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TAUBERIAN THEOREMS
FOR THE STIELTJES TRANSFORM

TORD GANELIUS

1. Introduction.

Some years ago I published [1] a remainder theorem for the Laplace
transform applicable to remainders of arbitrary order of decrease. The
estimates afforded by that theorem are known to be best possible in most
interesting cases. I only gave an outline of the method of proof which
was a development of the well-known Karamata approximation tech-
nique.

In this paper I shall apply Fourier methods to obtain a similar result
for the Stieltjes transform. The idea of the proof was given in 1962 in a
paper on Wiener’s tauberian theorem [2] and the result for the Stieltjes
transform (Theorem 2) will in fact be obtained from a general result
(Theorem 1). Among the special cases covered I ought to mention the
results of Vuckovié [4, 5]. Theorem 2 is of interest as being applicable
to the estimation of spectral functions for certain differential operators,
and I have tried to formulate it in a way suitable for these applications.

For Fourier transforms and for convolutions we use the notations

foy = [f@ exp(—iadz  and  Kxg@) = [ K@—y) o(w)dy.

2. The general result.

Theorem 1 may conveniently be stated for a class of kernels defined
in the following way.

E, is a sub-set of L(— oo, o) consisting of those functions K to which there
is an entire function g of exponential type such that

g(t) = K(t)
Jor real t.

Received April 2, 1964.
Part of the work reported in this paper was done in 1962 at the University of Washing-
ton, Seattle, and supported by U. 8. National Science Foundation Grant 21205.



214 TORD GANELIUS

As will be seen in the proof it is not necessary for our purposes that g
is entire of exponential type. It is e.g. sufficient that there is a positive
b such that ¢ is analytic and

lgt)| < M exp(mlt]) for Im¢ > —b.

THEOREM 1. Let Q be a positive increasing function to which there is a
constant q so that
(2.1) Q) = qQx) for v = xz+1.

Let ¢ be a bounded measurable function satisfying

(2.2) pv)— @) 2 —c/Q(x) for zy = @ = v £ 2+1/Q(2),
where x, and ¢ are constants. Suppose that K € E,. Then
Kxg(z) = O(exp(-Q(a))), 2o,
implies
(2.3) ¢(@) = 0(1/Q@), @ oo.
(Obviously the only interesting cases occur if @ tends to infinity with .)

As mentioned in the introduction this theorem is proved by the method
introduced in [2] and thus the final estimate is obtained by the inequality

14
(2.4)  suplu(z) < 30 [— inf  (u(y)—u(=)) + f [a(t)| dt] ,
x rSys<z+1/V v
which holds for every u € L(— o0,) and every positive V.
This formula will be applied with u = ke, where k denotes the auxiliary
function defined by

k(x) = k(z; y,0) = exp(— (= —y)*w?),
go that .
k(t) = o~Y(2x)t exp(—iyt — }t20?) .

If y=K=x¢p, then it is easy to see (cf. [2, p. 10]) that

(2.5) WE) = (¢0)" €)= [ v(@) R(w; ) da,
where -
R(z; &) = (21)-1 f exp ( — iat) B(& —1) g(t) dt. .

In the following proof O(1) always denotes a constant independent of
z, y, o and £ According to the definition of the class K, the inequality



TAUBERIAN THEOREMS FOR THE STIELTJES TRANSFORM 215

|9(t)| £ M exp(ml¢|) holds for all complex ¢. Changing the variable by
putting {=£— 7 +14y and introducing the expression for k, we get

|R(z; &)] = 0(1) exp(y(x—y) + 3202+ mly| +m]§l) f exp(m|t] —}7r2w?%) w-ldT

and, after evaluation of the integral,
[R(z; &) < O(1) exp(y(x—y) + 3y’0 2 +mly| + im*ew? + m|E]) .

In this estimate y is at our disposal and will be chosen in suitable ways.
We assume that w>1.
By putting y = w*y—m —z) we find, if x<y—m, that

|B(z; &) < O(1) exp(— }w*(y —m—2)* + ImPw? + m|£]) .
Another upper bound is obtained by taking y= —y,<0,
|R(z; £)] £ O(1) exp(—yo(@—y—m) + hm?e? +mlE]) .
Introducing these results in (2.5) we find that
(k)" (&) lexp (—m|§| — $mPw?)

Y~—2m—yo 0
= 0() l [p(@)| exp(~ o¥y—m—af) da+ [ Ip(a)| exp(-polz—y—m)) dx]
-0 Yy—2m—yo

§0(1)[f lw(y —m —u)| eXp(--%wzuz)01%+6X1>(—Q(y-—2m—)'o)+yo(3m+7/o))]-

m+yo

To get a bound for the integral on the right we recall that y is bounded
by our assumptions. Since, for fixed positive a, it holds that

(2.6) f exp(— jo%u?) du < a w2 exp(-— }a’w?),

we get by aid of (2.1) that
(k)™ (£)] < O(1) exp (m|é])[exp (—myow?) +exp(ymPe?— Q(y)g " ")] .

Choosing w?=m~2¢""?""1Q(y) we infer that there is a positive é depend-
ing on m, ¢ and y, such that

(2.7) l(@k)" (§)] < O(1) exp(m|é|—0Q(y)) -

We next turn to the first term on the right side of (2.4). We observe
that
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k(z)] £ 1, |kK(zx)] <o forallz,
k()| = exp(—1}0?), [K(z)] <1 for jx—y|21.
Obviously

inf (p(v) k(v) — p(@) k(x)) 2 inf (k(z)(p(v) — p(2))) +inf (@(v) (k(2) — k(2))) .

A lower estimate of the first term on the right is obtained by taking the
sum of the (non-positive) infima for |[x—y| <1 and for |[x—y|= 1. In the
second term we proceed in a similar way after application of the mean-
value theorem to the difference k(v) — k(x), but we consider the two cases
lv—y| <2 and [v—y| = 2. Assuming that 0<h <1, we find that |v—y| =2
and z<v=<z+h imply |x—y|=1. Application of the inequalities for k
and %' just given, shows that

(2.8) inf (p(v)k(v)—p(z)k(z))

r<vsa+h
> inf (p(v)—g(2))—O(1) exp(— ) koo sup |p(o)|~O(h) .
xligil:g-lh lv—y|=2

Observing that
le@)| = lp) k(y)| = sup|p(@)k(z)] ,

and combining (2.4), (2.7) and (2.8) we obtain

z_sl_:_gyfng—l lv—y|=2

(2.9) le(y) = 0(1)[ — inf  (p(v)—@@))+w V! sup |p(v)| +
+exp(—3w?) + V-1+exp(mV — 6Q(y))] .

Let us now choose V=46(2m)-1Q(y) and recall (2.2) and that w? is a
multiple of Q(y). Then (2.9) reduces to

(2.10) 9@ < 0) Q@)1+ Q@)+ sup Isv(v)l}
lv—yl=2

for all sufficiently large y. Remembering that ¢ is bounded we get

e = 0(Q(y)H).
Introducing this preliminary estimate in (2.10) we get by aid of (2.1) that

le¥)| = 0(1/Q(y)) for y » oo,

and hence we have obtained (2.3). Our first theorem is proved,
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3. A remainder theorem for the Stieltjes transform.

We shall now derive a similar result for a fairly general Stieltjes trans-
form.

THEOREM 2. Let ¢ and v be real numbers o >v=0, and let r be an in-
creasing function such that @ defined by Q(x)=r(e®) fulfils (2.1). Let o be
of locally bounded variation, a(0)=0 and suppose that

(3.1) f (A+ o) do(d) = O(ar—) exp(—r(®)), -,
and ’
Q2
(3.2) sup f do(d) < O(wr(®)), © oo,
0= Q= wto[r(w) -
Then
(3.3) o(w) = O(e’[r(w)), o —>o.

The first part of the proof is the transformation of the problem to a
form similar to that treated in section 2.

After an integration by parts in (3.1) we put A=expy and w=expx
and obtain

f (L+exp(y—=))etexp((v+1)(y —)) o(expy) exp(—»y) dy = O (exp(—Q(x))) .

This formula can be written

(3.4) Hx g(x) = O(exp(- Q) ,
if
H(x) = (1+exp(—z))e-lexp(—(v+1)z)
and
(3.5) ¢(x) = o(expz) exp(—rx) .

We now investigate H in order to see that H e E,. If B denotes the
eulerian function we find

H(t) = Bw+1+it,o—v—it) = T'w+1+it) I'(o—v—it)/T(o) ,

and since 1/I" is entire an application of Stirling’s formula reveals that
HeE,

The other conditions of theorem 1 are not satisfied, since we do not
know if ¢ is bounded. That ¢ is bounded for positive values of the argu-
ment is clear from well-known pure tauberian results, e.g. that
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f (A+w)2do(d) = O(w~) implies o(w) = O(w),

0
even under weaker tauberian assumptions than (3.2). In fact it is not
necessary to invoke these results, since g(w)=0(w") may be shown to be
a consequence of (3.1) and (3.2) by quite elementary but tedious calcula-
tions. I will not insist on this point.

For negative x the immediate estimate is not better than ¢(x)=
O(exp (v|z|)) which, however, turns out to be sufficient for our purposes.
The derivation of formula (2.5) still holds, since H and R decrease suffi-
ciently rapidly to make the integral

| [ ¢ Be—y) R@; ) dwdy
absolutely convergent.
Instead of a bounded v we now have to consider a function satisfying

lp(x)| < O(1)+O(exp(—)) .

A glance at the derivation of formula (2.7) reveals that it holds also
under this weaker condition. The only change is that (2.6) has to be
replaced by

f exp (vu — jw?u?)du < (aw?—7)! exp(va — ta’w?),

a
true for » <aw?.

There remains to check the estimates connected with the tauberian

condition, and we reconsider (2.8). According to (3.5) we have

(3.8)  @(v)—@p(x) = (1—expy(v—2)) exp(—w) a(expv)+
+exp(—»z)(o(expv) — o(expz)) .
If zysx<v=2x+1/Q(x) we get by (3.2) that
p(v)—p(x) 2 — (exp(¥/Q(x))— 1) —O0(1/Q(2)) 2 O(1/Q(x)) -
If x <z, and z<v=<z+c, then (3.6) shows that
¢(v) —@(x) 2 O(exp(~w)),

since ¢ is bounded for arguments less than some fixed number. Return-
ing to (2.8) we have to consider the terms inf[k(z)(p(v)—p(x))] for
lz—y|21 and inf[g(v)(k(v) — k(x))] for [v—y|22.

Since sup |k(z) exp(—wx)| < exp(—jw?—r(y-1)),
l=-ylz1
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we get exactly the same inequality as before, that is

le()l = 0(1/Q(y)) -

Introducing the form of ¢ given in (3.5) we find
o(w) = O(o’/r(w)),

and hence formula (3.3) is proved.
We add two remarks concerning more complicated results which can
be obtained by the same method.

REMARK 1. Under the assumptions of theorem 2
(3.7) f (1= Ho)m-1do(2) = O(crr(ew)—m)
0
for any natural m. This follows if we apply the formula

v
sup, [u(z)| < C (— V-m inf  (u™(v) - u™(x))+ f [4(t)| dt)
-v

rsvsa+1/V
instead of (2.4). For this formula see Ganelius [3].

ReEMaRrk 2. Standard arguments may be invoked to prove that theo-
rem 2 holds also if 0’ L(w) is substituted for »” on the right side of (3.1),
(3.2) and (3.7), L being a slowly oscillating function.

ADpDED IN PROOF. I have observed that results overlapping with my
previous results but also with those of Section 3 have been obtained by
M. A. Subhankulov, Trudy Mat. Inst. Steklov 64 (1961), 239-266. (Review
no. 3305 in Math. Rev. 25 (1963)).
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