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ON THE IDEAL STRUCTURE OF CERTAIN
BANACH ALGEBRAS

YNGVE DOMAR

Introduction.

Let A be a commutative Banach algebra over the complex numbers.
In order to characterize the closed ideals in 4 it is natural to use in the
first place the class of all regular maximal ideals by forming for every
closed ideal the class of regular maximal ideals which contain it. As is
well-known, every regular maximal ideal in 4 is a closed ideal of co-
dimension 1.

In cases where the class of regular maximal ideals is too small to give
a satisfactory description of the ideal structure, it is convenient to use
a larger class of comparison ideals. It is then natural to choose the class
of all closed ideals which have a finite co-dimension. We can then state
the following two problems, which correspond to the problems of “‘spec-
tral analysis” and “spectral syntheses”, raised in various contexts in
harmonic analysis.

ProBLEM 1: Let I be a closed ideal in A, and let m be a positive integer,
smaller than the co-dimension of I (which may be infinite). Is it then true
that there exists a closed ideal 1, of co-dimension m and which contains I?

PrROBLEM 2: Is every closed tdeal I the intersection of all closed ideals of
finite co-dimension, which contain 1?

These problems have been discussed in [2] for a special class of Banach
algebras. We shall in this paper mainly treat Problem 1 and make the
discussion more general than in [2]. Thus we shall obtain n-dimensional
analogues of certain results in [2].

After some preliminaries we prove in § 2 our main theorem (Theorem
2.1), which gives an affirmative answer to Problem 1, assuming certain
rather implicit conditions on the algebra. We then exhibit two particular
classes of Banach algebras where it is possible to verify that the condi-
tions are fulfilled. The first class is studied in § 3. In §4 we discuss the
second class which is more complicated but also more interesting since
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it gives the abovementioned generalizations of results in [2] (Theorems
4.1 and 4.2). § 4 concludes with a remark which shows that the answers
to Problems 1 and 2 are not always affirmative.

A preliminary report of the main results of the paper is given in
Seminaire Lelong, 1962/63, n°8, Institut Poincaré, Paris.

1. Preliminaries.
We start by proving a simple lemma of algebraic nature.

Lemma 1.1. Let I, and I, be two different ideals in A such that 1,<1,
and such that no ideal lies properly between I, and I,. Then I,/I1, has the
dimension 1.

Proor. It is easy to see that we can restrict ourselves to the case
when 4 has an identity. We apply corollary 1 on p. 237 of Zarisky and
Samuel [4], which states that there exist a maximal ideal I, and an ele-
ment x € I, such that I,-1,<I, and I,=1,+x-A (with the notations of
[4]). Since we have an identity every maximal ideal has the co-dimension
1. I, is thus the linear space spanned by z and I, +al,. Butal,<l,-1,<
I,, and hence I, is spanned by x and I,. This proves the lemma.

If I, is closed and has a finite co-dimension, then all ideals, containing
I,, are closed. Hence Lemma 1.1 gives the following equivalent formula-
tion of Problem 1.

ProBLEM 1': Is it true that every closed ideal of infinite co-dimension
s contained in closed ideals of arbitrarily large finite co-dimension ?

Before proceeding we shall prove another very simple lemma:

Lemma 1.2. Suppose that A has a unit and a finite number of generators.
Then A has exactly one maximal ideal if and only if there exist elements
0py- -« 30y I A such that

(1.1) floes™Mm -0 as m — oo,
and such that e,x;,x,,. . .,x,, are generators.

Proor. Suppose first that 4 has only one maximal ideal I,. Let A
denote the corresponding complex-valued homomorphism. We have for
every a € A that a—h(a)eel, Let a;a,,...,a, be generators. Put
oa;=a;—h(a;)e. Then e,xq,...,x, are generators. Since h(x;)=0, the
representations of x; on the space of maximal ideals ¢ are identically van-
ishing. By a fundamental theorem of Gelfand this implies that (1.1)
holds.
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Conversely, let us assume that «y,a,,. . .,«, have the announced prop-
erties. Let & be a complex-valued homomorphism. Then we have for
every 1

(o)™ = (™) = Jloe™] -
Hence
(o)l = lovg™|1M™

and (1.1) gives h(x;)=0. We put
of = o Pr. L, Pm P = (Prse-Pp) >

where p, are non-negative integers. With |p|=p,+ ... +p,, the multi-
plicativity of h gives
h(x¥) =0, if |p/ z 0.

If % is not identically vanishing we must have
h(x%) = h(e) = 1.

The linear closure of the set of elements a? is dense in 4. A bounded
linear functional is therefore determined by its values on the elements «?.
Thus we have at most one non-trivial complex-valued homomorphism.
By a fundamental theorem in the theory of Banach algebras, we have at
least one homomorphism of this kind.

We assume from now on that 4 is a commutative Banach algebra with
a unit, finitely many generators and exactly one maximal ideal. By
Lemma 1.2 we can assume that the generators are e,«;,...,«,, where
(1.1) holds.

B denotes the dual space of 4. As mentioned in the proof of Lemma
1.2, its elements b are completely characterized by the complex numbers

b, = ba?) .

As is well known, it is possible to introduce an operation between
elements in A and elements in B, corresponding to an interpretation of B
as a module over A. For every a, € 4 and b € B we denote by a,ob the
linear functional with the value b(aya) for every a € 4. It is easy to see
that the operation is bilinear and satisfies

(ay05)0b = ay°(ag°h)

for any elements @, and a, in 4 and b € B.
Let the norm in 4 satisfy

llayayl| = Cllayll [layl| ,
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for any a, and a, in 4, where C is a constant, and let || ||* denote the
norm in B. Then, if a and g€ 4 and be B

[(agob)(a)| = [baga)| = [IblI*laaoll = CIbI* [lallllal
and hence a,0b is a bounded linear functional and
(1.2) lagobl* = Cllagl|[Ib]* -

The operations «P°cb, where p, is an arbitrary multi-index, are of
particular interest. We have

(aP20b), = (aPoob)(aP) = b(aPtP0) = bpipy >

which makes it convenient to call a?°ob a translation of b.

An element b e B is said to have the degree g if b,=0, whenever
|p| >¢q, and if ¢ is the smallest non-negative integer with this property.
A closed proper linear subspace of 4 is said to have the co-degree ¢ if
its annihilator subspace of B only contains elements of degree =<q and at
least one element with the degree ¢. Infinite degrees are defined in a
similar way.

Lemma 1.3. The co-degree of a closed proper ideal I of A is finite if and
only if the co-dimension of I is finite.

Proor. If the co-degree is finite =g, then the annihilator subspace
contains only elements of degree =gq and these form a finite-dimensional
subspace.

Conversely, let I be a closed ideal with a finite co-dimension k. Let b
be any element in the annihilator subspace. Since b(a)=0 for every
a € I, we have (a,0b)(a)=0 for every a and ay € I. Thus ay0b belongs to
the annihilator subspace. In particular, every translate «?%cb belongs
to the annihilator subspace.

Since this space has the dimension k, we have coefficients ¢, ¢c,,. . .,c;,
not all vanishing, such that

k
> ex0b =0,
=0

Hence
k k
(1.3) 2 o(xob) (™) = 3 ¢b(x™) = 0,
v==0 »=0
if m=0,1,2,.... Using (1.1) and (1.2) it is easy to see that
(1.4) [B(a)M* -0 as l— oo,

The elementary theory of difference equations shows that a solution of
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an equation of type (1.3), subject to the condition (1.4), has to satisfy
the condition
b)) =0, if 1>k-1.

We now exchange b and «, in the discussion above to «;"'ob and «,,
respectively, where [, is arbitrary = 0. We then obtain

b(oaPog®) =0, if I, or lb>k—1.
Continuing in this way we finally obtain that
b(oPog?. .. x,?) = 0,  if some ], >k—1.

This shows that
b, = b(a?) =0, if |p| > n(k-1),

and hence the co-degree of the ideal is <n(k— 1), i.e. finite. (It is easy to
show that the co-degree is, in fact, <k-—1.)

Lemma 1.3 shows that we have under our assumptions another equiv-
alent formulation of Problem 1 and 1':

ProBLEM 1": Is it true that every closed ideal of infinite co-degree is
included in closed ideals of arbitrarily large finite co-degree?

2. The main theorem.

We shall give a supplementary condition on 4 which suffices to give
a positive answer to Problems 1, 1’ and 1”.

Let us first mention that 4 can be obtained by a completion of the
algebra of complex polynomials in e,xq,...,«, in the uniform structure
which is determined by the norm. We shall say that a Banach algebra
A° is larger than A if it can be interpreted as a similar completion, but
using a smaller norm. The dual space B° of 4° can then in an obvious
way be interpreted as a subspace of B equipped with a larger norm. For,
if 6° € B°, then 6°(a) is well-defined for all « € 4 and

sup [b°(a)| = sup [b°(a®)] = [p°)°* < o,
allal=1 a’llleP=1
where || ||° and || [|°* denote the norms in A° and B°. Hence b°is a bounded
linear functional on 4.

SUPPLEMENTARY ASSUMPTION : Suppose that for every finite integer ¢ = 0
and for every closed ideal of infinite co-degree there exists an element f in
118 annshilator subspace, a larger Banach algebra A° with dual space B°
and a constant C, such that
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1° the degree of f is 2gq,
2° Be B°,
3° for every linear combination b of translates of 8,

[o+b]* = C 3 [laFoob|°*
pol [pol=¢
Jor some b’ € B of degree <q—1. o

We shall make a comment concerning this assumption. It follows
from (1.2) that there exists, for every non-negative integer g, a constant
O, such that
(2.1) 2 llaPoobl* = C,libl*

[Pol=g
if 6 € B. The converse inequality is, however, not true in non-trivial
situations. The inequality in 3° can be interpreted as a modified converse
which is true in certain interesting cases.

THEOREM 2.1. If the supplementary assumption is fulfilled, then the
answer to Problem 1 is affirmative.

Proor. If an element b € B has a finite degree ¢, then we can form the
finite-dimensional subspace spanned by the elements «Pob. It is easy
to see that the subspace of 4, consisting of all @ such that

(a%ob)(a) = 0

for every p, is a closed ideal of co-degree g. Hence, using the formulation
in Problem 1", it is enough to prove that, for any closed ideal I of infinite
co-degree and for any finite ¢ = 0, the annihilator subspace of I contains
an element of degree g.

Let ¢ be arbitrary and finite, and let I be a closed ideal of infinite co-
degree. Choose 8, A°, B° and C as in the supplementary assumption.
The norm of A4° is smaller than the norm of 4. Hence by (1.1),

(2.2) (logm°)m 0 as m — oo .

Since A° is a Banach algebra, we obtain from (2.2)

1/m
(sup Hoc”“°> -0 as m-—> oo,
[pl=m

and hence by the analogue of (1.2),

1m

( sup Ilapoﬁ”“*) >0 asm->ox.
pl=m

Since the degree of 8 is =g there exists for every 6 >0 an integer my=¢

such that
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(2.3) sup [aPof|°* = & sup [aPofl** + 0.
[pl=mo+1 Ipl=mo
The element f is then of degree =m,=¢q. We can assume that my=gq,
for otherwise we can exchange § to a suitable ™o f, |7| =m,—gq, and this
can be done in such a way that this new element satisfies (2.3) with m,
exchanged to ¢. Furthermore «"of belongs to the annihilator subspace
and fulfils all the conditions which were laid on f in the supplementary
assumption.
We can also assume that

(2.4) sup [aPof* =1,
Ipl=¢

hence, by (2.3),

(2.5) sup [lxPofo* < 6.
Ipl=g+1

Suppose that p=p, realizes the supremum in (2.4). We use the defini-
tion of the norm in B° and the fact that the elements a? span a dense
linear subspace of 4°. This shows that there exists a linear combination
a of elements «? such that

(2.6) llalf® = 1
and
(2.7) (P=B)(@) 2 dlaroplox = .
We finally form the element .
, = aoff € B°.

(2.4), (2.5), (2.6) and (2.7) give

(2.8) laPoby||®* < 1, when [p| = ¢
(2.9) lxPobyl|°* < 8, when |p| =¢q+1
(2.10) [b5(aP)| = % .

From (2.8) and the supplementary assumption, we see that there exists
for every 6>0 an element b, € B of degree <gq—1, such that

B9+ byl

is bounded, considered as a function of 6 Now we take, for every >0,
the infimum K(6) of
”bd + C” * ’

taken over the subspace of all elements ¢ of B of degree <¢— 1 and which
are included in the annihilator subspace of the given ideal. Since these
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elements form a finite-dimensional subspace, there exists for every 6> 0,
an element b,” in the subspace such that

K(0) = [Iby+b,"]I*.

We shall show that K(d) is bounded as § — 0. If this were not true, we
would have a sequence {4,,}{°, tending to 0 as m — oo, and such that
K(4,,) > o« as m — co. The element

ﬁm (bdm + b;:,,)

~ K3,

belongs to the annihilator subspace and has the norm 1. We write

’ 1 ” ’
(bs,,+bs,,) + = (bs,,—bs,,) -

P K(b,)

1

K(6,)
Hence £, is the sum of an element, the norm of which tends to 0, and an
element of degree <g—1, the norm of which tends to 1. The second
element lies in a finite-dimensional subspace, and hence we can extract
a subsequence {m,};° of {m}{°, such that B, converges strongly to an
element § € B, which then naturally is of degree <¢—1 and norm =1.
f belongs to the annihilator subspace since this subspace is closed. We

now have
%
-0 asm,—»> oo,

1 "
“ m (bamv + bomp) -B

hence, if m, is sufficiently large,
16s,,, + (b5, — K (8 )B)[* < K(3,,) -

But since b;,'h—K (0,,,)8 is of degree <g—1 and contained in the anni-
hilator subspace, this inequality contradicts the definition of K(d,,).

Thus ||b;+b,"||* is bounded, and we can therefore choose a sequence
{6,}7°, where 6, > 0 as ¥ - oo, such that

bs, () + b,',:(oc”)

converges for every p. Since the elements «? span a dense subspace,
this means that {b, +b,} is weakly convergent. The limit element b is
in the annihilator subspace. We shall show that b has the degree g.
The coefficients of b, +b;, coincide, if |p| 2 ¢, with the coefficients of
bs,. By (2.10) the coefficient with index p, of b, has an absolute value
= 1. Hence the same is true of b. Thus b has a degree 2g¢. It remains
to show that all the coefficients of b with |p|>¢q vanish. Take any such
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p and split it in the form p=p, + p,, where |p;| =g+ 1. By (2.9) and the
B° analogue of (1.2) we obtain

[bs, +85,)(0")| = |b,(o®)]
= [(aP?oby, )(oP*)|
< const.-|[xProb, [|°* < const.-d,,

which tends to 0 as J, > 0. Hence b,=0, if [p|>g, and the theorem is
proved.

3. First application.

Suppose that the positive numbers S;(m), ¢=1,2,...,n; m=0,1,...,
are defined in such a way that logS;(m) is convex and monotonically
increasing in m, and satisfies

log S,
(3.1) lim 085%™ _

m—>00 m

We put
n
S(p) = S(py, P25+ -, Pp) = ]_:IISi(pi) .

Let A be the Banach space of all multi-sequences a={a,} of complex
numbers with the norm

lall = 25 layl/S(p) »
where the sum is taken over all non-negative multi-indices p.
We define for any pair o'={a,’} and a” ={a,”} in 4, a’a” as the
sequence
[ 5 o a;;,,}.
pHp=p
Using the properties of log S, it is easy to see that, for any p’ and p”’
8(0)-8(p" +p") z S(p)-S(p") .
This has the immediate consequence that a’a’’ € 4 and
lla"-a”|| = S(0)-lla’[|la”I} »

i.e. that 4 is a commutative Banach algebra. The element ¢ with a,=1
if p=(0,0,...,0) and a,=0 elsewhere is the identity. «; denotes the
element with a,=1 if p=(0,0,...,1,...,0) (1 in the i-th place), and
a, =0 elsewhere. It is easy to see that e,u,,...,x, are generators. (3.1)
gives easily that (1.1) holds. Hence, by Lemma 1.2, 4 has exactly one
maximal ideal.
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We shall show that the supplementary assumption in § 2 is fulfilled.
Because of the special structure of the “weight-function” S(p) it is pos-
sible to choose A° independently of the ideal in question. We take as A4°
the space of all a={a,} with a finite norm

||

a|® = .
” %Sl(p+q)82(p+q)- B )]

This gives a new Banach algebra, larger than A. The dual space has
the norm

[611°% = sup [b,|Sy(P+q)* - .. Su(Pp+Q) -
P

Using this definition it is easy to see that, starting from an element
b e B of degree =g, it is possible to form a suitable translate p=aPob,
such that g fulfils the properties 1° and 2° in the supplementary assump-
tion. We can also prove that 3° is true for any b € B°. For the right hand
member of the inequality is then

> llaoobll* = 3 sup |byp,l S (p1+9) - - Su(Pr+q)
pol pol=¢ pollpol=q¢ »p

2 sup |bp+p0[S(p+p0) 2 sup| prS(p) .
pollpol=¢ P Iplzg

v

By choosing b’ of degree =g -1 such that its coefficients for |p|<gq—1
coincide with the corresponding coefficients of —b we see that the left
hand member of the inequality 3° gets the value

sup |b,|S(p) .

lplzg
Hence the inequality is true and the supplementary assumption is ful-
filled.

The answer to Problem 1 is thus affirmative for this Banach algebra.

It is possible to treat more general weight-functions S(p) in the same
way. It should also be observed, that, if n=1, then also Problem 2 has
an affirmative answer. This is a trivial consequence of the fact that the
space of all elements in B with a finite degree is weakly dense in B.

4, Second application.
Let « satisfy 0 <o« <1. We form the class of all Lebesgue-measurable
complex-valued function f on R", such that

19 = [eFif(@) do < oo,
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where = (2;,...,%,) and |z|?=3x2 It is easy to see that we obtain a
commutative Banach algebra K with convolution as operation. Algebras
of this kind have been studied in [1]. The space of regular maximal
ideals is homeomorphic to the dual group R® and the Gelfand represen-
tation of an element f is given by its Fourier transform

fay = [ if@) da,

where t = (t;,1s,- . .,t,) and z-t=3F ;. We form the ideal I, which is the
closure of the ideal of all functions f for which f vanishes in a neighbour-
hood of ¢=0. Let 4 be K/I,. K is regular, and hence 4 is a commutative
Banach algebra with a unit e and only one maximal ideal.

It is easy to show that there exists for every j a function in K for which
the Fourier transform coincides with s¢; in a neighbourhood of the origin.
Let a; be the corresponding element in 4. It is included in the maximal
ideal, and hence ||«;™|™ — 0, as m — oc.

We shall show that e,«,,...,«, are generators of A. Let a be any
element of A and let ¢ > 0 be arbitrary. We choose a representative f € K
of a. There exists a f, € K with compact support such that

If=foll < e.

The Fourier transform f, of f, can then be represented as a series
Z cptlpltzp"" . .tnpn .
P
The coefficients c,, tend to 0, as |p| — co. Thus
2 cp(xlplo‘zpz. . .(xnpﬂ
P
converges strongly and has as sum the element a, € A for which f; is a
representative. We can find a finite partial sum a, of the series such that
llay—aoll < .

Hence
llay—all = llay—aoll+IIf =foll < 2¢,

which proves that e,«,,...,«, are generators.
The dual space of K can be interpreted as the class of measurable func-
tions b on R™ such that

ess sup |b(x)|e ¥ < oo

in the sense that if fe K
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The dual space B of 4 is then in the same sense the subspace of functio-
nals on K which vanish on the ideal I,. It can be proved that if b € B,
then it coincides almost everywhere with a function with arbitrarily high
differentiability (in fact an entire function). The derivative Db is given
by aPob. This is shown in the one-dimensional case in [1], Theorem 3.34,
and the n-dimensional proof is similar. The derivative D?b can thus be
obtained by taking an arbitrary function f € K, the Fourier transform of
which coincides with
(#)PH (k)72 . . - (18, )"

in a neighbourhood of ¢{=0, and then form the function

[bwfa-ydy.

Since aP°ob=DPb, the functionals b of finite degree are the same as
polynomials of the same degree in x;,...,%,.

We shall now show that the supplementary assumption in § 2 is ful-
filled. As in the first application, we can choose A° in such a way that
it only depends on g.

We take as 4° the class which is defined in the same way as A but

with e/®® exchanged to )

1+ afe

|*

It is easy to see that this weight-function gives a Banach algebra, larger

than 4.
If b € B is chosen continuous, we have

[blj* = sup [b)e"
while the norm in B° is
[6]|°* = sup [b(2)|(1 + [[9e " .
We shall now prove that if b € B and if j is arbitrary, then

omb
chm ob = € B° 3
ox;™

if m is sufficiently large. Using the elementary inequality
le]* £ 1+|e—1), if a<pf<]1, c real,

with ¢=z[x,, we see that

(4.1) |2]* < |l + | — 2ol | ",

if xe R, xye R, 2y%0.
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We choose f such that
felxl"|f| iz < oo,

f= ()™
in a neighbourhood of ¢=0. Then, by (4.1)

fb(x) ]xol(a—ﬁ)/ﬁf((wo — x)lxol(zx—ﬂ)/ﬂ) dx

< f |b()] P Iwol(zx—ﬂ)/ﬁ exp(lx_xolﬁlxola—ﬂ) If((xo _x)lxol(a—ﬂ)/p>| dx

while

(4.2) el@l®

IIA

sup |b(:r:)]e_|a”|°‘-fe"‘"8 [fx) de = C < o,

where C is independent of z,. Since
[P (20 — ) 20 | PP e
belongs to 4 and has a Fouriertransform which coincides with
(’l:t]- | xol(ﬂ—ot)lﬁ ym
in a neighbourhood of {=0, the left hand member of (4.2) is
o™b

1@l g |- B=lp P
T

T=20

Thus
omb

m
ox

eB, it m(B-x)B2q.

If b of infinite degree, then at least for some j, ;b +0 for every m,
and this together with the above result proves 1° and 2° in the supple-
mentary assumptions.

We shall then prove that 3° in these assumptions is true for every
b e B°. We choose b’ as the polynomial of degree <g—1 for which all
derivatives of order <¢—1 coincide with the corresponding derivatives
of —b. Put b+b'=5"". The inequality to prove is then
(4.3) [p”lI* = ¢ 3 [IDPob”|o*.

Pol lpol=g

But Taylor’s theorem shows that

1
6" (@)] = — (1&]+ .. . +|2,])2 sup [DPob" (&)
q: |Po|=il
€)=z
< const.-e®*. 3 || DPop||0*
Pollpol=¢

which proves (4.3).

Math. Scand. 14 — 14
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Hence the supplementary assumptions are fulfilled, and by Theorem
2.1 the answer to Problem 1 is affirmative.

We shall now apply this to show that the same result is true for the
original Banach algebra K. We formulate this as a special theorem.

THEOREM 4.1. For the Banach algebra K, defined in the beginning of
this section, the answer to Problem 1 is affirmative.

Proor. We turn to the equivalent Problem 1’. If I is included in an
infinite number of regular maximal ideals, we can take a sequence of
such ideals I,,1,,..., and then form I,, I,nl,, I,nI,nI,,... which all
contain I. The regularity of K shows that these are ideals of the co-
dimensions 1,2,3,....

Then we assume that I is included in only a finite number of regular
maximal ideals I,,...,I,, corresponding to points #,i2,...,im. Let I,
v=1,...,m, be the smallest closed ideal, containing I, and not included
in any other regular maximal ideal than I,. We now once more use the
regularity and the fact that Wiener’s Tauberian theorem holds in K
([1], Theorem 1.53). From this it can be seen that the co-dimension of I
is the sum of the co-dimensions of all Z,. Hence the problem is reduced
to the case when I is included in only one regular maximal ideal. We
may assume that the corresponding ¢° =0, otherwise we modify the ideal I
by changing every f € I to fe~%*. This gives a new ideal which obviously
has the same structure and co-dimension as I. Once more using the
Wiener Tauberian theorem, it is easily seen that the co-dimension of 1
in K is the same as the co-dimension of I/I, in A=K/I,, where I, is
defined in the beginning of this section. ([, is the smallest closed ideal
which is only contained in the regular maximal ideal which corresponds
to t=0.) Hence the co-dimension of I/I, is infinite and by our earlier
results in this section, there is for every ¢ >0 a closed ideal in 4 of co-
dimension ¢ and which contains I/I,. The corresponding ideal in K con-
tains I, and it is also of co-dimension g. Hence the theorem is proved.

Let L be the class of functions of the form

n .
2 P, ()™,
y=1
where P, are polynomials in #;,. . .,z, and ¢, are arbitrary real numbers.
The following theorem can be proved as a direct consequence of Theorem
4.1.

THEOREM 4.2. Let K, be a subclass of K. We consider the class C of all
@ belonging to the dual space of K and such that
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f P(x —,) f (7o) dxy = 0
for every fe K. Then two cases may occur:

1. C s finite-dimensional. Then C<L.
2. C 1is infinite-dimensional. Then C contains an infinite-dimensional
subspace of L.

RemARKs. It was demonstrated in [2] that the answer to Problem 2
is affirmative for the algebra A4 in this section if n=1.

If the weight-function ¢/*!” in this section in the case n=1 is exchanged

to the function
emz/s, =0
p(x) = e <0,

then it is easy to see, using a Phragmén-Lindelof theorem, that the class
of all polynomials are not weakly dense in B, the dual space of 4 (cf. a
remark in Hadatrjan [3]). This implies that the intersection of all
closed ideals in 4 with a finite co-dimension is not empty. Hence the
answer to Problem 2 is negative for this algebra A.

The methods in this section are still valid with this new weight-function.
Hence the answer to Problem 1 is affirmative. (This is also a direct
result of Theorem 1 in [2].)

If n=1 and ¢ is exchanged to the function

z|2/8
Qlal®

p(x) =
1 , zz<0,

zx =0

v

then there are no non-constant polynomials in the dual space of 4.
However, B contains other functions than the constant function (in fact
all entire functions g of exponential type 0 for which g/p is bounded).
Hence the answer to Problem 1 is negative (for m = 2) for this algebra 4.
The same is true for the corresponding K, and also Theorem 4.2 is no
longer true.
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