {(luA,'.'s_:uAi)(t): t e Ai's"'Ai} .

=1

Finally, using lemma 3.2 again, we obtain (*).

3.4 REMARK. A semi-group S is said to have the right cancellation law
if 8,-8=8,-s implies 8, =8,. In the lemma above, if S is assumed to have
the right cancellation law, then one can actually prove the equality

If-s=fll = zlli lleea;"8 = 4l

=2 §1Zi c(4;°8 ~Ay)[e(4,) .

3.5 TeEOREM. (Felner-Frey.) Let S be a right amenable semigroup.
Then for a given finite subset F of S and for a given positive number &,
there exists a finite subset A of S such that, for each s in F,

c(d-s~A) < e-c(4).

Proor. Let F={s,,...,s;}; then by theorem 2.2, there exists a mem-
ber f of @ such that

If-s;—fll < efk, j=1,2,...,k.

By lemma 3.1, f can be written in the form f=37_,4,u,., where 4’s and

A’s satisfy the conditions stated in lemma 3.1. Let N={1,2,...,n},
and we define a measure m on the family of all subsets of N as follows:

For a subset K of N,
m(K) =Y {A: 1€ K}.

If K is empty, we agree m(K)=0. Clearly m(N)=1. Now for each
j=1,2,...,k, let )
‘Kj = {1/: C(AiOSINAi)/G(A‘i) < 8} .
Then for each ¢ in N~ K;,
c(ds; ~ A)fe(4y) 2 .

By lemma 3.3, we know that, for each j(j=1,2,...,k),

ek > ||If-s;—fll %21 Ac(Ays;~ Ag)le(4y) .
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It follows that
ek >e>{d:ie NvK}=emN~K;).
Therefore, m(N ~ K;) <k-! for each j=1,2,...,k. Hence,

k k
l—m( KO:n%N~(]KJ
j=1 Jj=1

mgiw~&0

k
SsdmN~K;) <kkl=1.
=1

J
This implies that m(N }‘=1Kj) >0; hence, N J’-‘=1Kj is not empty. Choose 4
in N ;?=1Kj and let 4 =A4,; then clearly 4 satisfies the condition of the
theorem.

The following corollary is an immediate consequence of theorem 3.5.

3.6. CoroLLARY. Let S be a right amenable semi-group with the right
cancellation law. Then given a finite subset F of S and a number k, 0< k<1,
there exists a finite subset A of S such that, for each s in F.

c(d-snd) = k-cd).

We conclude the section with a discussion concerning locally compact
groups. Let G be a locally compact topological group, let x be a right
invariant Haar measure and let L, be the real L,-space constructed with
the measure y. For each fin L, and g in G define f7 to be the right trans-
late of f by g1, i.e. f9(x)=f(xg~'), and let R, be the continuous linear
transformation L, — L, defined by R,(f)=f9. Since L, is a Banach
lattice, so is L,** (see [6; 239]). We call a member ¢ of L,** a mean over
L.* (or mean over L, using a suitable identification of L,* and L)
if 20 and |lg||=1. We call G a right amenable topological group if and
only if there is a mean ¢ over L,* such that R **(¢)=¢ for each g in G,
where R ** denotes the second adjoint transformation L ** — L;** of
R,. Since a right invariant Haar measure is unique up to a constant
multiple this notion of right amenability is indeed independent of the
choice of u. If G is given the discrete topology, then G is a right amenable
topological group if and only if @ is right amenable as an abstract group.
It can be seen easily that if @ is a locally compact topological group and
G is right amenable as an abstract group then G is a right amenable
topological group. In particular Abelian locally compact groups are
right amenable topological groups. Also, compact groups are right
amenable topological groups.
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With the definitionsintroduced above all the material of the last two sec-
tions can be adapted to right amenable topological groups with, of course,
some obvious modifications. For instance, the set ‘@ should be replaced
by the convex subset ¥ of L, consisting of all non-negative simple func-
tions of norm 1. Then it is true that G is a right amenable topological
group if and only if there is a net {f,} in ¥ such that, for each g in G,
the net {f,?—f,} converges weakly to 0 in L,, and by repeating the argu-
ment of theorem 2.2, we can conclude that a locally compact group G is
a right amenable topological group if and only if there is a net {f,} in ¥
such that lim, ||f.9 —f,||=0 for each g in G.

We can then follow the method of the present section to establish the
following theorem, which is of interest because it is precisely the converse
of the assertion of Dixmier in [2; § 4, 3(a)].

3.7 THEOREM. Let G be a locally compact topological group and let u be
a right invariant Haar measure. If G is a right amenable topological group,
then for a given finite subset F of G and a positive number ¢, there exists a
measurable subset A of G such that 0 < u(A)<oo and u(A-g~A4)<eu(d)
for each g in F.

4. Sufficient conditions.

The converse of theorem 3.5 is false, because if S is finite then
c(8:8~8)=0 for any s in S, but not all finite semi-groups are right
amenable. In order to see to what extent the necessary conditions (for a
semi-group to be right amenable) obtained in the last section are also
sufficient, we state the following generalization of the second part of
Folner’s main theorem [3; p. 245]. We omit the proof, because it is a
straight forward modification of Felner’s proof based on Dixmier’s
criterion (see remark 2.3).

4.1 TaEOREM. For a semi-group S to be right amenable it is sufficient
that there exists a number r, 0 <r <1, such that, for a given choice of elements
815+ s8n3 81's. . 1,8, of S (mot mecessarily distinct), there is a finite subset
A of S which satisfies

n
n1Yc(d-s;nA-8) 2 re(d).

t=1

If 8 is a group, then c(4-s;n4-s;)=c(ANnAs;s;1). Therefore in this
case the condition of theorem 4.1 becomes equivalent to the necessary
condition given by Felner.
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4.2 CoroLLARY. For a semi-group S to be right amenable it is sufficient
that there exists a number ¢, 0 < e <}, such that for a given choice of elements
81, - -8, of 8 (not necessarily distinct), there is a finite subset A of S which
satisfies n
n1yc(d~A-s) £ ecd).

i=1

Proor. Suppose the elements s,,...,s,; s,,...,8,” of 8 are given.
Then from the assumption, one can find a finite subset 4 of § such that

(2n)1 i (c(Ad~Ad-s)+c(Ad~A-s)) < ec(4).
i=1

Now observe that

c(d ~ A-s)+c(4d~A4-s)

v

C(A ~ (A'siﬂA'Si'))
C(A)—C(A'SiﬂA‘s,;') .

It

It follows that

2e-c(4) = n—lzn(c(A)-c(A-si nd-s)) = c(A)-—n—lic(A-si n4-s/).
i=1 i

=1
Therefore,
n 1Yy c(Ad-s;nA8") 2 (1—-2¢)c(4) .

=1

Since 0 <1—2¢<1, our semi-group S satisfies the condition of theorem
4.1; hence, S is right amenable.

The range of ¢ given in corollary 4.2 is the best possible. For, consider
the semi-group S={a,b} with the following multiplication table:

Q Qe
St O O

a
b
Here we see that ¢(S~8-a)=c¢(S~8-b)=1, and therefore the condition
of the corollary is satisfied with ¢=%. On the other hand it is easy to
check that this semi-group is not right amenable.
If § is a semi-group with the right cancellation law, then, for any
finite subset A of S and for any member s of S, it is true that ¢(4-s~4)=
¢(A ~A-s). Therefore, in this case, the necessary condition of theorem

3.5 for S to be right amenable implies the condition of corollary 4.2
(hence, of theorem 4.1 also). We have thus proved:
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4.3 CoroLLARY. If S is a semi-group with right cancellation law, the
conditions of theorem 3.5, theorem 4.1 and corollary 4.2 are both necessary
and sufficient for the right amenability of S.

4.4 REMARK. One can also prove very easily that for finite right
amenable semi-groups the conditions of corollary 4.2 and theorem 4.1
are necessary. We doubt that the condition of theorem 4.1 is necessary
for an arbitrary right amenable semi-group, but we do not have any
example to substantiate our doubts.

5. For groups only.

In theorem 3.5 and corollary 3.6, one does not have much control over
A except the finiteness of 4. However, if S is a group, we can do much
better: in fact, we shall prove in this section that 4 can be chosen to be
symmetric and “arbitrarily large’”. Let G be a group and let f be a real
valued function G. Then define f* to be the function: f*(g)=f(g~1) for
each g in G. A symmetric function is a function f such that f=f*. A
subset 4 of G is called symmetric if 4=4-1. Let @5 denote the subset
of @ consisting of all the symmetric finite means on G. Then again &g
is convex. Although it is known that right amenable groups are ‘“amen-
able”, we shall keep calling them right amenable.

5.1 LEMMA. If G is a right amenable group, then there is a net {f,} in Dg
such that, for each g in G, lim, | f,-g—f,||=0.

Proor. Let Mg be a subset of I *(G)=1I**F) such that ue My if
and only if

(a) u(w)=0 whenever u is a non-negative member of /(&) (that is,
u(g) 20 for all g in G),

(b) u(1)=1, where 1 is the function identically equal to 1 on @, and

(c) p(u)=u(u*) for each u in I_(@).
Let e denote the evaluation map of I,(G) into I_*(G). Then e[Pg]< My,
and we assert that e[®g] is weak* dense in Mg. For, if not, then there is
a member y, in Mg which is not contained in the weak* closure of
e[Pg]. Then by a standard separation theorem (see, for example corollary
14.4 of [6]), there is & member % in [ (@) such that

Ho(w) > sup{(u, f): fe Pg},
where (-, -) denotes the standard pairing of /,(G) and I (G@). Now since

po(w) = po(d(u+u*) and (u,f) = (Gu+u*),f)

we can assume % to be symmetric. Now, for each g in G,
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3g+g ) edDs and (u,}g+g7h)) = tu(g)+iu(g™?) = u(g).
It follows that

sup{(u,f): fe g} = supfulg): g€ G}.
Consequently

sup{u(g): g€ @} < uo(u),

but this violates properties (a) and (b) for u,. Hence e[®g] must be
weak* dense in Mg.

If G is right amenable, then there is a right and left invariant mean 4
on G (see § 4 (B) of [1; p. 515]). If one defines iy by

Ag(u) = $A(u)+ 3A(u*)

for u in I (@), it is easy to see that Ag is again right and left invariant
and Ag € Mg. Therefore there is a net {f,} in @ such that the net {e(f,)}
weak* converges to Ag. Then by a simple argument (see § 5 (A) and (D)
of [1]), we conclude that the net {f,-g—f,} converges to 0 weakly in ,(G)
for each g in G. To complete the proof of the lemma, it is only necessary
to repeat the proof of theorem 2.2 replacing @ by Pg.

5.2 THEOREM. Let @ be a right amenable group. Then, for given finite
subsets F and K of G and a number k, 0 < k < 1, there exists a finite symmetric
subset A of G such that A> K and c(4-gnA)=zk-c(A) for each g in F.

Proor. By replacing, if necessary, K by KuU(K-!), we can assume K
to be symmetric. If @ is finite then the theorem is trivial. Therefore let
us agssume that @ be infinite. Choose n so large that k(1 +c(K)-n-1)<1.
Suppose we can find a symmetric finite subset B of G such that

(i) ¢(B)zn, and

(i) c¢(B-gnB)=k(1+c(K)-n"1)-¢(B) for each g in F;
then we are through. For, let A=BUK; then obviously 4 is symmetric
and, for each g in F,

c(4gn A) z ¢(Bgn B) 2 k-(1+¢(K)-n-2)-c(B)

k-(1+c(K)-c(B)-)-c(B)
k(c(B)+¢(K)) 2 k-c(4) .
Therefore it remains to produce a symmetric finite subset B of @ satis-
fying (i) and (ii) above.

First we make the following observation. In the proof of theorem 3.5,

if S happens to be a right amenable group, we can choose f from D4
because of lemma 5.1. Then each 4; appearing in that proof is symmetric.

v
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Therefore the conclusion of theorem 3.5 (and hence of corollary 3.6) is
valid for some finite symmetric subset 4 of 8, if § is a group.

Now let F, be a subset of G such that F;>F and c(F,)2n?% (We are
assuming @ to be infinite!) By the observation of the last paragraph, one
can find a finite symmetric subset B of G such that

¢(B-g N B) 2 k+(1+c(K) -n1)e(B)

for each g in F, (hence in F'). This set B, therefore, satisfies the property
(ii). To see (i), notice that BgnB=+¢ for each g in F,. It follows that
F,< B-1B; consequently, n?=<c(F;) £c¢(B)? or n=c(B).

The following corollary for countable Abelian groups was proved by
Hewitt [5].

5.3 CoroLLARY. Let G be a countable amenable group. Then there is a

sequence {A;: 1=1,2,...} of finite symmetric subsets of G such that
A‘iCA‘i'*'l’ 'I:': 1,2,. ey

U{d;: i=1,2,...} = Q@ and lim
for each g in G.

s C(Ag N A)]e(4y) = 1

Proor. Let G=U{K;: i=1,2,..}, where each K, is finite and
K,<K;,,. Let 4, be a finite symmetric subset of G such that 4,>K,.
We choose A4,,4,,... inductively. Assume that 4, ; has been chosen;
then by theorem 5.2 there exists a finite symmetric subset 4; of G such
that 4,24, UK, and

o(d;,gnd;) z (1-1[i)e(4,)

for each g in K,. Clearly the sequence {4;: ¢=1,2,...} so constructed
satisfies all the conditions of the corollary.
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