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ON SUITABLE MANIFOLDS

ROBERT F. BROWN

1. Introduction.

Let M be a manifold (locally Euclidean connected separable metric
space) and let G(M) denote the group of all homeomorphisms of M
onto itself with the compact-open topology. Pick a point e € M. Fadell
and Neuwirth [2] call M suitable if there exists a continuous map
0: M - G(M) such that 6(x)(x)=e and 0O(e)=identity. We shall show
that when M is compact, suitability is equivalent to the existence on
M of a continuous multiplication which has many of the properties of a
group multiplication. The paper concludes with a definition of suitabil-
ity for differentiable manifolds and a proof that such manifolds are
parallelizable.

2. Equivalent definitions.
The map q : G(M) — M given by q(h)=~h(e) is a fibre space [2] and in
fact a principal fibre bundle [3] with fibre
G (M) = {heG(M) | hie)=e} .

THEOREM 1. 4 manifold M is suitable if, and only if, the bundle
q:G(M)— M is trivial.

Proo¥. Suppose first that q: G(M) > M is trivial, i.e., there is a
homeomorphism v’ such that the diagram

’

M x (l;,,(M) k2 G(M)

proj. q
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commutes. Hence there exists g e G,(M) such that y’(e,g)=1 where
1: M — M denotes the identity homeomorphism. Define y : M x G (M)
- G(M) by y(x,h)=y'(x,hg), then p is a well-defined homeomorphism
and the preceding diagram commutes with y in place of y’. Furthermore,
y(e,1)=1 so if we define 0 : M — G(M) by 0(x)=[p(x,1)]?, then O(e)=
and since

[0()17%e) = (p(@,1))e) = qp(x,1) = =,

we have 0O(x)(x)=e. Conversely, suppose that 0: M - G(M) exists
making M suitable, then define o: M — G(M) by o(x)=(0(z))"1. Now

go(x) = o(@)(e) = (B(x))e) = @

since O(z)(x)=e so go=1 and o is a cross section of the principal bundle
q:G(M)—~ M. Therefore, by the Cross Section Theorem of [4, p. 36],
the bundle is trivial. This completes the proof of the theorem.

We recall from [2] that

Fy, = Fo,z(M) = {(x,y)e M x M | rFy}.

Define nl,7%: M x M -~ M to be the projections on the first and second
factor respectively.

TarEoREM 2. 4 manifold M s suitable if, and only if, there cxists
@€ (M x M) such that p(M x (M —e))=F, , and a'p=n'.

Proor. Necessity follows from Theorem 4 of [2] if we observe that
the homeomorphism defined in the proof of that theorem can be ex-
tended to M x M. For the proof of sufficiency we define ¢ : M — G(M)
by o(z)(y)=n%p(x,y). Since alp=n', it follows that (z,7%p(z,y))=
@(,y) so [o(z)] Y y)=nr%*Yz,y) and o is well-defined. Furthermore,

go(x) = o(x)(e) = n%p(x,e) = n*(x,x) = «

's0 go=1 and ¢ is a cross section of ¢ : (M) -~ M. Again applying the
Cross Section Theorem we have that the bundle ¢ : G(M) — M is trivial
and by Theorem 1 our result is proved.

3. Continuous multiplication.

TaEOREM 3. A compact manifold M is suitable if, and only if, there
exists a map f: M x M — M (write f(x,y)=wxy) such that

(1) we=xa for all xe M,

(2) given a,b € M there exists x € M such that ax=>b,

(3) ay=az implies y=z for all x, y, ze M.
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Proor. Suppose that M is suitable and let ¢ € G(M x M) be a homeo-
morphism satisfying the hypotheses of Theorem 2. Define f(x,y)=xy =
m?p(x,y). Let A denote the diagonal in M x M, then since (M x e)=A,

xe = nlp(x,e) = n¥(x,x) = x
and (1) holds. Given a,be M, let x=n?p—Ya,b), then
ax = nigp(a,x) = nlg(a,n%p~Y(a,b)) = n¥a,b) = b
which verifies (2). If xy=az, then

nPp(r,y) = np(r,z)  and  (v,7%(2.)) = (2.7%p(z,2))

50 @(x,y) =gp(x,z) and since @ is one-to-one, y=2. Thus (3) holds.

Conversely, if a continuous multiplication is defined on M satisfying
(1), (2), and (3), define ¢ : M x M — M x M by ¢(z,y) = (z,xy). If x4,
then ¢(x,y)+¢',y’) for all y,y' e M. If @z, y)=¢(x,z) then axy=2xz
and by (3), y=2z so @ is one-to-one. Given (z,y)e M x M, there is a
z€ M with ¢(x,2)=(x,y), namely that z such that xz=y (property (2))
and thus ¢ is onto. Since M is compact, ¢ is therefore a homeomorphism.
By (1), p(M xe)=4 so

(P(MX (M—e))=F,,

since @ is a homeomorphism. Finally, it is obvious that alp=n! so we
can apply Theorem 2 to complete the proof.

REMARKS.

(a) The proof of necessity in Theorem 3 does not require that M be
compact.

(b) When M is suitable, it follows from Theorem 3 that for every
x € M there is a unique x~! € M such that axl=e.

(c¢) It is easy to see that the function ¢ : M — M given by i(x)=x"1
is continuous since z~!=np-1(x,e).

(d) It was noted in [2] that every suitable manifold is an H-space.
However, this does not imply that every homoeomorphism
@ € G(M x M) satisfying the conditions of Theorem 2 gives rise to
an H-space multiplication by setting xy=n%p(z,y). On the other
hand, if any ¢ € G(M x M) satisfying the conditions of that theo-
rem does exist, then we can obtain another homeomorphism
we QM x M) such that, in addition, for all x e M, y(e,z)=(e,x)
and zy =n%p(x,y) will be an H-space multiplication as well as hav-
ing all the properties previously described.

(e) The example of the 7-sphere shows that not all suitable manifolds
admit a group multiplication.
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4. Differentiable manifolds.

We define a differentiable manifold M to be suitable if there is a diffeo-
morphism ¢ : M x M —~ M x M such that @(Mx(M—e))=F,, and
mlg=nt. This definition makes the multiplication defined in Theorem 3
differentiable.

An example due to Milnor [1] shows that the classical result that all
Lie groups are parallelizable can not be extended to differentiable mani-
folds which admit an H-space multiplication. A Lie group is a suitable
differentiable manifold since we can set ¢(x,y)=(x,xy) and ¢~Y(x,y)=
(x,z7'y) (compare [2]). On the other hand, a suitable differentiable
manifold is an H-space by Remark (d).

TurEOREM 4. A sustable differentiable manifold is parallelizable.

Proor. Let (v(M),p, M) denote the tangent (plane) bundle of a suit-
able differentiable manifold M. We must exhibit maps « and f such
that the diagram

o

(M) M xp~e)
| B

p proj.
| ;

commutes and « and f§ are inverses of one another. Let x € M and let
f be a real function defined on a neighborhood of e and differentiable at e.
We define a real function (xvf) in a neighborhood of x by

(@v)y) = f(22eY=,y)) .

. Since ¢ is a diffeomorphism and (xvf)(x)=f(e), the function (zvf) is
differentiable at x. For 7', € p~!(x), we set

XT,) = @&T,), where (FT,)(f) = Th(ev)) .

Similarly, for x € M and g a real function defined on a neighborhood of
and differentiable at x, we define (xAg), a real function defined on a
neighborhood of ¢ and differentiable at e by (zAg)(z) =g(n*p(x,2)). Then
for T, € p~(e), let

ﬂ(x9 Te)(g) = Te(x Ag).

Now take x€ M, T, € p~Y(x), f a real function defined on a neighbor-
hood of x and differentiable at x, and y in the domain of (xvf), then
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BlaT(f) )] = Bla, Tl v f)(y)]
= fla. T (=29~ (2.y)]
= Tz rf)(n%p~z,y))
To(f)(72p(@, 7 Y(x,y))) = To(f)y)
so fu=identity. By a similar computation, xS =identity. It is obvious
from the definition that « makes the diagram commute and in order to

see that § also makes the diagram commute, we observe that 7,(zA )
is a vector tangent to the manifold at «.

i
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