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CONGRUENCES FOR THE COEFFICIENTS OF THE
MODULAR INVARIANT j(r)

HANS-FREDRIK AAS

The modular invariant j(z) is defined by

<) 00 3
Jjr) =2 [ (1 —an)-2 (1 + 240203(7&)90”) , X = e,
1 1

where

O'Ic(n) :d]z dk’ 0'1(71,) = G(n) .

It is well known that the coefficients in the expansion
(@) = X e(n)a

~1

have remarkable divisibility properties. Lehner [7], [8] has shown, a >0,

(1.1) ¢(2%n) = 0 (mod 232+8)
(1.2) c(3%n) = 0 (mod 32a+3) ,
(1.3) c(5%r) = 0 (mod5a+l) |
(1.4) ¢(7%n) = 0 (mod7%).

 The congruences (1.1) and (1.2) have been improved by Kolberg [1], [2]:
(1.5) ¢(29n) = —23a+8 3a-l g (n) (mod23e+13),  a=1, = odd.
(1.6) c(3%) = F 32431091 g(n)/n (mod 322+6)

ifn=+1 (mod3).

Kolberg conjectured that (1.3) and (1.4) could be sharpened in a similar
way, and in this note we shall deduce the following congruence

(1.7) c(5%) = — 391 52+l ng(n) (mod5set?), a>0.
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Hence, especially
¢(5%) £ 0 (mod52+?),

a conjecture of Lehner.
We shall also give a new proof of the congruence

(1.8) ¢(n) = 10no(n) (mod5?), (n[5) = —1,

where (n/p) is Legendre’s symbol. This congruence was proved by
Kolberg in [3], where several other congruences for the modular invariant
can be found.

2.
The following definitions and lemmas are all taken from Kolberg [4].
We put

o

(p(x) = H(l_.xn) >

1
D(x) = pa)tpa?)e. . . pan)rr, k; integral .

Thus the symbol @(zx) is not used to denote one particular function, its
meaning will usually be different in different sections. A function of
this form will be referred to as a @-function.

Let @(x)=3P(n)x™ be the power series expansion of @(x). Further
let ¢ be a given positiv integer. Then we put

D; =3 P(gn+j) a0+ = O {D(x)} .
It follows that
D(x) = Oy+Dy+ ... +Pyy;

we shall refer to this as the g-dissection of @(x). We define

@, D,...D,, D, Dy D,
D@ Pl (P Oy D)
&, D,...0, (D@ jogrz- - Dy

Thus 4; is the complement of @_; in the circulant D.

LemmA. Let q be a prime. Further, in the expression for ®(x) let k;=0
whenever q | j. Then we have

_ @(xq)qﬂ
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LEMMA. Let @(x) =Dy + D, + ...+ D',_, be the q-dissection of D(x)L,
where @(x) is an arbitrary D-function. Then we have

(2.2) ®; = (—1)ab D14,

We shall use 5-dissection on ¢(x). From [5] we have
@) = @ot+o1+ ...+,
(2.3) @3 =gy =0, P = —xp(a®), PPz = —P1%,

which follows from the well-known identities

(p(x) — z (__ 1)nx1/2n(3n+1) (Euler) s

—00

paf = 3 (n+ anery
=Y (—1)*2n+ 1)zine+d  (Jacobi) .
0

In [5] Kolberg also proved
(2.4) Po°+ ¢ = a®)°p(x®) 1 + 11adp(a®)’ .
Elimination of ¢, and ¢, between (2.3) and (2.4) gives
(2.5) ap(@®)Sp(x)8 = V+5V2+15V3+25V4+25V5
where V =axg(x)"p(x?®). For the function ¢(x)® we have
P = (Po+ @1+ @) = Dy + D+ Dy .
(2.6) DD, = — Bxp(ad)®— 2528 p(x?5)8, D, = +5adp(x)3.
(27) B+ DP = pa) S p(ad)i® —9- 525 plat)g(c)ie -
‘ — 954210 p(2%)° p(2°)8 — 11 - 55215 p(225)15 .

Later on, when we write @,, @,, @, it will always refer to the 5-dissection
of p(z)®. We find it convenient to use the notation

(@)% = Do+ Dyp+ . . . + Dy, Dy, = Dy{p(x)%} .

J

Our starting point is the following lemma (see Kolberg [6]): Let p
be one of the primes 2, 3, 5, 7, 13 and put

Py(7) = x(i,v(x”)/qo(x))24/(p~l) .
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Then there exist constants A4,, such that

P
.7(7:) = z Akap(t)k .
k=1
From this lemma we easily get the identity
(8.1)  j(z) = f146:534+63-55f+52-55f24 63-510f3 4 6. 513f4 4 5I5f5 |

where
f = Dy(1) = 2pa®)P ()0 .

We define the operator L by
LY a,x" =3 aga™.
From (2.6) we get
(3.2) Lf-1 = 6—52f.
If ¢ is a prime, we have the obvious congruence

p(x)* = p(x?) (modyg),
and using this and the well-known congruence (see [3])

(3.3) §: no(n)x® = x ]o_o[ (I1-2")# (mod5),
1 1

we obtain from (3.1) and (3.2)

(3.4) Ec(fm)xn = —52> no(n)z® (mod53) .
1

l—lMg

The congruences refer to the coefficients of the power series in #. The
last congruence (3.4) proves (1.7) for a=1.
To complete the proof of (1.7) it remains to show

(3.5) c(5%n) = 3¢-15%-1¢(5n) (mod59+2) .

To do so we shall obtain a formula for Lf¥, k> 0. By direct computation
we find, using the results in section 2,

Do{f} = xp(a®)Pg(x®)~204_,
= 63-525 R .S-6+ 52 54210 R12 §-12 4 63. 56415 R18 §-18 ¢
1 6- 59220 R24 24 4 511525 R30 930
where
R = (%), S = @) .
Hence
(3.6) Lf = 63-5f+ 52542+ 63553+ 6574+ 5ULf5 .
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Next, we will prove the following expressions for Lf¥*, k=2, 3,4:

10 15 20
(8.7  Lf?* =3 5aft, Lf}=35"1afl, Lft=73 5-laft.
1 1 1
Here, and in the following a denotes an unspecified integer. From (2.2)

we get
Q)O{fZ} = 2 R12 S—GOA_Z s

where
A_y = Dy = 3Dy* (P13 Pys + Py Ps) — oo P12 D3 Pys +
+ D15? Dygp® + Dg? Dy® +
+ 20 5( Dy Pys® + P1* Dy + P Dyp® + Pp® Prp) —
= (D12 Py2® + Do D1p® + P33 Dyg® + Py D35°)
and where

Bpy = D+ 403D, + 120, D2 D;, Dy = 60202+ 4D 3D, + 4D 3 D, |
By = 602D2+4D3D, +4D3D,, Dy = PP+ 403D, + 1202 D, D, ,

I

Dy, = 602D 2+ 120,D, D2+ Dyt .
We obtain
Ady= 3 a®f®P16-5u-2(P 4 D3y
tuz0
Sur2t=16

(2.7) and (2.8) yields

t
(_Z)Ot@:lt — z a52‘—2’x6"5’R6‘—6’ Sﬁl’ (D3 —_ 5x3R3 R
1=0

3u

(@05 + (1515)u = R-8u 18u +a-52x5 R6-3u S18u—6 + z abv+2p5v R—3u+6v J18u—6v .
v=2

Hence

Q)O{f2} — z a - 516-5u—21,.50-15u—5¢ P60-18u—6¢ §—60+18u-+6¢ +

t,u=0
5u+2t<16

+ Y @-BI8-Bu-2Ays5-15u-5 RE6—18u—6! §~66+18u+6l 4
t20
u>0
Sut2t=16
+ z a - H18—5u~21+v 4p50—-15u~5+50 R60—18u —6(+6v §—60+18u+6{—6v
=0
u>0
Sut2<16
Buzv=?2
We have thus got a polynomial in f,=f(x5) of degree =<10.
It remains to consider the exponent of 5. We see at once that it is
sufficient to consider the first of the three sums in the last expression

for @,{f?}. Putting
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w=0,¢=8 weget af,?,
u=0,1t=7 - - 52af3,
u=0¢t=6 - - Biafr.
Hence
3 10
(3.8) Lf? = > aft + > blaft.
=1 4

We easily find

LV = 5f,

LV? = 2-5f+ 532,

LV3 = 9f+3-53f24+ 553,

LVA = 4f4+22-52f2 4+ 4- 553 4 57f4

LV5 = f420-52f2440-54f34+5-57f4+ 55 |

LV = 63-5f2+52-54f3+ 63554+ 65954 511f6

Comparing now (2.5), (3.8) and (3.9) we obtain
10
Lf? = Y 5laft.
=1
By the same method we find

(3.10) Lf3 = iafu_lzﬁ 5-laft
1 5

And again from (2.5), (3.9) and (3.10)

15

Lf* = 3 5-laf? .

=1
Similarly we find

6 20
(3.11) Lft = 3 apft+3 6 af!.
=1 7

The simplest way to investigate the six first coefficients in this case
is to use the power series expansion of (3.11). Using Watson’s table [10]
of 7(n), and Newman’s table [9] of #(7), we find

20

Lft = 3 5'-1aft.
We have thus proved (3.7). -
From Lehner [7] we have
(3.12) f% = f1+5f (61 + 52f,%) + 5f*(63f, + 6- 53,2+ 5°f;%) +
+52f3(52f, + 63-5°f,+ 6-5°( 2+ 57f1%) +
+ 52f4(63f, + 52+ 53,2+ 63553+ 6 58f 4 4 510f,5) .
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Noticing that Lf¥f,5=fsLf* we obtain from (3.6), (3.7) and (3.12)
25

(3.13) Lf> = 3 s--laft.
=1

By means of (3.6), (3.7), (3.12) and (3.13) we readily get the following
general expressions for Lf*, k>0,

25 (k—1)-+5r

lLf5(k—l)+r — z 5l+1—kafl’ r=12,
=k
(3.14) 25 (k~D)+5p
LfS(k-l)H) — z 5l—kafl’ p = 3,4,5.
=k
Defining

12
A
k=1
(3.14) implies
(3.15) LT = 5T .

We obtain by (3.1) and (3.2)

Lj = 744 —52f+ 53T .
(3.6) and (3.15) yields

12 = 744 — (63)53f+ 54T
and generally
Lt = 744 — (63)0-150+1f 4 5a+2] |

which implies (3.5).

4.
Proor or (1.8). We put
F = xop(x)?.
5-dissection on (3.1) yields
(4.1) > c(bn+ 2)adn+2 4+ Y c(5n+ 3)adn+3

= ”‘P(x5)“6(¢3{¢(x)6}+(p4{¢ 6}) (mod 5%)
We easily get

(4.2) Da{p(2)8} + Dy{p(2)8} = — 109,3(® + @5°) — 309, (@0 + @57)
1023p(x)3p(2?®)® = 102%p(x)™ (modb5?) .

1]

(4.1) and (4.2) give
(4.3) Y e(hn+2)xd"+2 4+ Y ¢(bn+ 3)x5"+3 = 10F2 (mod 52) .
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We have
@@ p(e) = wp(@)® (mod5) .

5-dissection on (3.4) yields

(4.4) > c(25n+ 5)xn+l 4+ 3 ¢(25n + 20)x5n+4
= 102p(@®)}D{p(@)!} + Pa{p(x)*}) (mod53),
and
(4.5)  Do{p()*} + Dy{p(2)} = Po* + @2 — 8913 (g + @)
p(x) —zp(x)?® (mod5) .

Hence
(4.6) > ¢(25n + 5)at 1+ > ¢(25m + 20)xn+e

= 102F —102F? (mod5%) .
(4.6) gives the following congruences:

(4.7) D {F} = Dp{F?}, @{F} = O{F?} (mod5).
(3.3), (4.3) and (4.7) imply (1.8).
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