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MINIMAX THEOREMS
AND CONJUGATE SADDLE-FUNCTIONS

R. T. ROCKAFELLAR?!

1. Introduction.

The relative interior of a convex set 4 in R™, which we denote by
ri 4, is the interior of A with respect to the smallest affine manifold con-
taining it. We denote the closure of 4 by clA. It is well known that
cl(rid)=clA and ri(cl4)=rid, and in particular that rid +@ when
A+0.

By a saddle-element on R™ x R™ we shall mean a triple {4, B, K}, where
A< R™ and Bg R™ are non-empty convex sets, and K is a real-valued
function on A4 x B, such that K(z,y) is convex on B for each z € 4 and
concave on 4 for each y € B. If A and B are relatively open, we say
{4,B,K} is relatively open. We say {A,B,K} is closed (resp. completely
closed) if the pair {B, K(x,-)} is a closed convex function in the sense of-
Fenchel [1] for every x erid (resp. x € 4), and {4,K(-,z)} is a closed
concave function for each y eriB (resp. y € B). We say {4',B’,K'} is
equivalent to {4,B,K} if A’=A, B'=B and K’ agrees with K on 4 x B
except perhaps at ‘“‘corner points”, i.e. points (x,y) € A x B such that
xérid and y ériB.

The saddle-elements studied in minimax theory have almost always
been ones with 4 and B closed, and K(x,y) upper semi-continuous in x

and lower semi-continuous in y. Every such saddle-element is completely
~ closed (but not conversely). The best known minimax theorems deal
only with the case where 4 and B are actually compact. For the sake of
applications to convex programming, however, work has also been done
on the non-compact case (e.g. see [4], [5], [6]). In this paper we shall
study saddle-elements which might not even be completely closed, but
merely closed. We hope to convince the reader that, in many ways, this
is really the natural category for minimax theory.

Being “‘closed” is, as we shall prove, a constructive property in the
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following sense. Each relatively open saddle-element determines a unique
equivalence class of closed saddle-elements, and conversely.

A completely closed saddle-element is necessarily the sole member of
its equivalence class. The converse is not true. As an example, let ™=
R=R", A=[0,00[, B=]0,00[, and K(x,y)=a/y on A x B. Then {4,B,K}
is the sole member of its equivalence class, but {B, K(0, -)} is not a closed
convex function. This example also shows that {4,B,K} can be closed
without 4 x B being closed. An interesting and typical example of a
non-trivial equivalence class on R x R is the set of closed saddle-elements

{{o,1], [0,1], K;}, 0=<as1,

where K,(x,y)=a¥ except when z=0=y, K,(0,0)=A4.
Let {4,B,K} be any closed saddle-element on R™ x R", and consider
the functions L and L defined on all of R™ x R" by

L(u,v) = inf sup{(z,u) + (y,v) — K(x,¥)} ,
(1.1) zeA yeB

L(u,v) = sup lnf{(xau) +(y,v) _K(x’y)} >
yeB zeA

where (.,.) denotes inner product. We shall see that L and L depend
only on the equivalence class of {4,B, K}, and that the set of (u,v) where
L and L are both finite is of the form C x D, where C' and D are non-
empty convex sets in B™ and R", respectively. Furthermore, it will be
proved that {C,D,L} and {C, D, L} are equivalent closed saddle-elements
on R™x R". Any saddle-element in this equivalence class will be called
a conjugate of {A,B,K}. It turns out that {C,D,L} is conjugate to
{4,B,K} it and only if {4,B,K} is conjugate to {C,D,L}. Thus the
conjugate relation among closed saddle-elements is symmetric, and one-to-one
up to equivalence.

A closed convex function {B,f} on R" can always be viewed as a closed
saddle-element on R®x R”, where R is the degenerate zero-dimensional
vector space. In this case, the conjugate relation defined above reduces
to the one discovered by Fenchel [1].

The notion of conjugacy has obvious applications to minimax theory.
If the closed saddle-elements {4,B,K} and {C,D,L} are conjugate to
one another, we have
(1.2) —L(0,0) = sup inf K(z,y) = inf sup K(z,y)

xred yeB yeB zed
if 0eriC and 0e D, or if 0 € C and 0 eriD, because the conjugates of
{4,B,K} are all equivalent. We shall see that, if both 0eriC and
0 eriD, then the minimax in (1.2) is actually attained at a saddle-point.
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Our proof of this fact depends on first characterizing saddle-points using
the concept of a subgradient of a convex function. Notice in particuiar
that ¢ =R™ and D= R" by their definition, when 4 and B are compact
and K is continuous on 4 x B. Hence the minimax results just described
include Kakutani’s extension [3] of the von Neumann minimax theorem.
In the general case as well, it will be shown that C' and D can be charac-
terized directly in terms of {4,B,K}. Thus the minimax results can be
applied without having to calculate L and L (which would beg the ques-
tion).

In proving the facts we have outlined, it is useful to translate every-
thing about saddle-elements into the context of what we call “saddle-
functions” on R™x R™. These are everywhere-defined and possibly in-
finite-valued, but are still concave-convex in a natural sense. Such func-
tions have also been put to good use in minimax theory by Moreau [4].
For the most part, the switch to saddle-functions is a matter of notational
convenience. Properties of saddle-functions have to be studied in detail,
in all events, because such functions arise in (1.1) as L and L. Since
theorems about saddle-elements turn out to be easy consequences of
theorems about saddle-functions, it is simpler to concentrate almost
entirely on the latter. The saddle-function theory has other advantages
of its own. For instance, it enables us to answer questions about the
cases in (1.1) where L and L are not both finite.

2. Convex functions with infinite values.

A convex function on R" is an everywhere-defined function f with
values —oo = f(x) £ + o0, such that

(2.1) ;) | ye B, pe R, fy) s u}

is a convex set in R®+1. This condition is satisfied if and only if the in-
equality
(2.2) SOy +(1=Ays) = M (1) + (1= 1) (y2) for 0<i<1

holds whenever f(y,) < + o and f(y,) < +o. The convex set

domf = {y | f(y)< + oo}

is called the effective domain of f. If f(y)> — oo for all y, and f(y) < +
for at least one y, we say f is proper.

Given a finite-valued convex function on a non-empty convex set
C < R", one can always extend it to be + co outside of C, and obtain in
this way a proper convex function on R™ whose effective domain is C.
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Thus the pairs {C,f} which are convex functions in the sense of Fenchel
correspond one-to-one with the proper convex functions on R" in the
present sense.

The following results were all proved by Fenchel in [1] and [2] (except
for trivial extensions to the improper case). We are summarizing them
here in our different notation for convenience in later sections.

The closure of a convex function f on R is the convex function clf
on R* which is the supremum of all the affine functions 2 £f (with the
constant functions — oo and + o treated as affine). Obviously

(2.3) cf = f, cl(clf)) =clf, and clf;=clf, if f, = f,.

If clf=f, we say f is closed. From the definition, one has

(2.4) (clf)(y) = sup, inf, {(y—2,0) +/()} forally.

It is also known that the formulas

25 (df)y) = liminff(2)

z—>Y

(2.6) (clf)(y) = limf(A7+ (1-2)y)  for any §j eri(domf),
Ao

are valid whenever f(z)> — oo for all z, or whenever y € cl(domf). In
particular, a proper convex function is closed if and only if it is every-
where lower semi-continuous. One always has

(2.7) (elf)y) = fly)  foryeri(domf).
On the other hand,

(28)  (cf)(®) =f(y) = +oo  for y ¢ cl(domf)

provided f does not have the value —oo. If f(y)= — oo for some y, then
(clf)(y)= —oo for all y. If f is identically + oo, then so is clf. Thus the
only improper closed convex functions are the constants —oco and + .
If f is proper, then clf is proper and coincides with f except perhaps at
relative boundary points of domf, as (2.7) and (2.8) indicate. The values
of clf at such relative boundary points can be found from (2.6) making
use only of the values of f on ri(domf).

A vector ¥ € R* is said to be a subgradient of a convex function f at
a point j if
(2.9) fy) z f@+@w-99) forallyeR".
The set of subgradients of f at ¥ is a closed convex set which we denote
by of (7). If f is finite and differentiable at ¥, then of(y) contains exactly
one vector, which is the ordinary gradient Vf(7). In general,
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Tt

(2.10) (f)g) + 0  if jéri(domf).

The infimum of f on R” is attained at 7 if and only if 0 € of (7). If f
is not identically + oo, one automatically has 7€ domf in this case.
Notice from the formulas of the last paragraph that

(2.11) inf, f(y) = inf, (clf)(y) = inf{f(y) | y € ri(domf)}.

For concave functions on R, the facts and definitions which will be
needed are obtained from those above by interchanging < with =, +
with — oo, and infimum with supremum, whereever these occur.

3. Saddle-functions with infinite values.

A saddle-function on R™ x R™ is an everywhere-defined function K with
values —oo < K(z,y) < + o0, such that K is convex in y for each z, and
concave in z for each y. It is always true that

(3.1) sup, inf, K(x,y) < inf, sup, K(z,y) .

The two quantities in (3.1) will be called the lower and wpper saddle-values
of K, respectively. When they are equal, we speak simply of the saddle-
value. A pair (Z,7) in B™ x R is called a saddle-point of K if

(3.2) Kz, y) = K(,y) £ K(Z,y) for all x and ¥ .

If such a saddle-point exists, then K has the saddle-value K(%,7).
We shall say that a saddle-function K, is a minimax extension of a
saddle-function K, if

(3.3)  sup, {Ky(x,y)—(z,u)} £ sup,{K,(x,y)—(x,u)} foralluandy,
inf {Ky(x,y)—(y,v)} = inf, {K,(x,y)—(y,v)} forallzandv.
This implies in particular that
sup, inf, K; < sup, inf, K, < inf, sup, K, < inf, sup, K, ,

and that every saddle-point of K, is a saddle-point of K,. The minimax
extension relation is obviously a weak partial ordering of the set of all
saddle-functions on E™x R*. If K, and K, are minimax extensions of
each other, we say they are minimax equivalent. Then, for each u € R™
and v € R", the saddle-functions

Kl(x:y)"(x>u)—(y>v) and Kz(x,y)"(%u)—(?/,v)

have the same upper and lower saddle-values and the same saddle-points.
A saddle-function will be called closed if it is minimax equivalent to all
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its minimax extensions. The definitions suggest that such saddle-func-
tions are more likely to have saddle-values and saddle-points than arbi-
trary ones, and thus will be better to work with when developing mini-
max theorems. In the next section we shall study the existence and
properties of closed minimax extensions. Some basic facts, needed for
this purpose, will be proved here.

For each saddle-function K we define

dom, K = {x | K(x,y)> —oc for all y},
domy K = {y | K(z,y)< + oo for all z},
dom,'K = {z | K(x,y)> —oo for all y e dom,K},
dom,’K = {y | K(x,y)< +oo for all x edom, K} .

(3.4)

Trivially, dom; K cdom,’ K and dom, K cdom,’ K.

LemmA 1. The four sets in (3.4) are convex. For each x € ri(dom, K),
the effective domain of the convex function K(x,-) is domy, K. For each

y eri(dom, K), the effective domain of the concave function K(-,y) is
dom," K.

Proor. By definition, dom, K is the intersection of the (convex) effec-
tive domains of the various functions K(z,-) as z ranges over B™, and
hence it is convex. The convexity of the other three sets follows likewise.
Now suppose that z=4x;+(1—1)x, where 0<i<1l and x, € dom, K.
Then K(z,,y) > — o for all y, so, by the concavity of K in the first argu-
ment,

K(z,y) =z AK(2y,y)+ (L —A)K(24,y) = + o0

whenever K(z,,y)= +oco. Therefore dom K(x,-)cdom K(x,,). In par-
ticular, given any z € ri(dom, K) and any x, in the smallest affine mani-
fold containing dom, K, one can choose an z, € dom,; K such that z=
Axy+ (1 —A)x, where 0 <A< 1. Thus the second assertion of the Lemma
is true. The third assertion has a parallel proof.

If dom; K +0 and dom,’ K 0, we say K is lower proper. The restric-
tion of K to the product of the relative interiors of dom; K and dom,’ K
is then a (finite-valued) relatively open saddle-element on B™ x R* which
will be called the lower kernel of K. Similarly, if dom,"K+¢ and
dom,K+0 we say K is wupper proper. The restrictions of K to
ri(dom,’ K) x ri(dom, K) is then the upper kernel of K. In dealing with
the improper cases, it is convenient to introduce an “empty saddle-ele-
ment of type — o and an empty saddle-element of type +o”’. We say
that the lower (resp. upper) kernel of K is — oo if dom, K =0 (resp. if
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dom," K =0, but dom,K +0); it is + oo if dom, K +0, but dom,’ K=¢
(resp. if dom, K =¢J). This terminology will be justified later.

A saddle-function K will be called simple if its lower and upper kernels
are the same. Then one can speak of the kernel of K, or of K being proper,
without having to distinguish between “lower”” and “upper”. According
to the definitions, the saddle-functions which are simple and proper are
the ones such that

(3.5) dom;’K < cl(dom,K) = ¢ and dom, K < cl(dom,K) % 0.

The kernel of K is then, of course, the same as the restriction of K to
the relative interior of (dom, K) x (dom, K).

Not every saddle-function is simple. For example, let B™=R" and
define K(x,y)= + o when (z,y) >0, K(x,y)=0 when (z,y)=0, K(z,y)=
—oo when (x,y)<0. Then K is both lower and upper proper, but not
gsimple. The proof of Lemma 1 actually shows, however, that dom,’ K =
dom,; K and dom,” K =dom, K whenever dom; K and dom, K both have
non-empty interiors. Thus K is always simple and proper in this case.
Non-simple saddle-functions are therefore rather freakish.

Given any (non-empty) saddle-element {4,B,K} on R™x R", we can
always set

+ o0 if re 4 and B,
(3.6) K(x’y):{—oo i oEd. Ve

Then K becomes a simple proper saddle-function, with
dom; K = A4 = dom,’K, dom,K = B = dom,’K .

The upper and lower saddle-values and saddle-points of this saddle-
function are the same as those of {4,B,K} in the ordinary sense. This
would also be true if, instead of (3.6), one sets K(x,y)=—oc if x¢ 4
_and ye B, K(x,y)= +oo if y ¢ B. The second saddle-function is mini-
max equivalent to the first one.

For each saddle-function K on R™ x R", we denote by cl, K the func-
tion on R™ x R" obtained by closing K(z,y) as a concave function of =,
for each y. Similarly, cl, K denotes the function obtained by closing
K(x,y) as a convex function of y, for each . Obviously

(el K)(z,y) = K(z,y) = (cl K)(@,y)
for all  and .

Lemma 2. Let K be any saddle-function. Then cl; K and cl, K are simple
saddle-functions, and both are minimax extensions of K. The kernel of
cly K is the upper kernel of K, and the kernel of cly K is the lower kernel of K.
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Proor. For each z, (cl,K)(x, ) is the closure of the convex function
K(x,-), and hence is convex. From the formulas in § 2 we have

3.7) (clb K)(zx,y) = — o0 if x¢édom, K,
' (clyK)(z,y) = liminfK(x,2) > —oc0  if xcdom,K .
z—>y

To show now that cl, K is concave in its first argument, fix any y and
choose any x,, x,, 4, with

cly, K(x,,y) > —oo, clyK(xy,y) > —o0, 0O<i<l.

Then z, and x, belong to dom, K by (3.7), and hence so does =24z, +
(1—=A)z,. The functions K(x,, -), K(x,, -) and K(x, -) thus never have the
value —oco. It follows from (3.7) and the concavity of K in its first
argument that

(cly K)(@,y) 2 lim inf[AK (2,,2) + (1 - A)K (23,2)]

2>y

v

Alim inf K(%,,2,) + (1 —A) lim inf K(2,,2,)

21>y 22—>Y

= Mely K)(zy, y) + (1 —2)(cl, K)(w,,y) -
Therefore cl, K is a saddle-function. If K is lower proper, then

dom; K = dom;cl, K = dom, cl, K ,

3.8
(3:8) dom,’ K < domycl, K = dom,’'cl, K < cl(dom,’ K),

by (3.7) and Lemma 1. In this case cl, K is therefore simple and proper.
Furthermore, (cly K)(x,y)=K(x,y) by Lemma 1 and formula (2.7) when
z eri(dom, K) and y € ri(dom,’ K). Thus the kernel of cl, K is the lower
kernel of K in this case. If dom; K +0 but dom,’ K =0, (3.8) still holds
if dom,’cl, K is omitted. Then K and cl, K are both simple saddle-
functions with kernel + . If dom, K =0, that is, the lower kernel of K
is ~ oo, then (cl, K)(x,y)= — oo for all x and y. Then cl, K is simple and
has kernel —oc. Finally, we must verify that cl, K is a minimax exten-
sion of K. The first inequality in (3.3) is trivially satisfied for K,=cl, K
and K,=K, because cl, K < K. The two sides of the second inequality
are actually equal in all cases, in view of (3.7).

Lemma 3. If K, is a minvmax extension of K, then cl, K,<cl, K, and
cl, Ky2cl, K.

Proor. The second inequality follows from the second inequality in
(3.3) via formula (2.4) for the closure of a convex function. The first
inequality is its concave counterpart.
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Lemma 4. Let K be a simple saddle-function on R™x R*, and let K =
clyclL,K and K=clyc, K. If K has the kernel —oo, then K=K = — .
“If K has the kernel + oo, then K=K = +co. If K is proper, then the values
of K and K depend only on the kernel of K, and there exists a pair of non-
empty convex sets C < R™ and D< R™ such that K(x,y) and K(x,y) satisfy
the relations wn Table 1 for various locations of {x,y) with respect to C' x D.

; riD } D\u1iD ] cID\.D \ Rv\clD
riC —oo<K=K<ox ~oco<K=K=o00
o\riC — o0 <K<K <00|— 00 <K<K =oo|
clo\.C —co=K=<K<oo
Bm\clC|~o0o=K=K <00 —oo=K<K=00

Table 1.

Proor. Suppose that K is proper, and choose any z € ri(dom, K) and
g eri(domy, K). Let C be the effective domain of the closure of the proper
concave function K(-,y), and let D be the effective domain of the closure
of K(%,-). By the concave analog of formula (2.5), the effective domain
of K(-,y) lies between riC' and C. Therefore

(3.9) ZzeriC € dom; K = dom;cl,K < C

by Lemma 1 and the first half of (3.8). Since K is simple, it follows
now from Lemma 1 and the second half of (3.8) that

(3.10) geriD € dom,K ¢ domycl, K = D .

Furthermore, the relative interior of the effective domain of the concave
function (cl, K)(-,y) is riC for every y by (3.7) and (3.9). The closure
. formulas for concave functions, along with (3.9) and (3.10), therefore
yield

- + o0 if yé&D,
Ri) - | .
(3.11) — o0 if x¢clC, yeD,
K(x,y) < +oo if yeD,
(cly K)(z,y) if zeriC,

(3.12)  K(z,y) =

lim(cl, K)(AZ+ (1-A)z,y) if zeclC.
iy

But Az + (1 — )z belongs to riC =ri(dom, K) for 0<i<1 when z e clC,
so the relative interior of the effective domain of the convex function
K(AZ+ (1—A)z, ) is then ri(dom,K)=riD by Lemma 1 and (3.10). Ap-
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plying formulas (2.6) and (2.7) for the closure of this convex function,
and substituting into (3.12), we get

K(z,y) if zeril, yeriD,
lim K(AZ + (1 — A)z,y) if zeelC, yeriD,
Ay 0

(3.13) K(x,y) = {limK(z,ug+(1—p)y) if zeriC, yeelD,
122"
lim lim K(AZ + (1 — ), uj + (1 — p)y)
N0 uy

o if zecll, yeeclD.

The second case of (3.13) implies via (3.10) and Lemma 1 that

Kxy) = —o ifxéC, yeriD,

.14 —
(3.14) Kz,y) > — if xeC.

If we continue (3.11), (3.13), and (3.14) for K together with the dual
results for K, we get all the relations in Table 1 except one: that
K(x,y) < K(»,y) when z e O\riC and y € D\riD. The other relations
imply, however, that cl, K =cl, K. Since cl, K = K by the definition of X,
we therefore have K < K. The argument in the cases where K is improper
is elementary, as in the proof of Lemma 2.

4. Closed saddle-functions.

The three theorems in this section answer in detail questions about
the existence and properties of minimax equivalence classes of closed
saddle-functions.

THEOREM 1.

(a) Each minimax equivalence class E of closed saddle-functions on
R™x R is an “interval” in the following sense. There exist unique saddle-
functions K € E and K € E, such that a saddle-function K belongs to E if
and only if K< K<K. Moreover cl, K=K and clyK=K for every K €k.

(b) In order that a given pair of saddle-functions K and K be the unique
lower and wpper members, respectively, of some minimax equivalence class
of closed saddle-functions, it is mecessary and sufficient that cl, K =K and
c,K=K.

(¢) If K and K are the unique lower and upper members, respectively,
of a mimimax equivalence class of closed saddle-functions, then either
K=K=—co,or K=K= 400, 0or K and K are both proper and they satisfy
the relationships in Table 1 for

(41) C =domK = dom;K and D = dom,K = dom,K .
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ProoF. Suppose first that K and K are saddle-functions such that
cl, K=K and cl,K =K. Then each is a minimax extension of the other
by Lemma 2, so K and K belong to the same minimax equivalence class
E. By the definition of minimax equivalence, every saddle-function K
such that K < K <K must also belong to E. Assume that K is any
minimax extension of K. Lemma 3 implies

K =cLK < c,K < K £ c,K £ c,K = cl;(c,K) = K,

and hence that K € E. Therefore £ consists precisely of the saddle-func-
tions K such that K <K <K, and all of these are closed. Conversely,
suppose F is a minimax equivalence class of closed saddle-functions and
take any K € E. Since K is closed, the functions K=cl; K and K =cl, K
again belong to E. Hence cl;K=cl; K=K and cl,K=cl,K=K by
Lemma 3, so the argument in the first part of the proof can be applied
to K and K. This proves (a) and (b). Next observe that, if K and K
satisfy the condition in (b), then both are simple saddle-functions by
Lemma 2. Furthermore, cljcl,K=cl; K=K and clyel, K=cl,K=K.
Part (c) is therefore a consequence of Lemma 4.

CoROLLARY 1. Hvery closed saddle function is simple. In fact
dom;"K = dom; KX and domy, K = dom,K

for any closed saddle-function K, and these convex sets depend only on the
mintmax equivalence class containing K. Moreover, if K is closed and not
tdentically — oo or + oo, then K is proper and

sup,inf, K(z,y) = sup{inf {K(z,y) | y € dom, K} | x € dom, K},

(4.2) | , Ef
inf sup, K(x,y) = mf{sup {K(x,y) |z edom; K} | y € dom, K} .

Proor. Let K and K be the lower and upper members of the minimax
equivalence class containing K. Then dom, K =dom,’ K =C and dom, K
=dom," K =D in part (c¢) of Theorem 1. This verifies all of the corollary
except (4.2). The function K’ defined by K'(z,y)=K(x,y) for x e C
and ye D, K'(x,y)=+ if e Cand y ¢ D, K'(x,y)= — oo if z ¢ C, also
lies between K and K according to Table 1, and hence it is minimax
equivalent to K. The first equation in (4.2) is a consequence of the defi-
nition of minimax equivalence, inasmuch as the right side is just the
“supinf” of K'. The other equation follows similarly.

CoroLLARY 2. 4 saddle-function K is closed if and only if K is minimazx
equivalent to cl; K and cl, K.

Proor. The necessity of the condition is asserted by part (a) of Theo-

Math. Scand. 14 — 11
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rem 1. On the other hand, if cl; K and cl, K are minimax equivalent,
we have

cly(cl; K) = cly(cl, K) = cl, K, cly(cl, K) = cl (¢, K) = ¢, K,

by Lemma 3. Hence K=cl,K and K =cl, K satisfy the hypothesis of
part (b) and consequently are closed. If K is minimax equivalent to
cl; K and cl, K, it must then be closed as well.

CoroLLARY 3. 4 saddle-function is closed and proper if and only if it
satisfies the following five conditions:

(a) dom; K+0 and dom,K %0,

(b) K(x,y)= + o0 when x € dom; K but y ¢ cl(dom, K);

(¢) K(x,y)= —oco when y € domy K but = ¢ cl(dom, K);

(d) for each x e ri(dom, K), K(x, ) is a closed (proper) convex function;
(e) foreach y eri(dom,K), K(-,y) ts a closed (proper) concave function.

Proor. The necessity of the conditions follows from part (¢) of Theo-
rem 1. For the sufficiency, we note first that conditions (a), (¢), and (e)
imply, via Lemma 1, that dom,cl, K=dom; K. Hence

inf, {K(x,y) — (y,v)} = inf, {(cl, K)(x,y)—(y,v)} forallw

trivially when « ¢ dom, K, both sides then being —occ. Furthermore, (b)
and (d) imply that for x € dom; K the convex functions K(x,-) and
(cl; K(z, ) both have ri(dom, K) as the relative interior of their effective
domains, and that they agree there. Since the infimum of a convex
function f over R" is the same as the infinum of f on ri(domf) (see (2.11)),
the above equation must also hold for x € dom, K. But it is always true,
by the concave analog of (2.11), that

Supw{K(x7 y) - (x>u)} = Sup, {(CIIK)(LU,?/) - (x>u)}

for all y and u. Therefore cl; K is minimax equivalent to K. By a similar
argument, so is cl, K. Hence K is closed by Corollary 2, and proper of
course by condition (a).

THEOREM 2. Every saddle-function K has closed minimaz extensions.
In order that all the closed minimax extensions of K be minimax equivalent,
however, it is both necessary and sufficient that K be simple. If K is simple,
the lower and wpper members of its class of closed minimax extensions are
K=clyel, K and K =cl,cl, K, respectively.

Proor. If K is simple and proper, the functions K=cl,cl, K and
K =cl,cl, satisfy the relationships in Table 1, according to Lemma 4.
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It follows from these relationships that cl; K=cl; K and cl, K =cl, K.
The latter is also true trivially by Lemma 4 when K is simple but im-
proper. Since c¢l; K=K and cl,K=K by definition, K and K must
determine according to part (¢) of Theorem 1 a minimax equivalence
class of closed minimax extensions of K. Assume now that K’ is an
arbitrary closed minimax extension of K, and let K’ and K’ be the lower
and upper members of its class. By Lemma 3 and part (a) of Theorem 1
we have cl,K <cl,K'=K' and

K = c,E = clyel,(cl,K) < clye, X' = cl,K' = K’ < K'.

Similarly, K’ < K. Thus K belongs to the class determined by K and K.
This proves the “if”’ part of the second statement of the theorem, and the
third statement, too. If K is any saddle function, cl, K is a simple mini-
max extension of K by Lemma 2. Thus cl, cl,(cl, K) =cl; cl, K is a closed
minimax extension of cl, K, and hence of K, by the part of the theorem
we have so far finished proving. Likewise, clycl; K is always a closed
minimax extension of K. But the kernels of clycl, K and clycl, K are,
from Lemma 2, the lower and upper kernels of K. Closed saddle-functions
in the same minimax equivalence class must have the same kernel, ac-
cording to part (c) of Theorem 1. Hence the closed minimax extensions
clycl, K and clyely K are not in the same class when K is not simple.

THEOREM 3.

(a) Al the saddle-functions in a minimax equivalence class of closed
proper saddle-functions have the same kernel. Conversely each relatively
open saddle-element is the kernel for exactly one such class.

(b) The set of saddle-elements {dom, K,dom, K, K}, as K ranges over a
minimax equivalence class of closed proper saddle-functions, forms a (com-
plete) equivalence class of closed saddle-elements. Conversely, every class of
the latter sort arises from a unique class of the former sort.

Proovr. It is immediate from part (c¢) of Theorem 1 that closed proper
saddle-functions K and K’ in the same minimax equivalence class have
the same kernel, and that

{dom,K, domy,K,K} and  {dom,K’, dom,K',K'}

are equivalent closed saddle-elements. Conversely, given a relatively
open saddle-element {4,B,K} we can define the values of K outside of
A x B to be those in (3.6). Then K is a simple proper saddle-function.
According to Theorem 2, cl;cl, K and clyel; K determine the class of
closed minimax extensions of K, and their kernel is the same as that of
K, in other words it is {4, B, K}, by Lemma 2. If K’ is any other closed



164 R.T. ROCKAFELLAR

saddle-function with this kernel, then cl,cly K'=cl,cl, K, because these
functions depend only on the kernel of a simple saddle-function, by
Lemma 4. But K’, being closed, is minimax equivalent to cl;cl, K'.
Hence it belongs to the class of closed minimax extensions of K. This
proves that only one closed class has kernel {4,B,K}. To finish the
proof of (b), we now take any closed saddle-element {4,B, K} and define
K outside of 4 x B as before. This time K is a closed proper saddle-func-
tion in virtue of Corollary 3 to Theorem 1. Of course {dom, K,dom, K, K}
is just {4,B,K}. Thus every closed saddle-element arises from a closed
proper saddle-function. The completeness and uniqueness in (b) now
follow from part (a).

5. Conjugates of closed saddle-functions.

For each saddle-function K on R™ x R", the functions L and L on
R™x R™ defined by

(5.1a) L(u,v) = sup,inf, {(z,u)+ (y,v) — K(z,y)},
(5.1b) L(u,v) = inf sup,{(x,u)+ (y,v)— K(z,y)},
will be called the lower and upper conjugates of K, respectively.

THREOREM 4. Let K be any closed saddle-function. Then the lower and
upper conjugates L and L of K are again saddle-functions, and they depend
only on the minimazx equivalence class containing K. In fact L and L are
the lower and upper members respectively, of a minimax equivalence class
of closed saddle-functions. If L is any member of this equivalence class, the
lower and wpper conjugates K and K of L are in turn the lower and upper
members of the closed minimax equivalence class containing K.

Proor. For each v, L(-,u) is an infimum of affine functions on R™ x R"
and hence is a closed concave function. Now fix any u € R™. Choose
any v;,v,, 4y, and u, such that L(u,v,) <p, € R and L(u,v,) Spu, € R. To
prove the convexity of L(u, ) we must show that L(u,v) < Au, + (1 —A)uy,
where 0 <A< 1 and v=4v;+ (1 —4)v,.

Take an arbitrary ¢>0. By the definition of L there exist vectors x,
and z, such that

(5.2) sup, {(x, w) + (4,v;) — K(x,9)} < py+e,
S“Py {(x27u) + (y7'02) ——K(.’EZ,Z/)} = Uot+e .

These inequalities imply that K(x,y)> — o and K(x,,y)> — o for all y.
Hence, for x=Ax, + (1 —A4)z,, the inequality
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K(z,y) =2 AK(xy,y)+ (1 =) K(2p,y)

makes sense and is valid for all y by the concavity of K in its first argu-
ment. Consequently,
(x,u) + (y)v) "_K(xay)
g Z[(xl’u) + (y’ Ul) - K(xlﬂ 3/)] + (1 - A)[(xz’ u) + (ya 'Uz) - K(x2: ?/)]
= Mug+e)+(1—2)(ust+e)
for all ¥ by (5.2). This shows that, for every &> 0, there exists an x such
that
(5.3) sup, {(@, %)+ (5,0) — K(@,9)} £ A+ (1= Dpgte .
The left side of (5.3) is at least as large as L(u,v), so this is enough to
complete the proof that L is a saddle-function. The proof for L is parallel.

By the definition of minimax equivalence, the values of L and L depend
only on the class containing K. We shall now show that

(5.4) c,L=L and c,L=0L.

This will verify the second assertion of the theorem, in view of Theorem
1b. Applying formula (2.4) for the closure of a convex function, we get
(5.5) (clyL)(w,v) = sup,inf, {(z,v —w)+ L(u,w)} .

If we substitute the formula for L into (5.5) and rearrange terms, the right
side becomes

= sup,inf, inf, sup, {(z,v —w)+ (x,u) + (y,v) — K(2,y)}

(6.6) SUPzinfoc{(x,u) +(z,v)— supwinfy {(z —y,w)+ K(x,y)}} ’

But the inner ‘supinf” is (cl, K)(x,z), according to formula (2.4) again,
and cl, K is minimax equivalent to K because K is closed. The second
~half of (5.6) thus gives L(u,v). One can verify the other part of (5.4)
in the same way. For the proof of the last statement in the theorem,
we note that the upper conjugate K of any L minimax equivalent to L
is the same as the upper conjugate of L. Hence it is given by

K(x.y) = inf sup,{(x,u) + (y,v) —inf,sup, {(z,%) + (w,v) — K(z,w)}}
= infusupz{(x —z,u)+sup,inf,, {(y —w,v) + K(z, w)}} .

But the latter expression is (cl, cl, K)(z,y) by (2.4) and its concave analog.
Since K is closed, cl;cl,K =cl, K is the upper member of the minimax
equivalence class containing K. The parallel argument shows that the
lower conjugate of L is in turn the lower member of this class.
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ReMARK. If K is not closed, the proof of Theorem 4 still shows that
the upper conjugate L of K is a saddle-function, and that the upper con-
jugate of L is in turn cl,cl, K. The latter is always a closed minimax
extension of K, as was demonstrated in the proof of Theorem 2. But L
is not necessarily closed itself, when K is not closed, nor is it then
always minimax equivalent to L. As an example of this in the case
R™=R=R", one may take K(z,y) =2y when x>0 and y 20, K(z,y) = + o
when >0 and y <0, K(z,y)= —oc when 2 £0. Here K is a simple proper
saddle-function and L is closed, but L is not closed. It can be shown that,
when K is simple, the closed minimax extensions of L and L are never-
theless all minimax equivalent, and their conjugates in turn give the
class of closed minimax extensions of K. This is not true when K is
not simple.

Any saddle-function L such that L<L<L will be called simply a
conjugate of K. Theorem 4 says that the conjugates of K are closed and
minimax equivalent when K is closed. Furthermore, the conjugate rela-
tionship is symmetric and one-to-one among the minimax equivalence
classes of closed saddle-functions on £™ x R™. In the improper case, the
constant functions — o and + oo are conjugate to one another. There-
fore K is proper if and only if L is proper, when K and L are closed
saddle-functions conjugate to one another.

If we combine Theorem 4 with the detailed description of closed
saddle-functions in § 3, we get a wealth of facts about the nature of L
and L. In particular, part (c) of Theorem 1 yields the following important
comparison of L and L.

CoroLLARY. If K is a closed proper saddle-function on B™x R", therc
exist (unigque) non-empty convexr sets C < R™ and D < R™ such that the func-
tions L and L in (5.1) satisfy the relationships in Table 1 (in place of K
and K).

Observe from Corollary 1 to Theorem 1 that L and L depend only on
the saddle-element {4,B,K}, where 4=dom; K and B=dom,K. The
functions L and L thus are the same as the ones defined for closed
saddle-elements in the introduction to this paper. Furthermore, the
corollary just stated implies that the conjugates of {dom, K, dom, K, K}
(in the sense of the introduction) exist and are precisely the saddle-ele-
ments {dom, I, dom, L, L} for the various conjugates L of K. Thus Theo-
rem 4 furnishes the previously outlined facts about conjugate saddle-
elements, via the correspondence between closed saddle-functions and
their kernels that was set forth in Theorem 3 and Corollary 2 to Theo-
rem 1,
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The corollary above is essentially a minimax theorem. It describes
and compares the lower and upper saddle-values — L(u,v) and — L(u,v)
of the closed saddle-function K(z,y)— (x,u)— (y,v) for the various pos-
sible choices of  and v. The sets C and D can of course be identified
with dom, L and dom,L for any conjugate L of K.

These minimax results are interesting, at all events, in the qualitative
sense. They show, for instance that the cases where the lower or upper
saddle-value of a closed saddle-function is finite, but the two are not
equal, are really quite exceptional. Such cases correspond to peculiar
“discontinuities at corner points”, like the behaviour of ¥ on the unit
square as pointed out in § 1.

To use these minimax results in a quantitative sense, however, one
must have some way of determining the sets dom; L and dom, L without
having to calculate a conjugate L of K directly. The following theorem
characterizes all the closed half-spaces containing dom; L and dom, L in
terms of simple properties of K. This at least provides a means of
determining ¢l(dom, L), ri(dom, L), c¢l(dom,L) and ri(dom,L). Indeed,
if C is a non-empty convex set, in R™ say, clC is the intersection of all
the closed half-spaces containing C. Thus wu,eclC if and only if:
(%4, %g) = xy Whenever xy € B™ and «, € R are such that (x,,u)= «, for all
w e (. On the other hand, u,eriC if and only if:

(—xg,u) 2 —x, forallueC
whenever
(g u) 2 g = (g, Uyp) forallueC.

This follows from the definition of relative interior, using the better
known fact that a vector belongs to a given finite-dimensional open
convex set if and only if it cannot be separated from the set by a
non-zero hyperplane.

TaEOREM 5. Let K be a closed proper saddle-function on B™ x B* and let
L be any conjugate of K.

(a) zo€ R™ and oy€ R huve the property that (xy,u)z«, for all
w € dom, L if and only if, for all x € ri(dom, K) and y € ri(dom, K),

(5.7a) [K(x+ Ay, y) — K2, y)lJA 2 oy for all 2 > 0.

(b) yo€ B* and fy,€ R have the property that (y,,v)=<p, for all ve
dom, L if and only if, for all z € ri(dom, K) and y € ri(dom, K),

(5.7b) [K(x,y+dyy) — K(x,y)l/A £ By foralld > 0.

ReMARK. When the second condition in (a) is satisfied, the half-line
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{x + Az, | A2 0} is actually contained in ri(dom, K) for every z ri(dom, K).
This is shown in the proof below. Thus Theorem 5 makes use only of
the inner kernel of K. It can therefore be applied easily in the saddle-
element context of § 1, in cases where it is more convenient to work in
that notational scheme.

Proor. Suppose (5.7a) holds for all z e ri(dom, K) and y € ri(dom, K).
Fix any Z e ri(dom,; K). Then K(Z,y) is finite for y € dom, K. It follows
from (5.7a) that K(z+ Azy,y) > — oo for all y e ri(dom,K) and 120, and
hence that Z+Axy,e dom;"K by Lemma 1. But dom, K =dom,K by
Corollary 1 to Theorem 1. Also Z is a relative interior point of dom, K,
so that the relative interior of any line segment connecting  with an-
other point of dom, K will lie entirely in ri(dom, K). Therefore

(5.8) T+ Argeri(dom; K) forallAz0.

Now let K and K be the lower and upper members of the minimax
equivalence class containing K. Then K=cl,K <K <K. Hence K(z,")
is a closed proper convex function with effective domain dom,X for
each x eri(dom, K), by part (c) of Theorem 1. The values of a closed
convex function f at points of cl(domf) can always be expressed as
limits of the values of f on ri(domf) using formula (2.6). We can con-
clude therefore from (5.7a) and (5.8) that

(5.9) K(Z+2Axg,y) 2 K@, y)+Axy forallyand 1z0.

Now K is the upper conjugate of L by Theorem 4, so

(5.10)  sup, {(F+ Axg,w) + (y,v) — L(w,v)} = K@+ Axg,y) = K@+ Axg,y)
for all y and 1=0. Now choose any z € R* and # € R such that

(5.11) K@y) 2 (y,2)+p forally.

This is possible because K(Z%,-) is a closed proper convex function.
Combining (5.9), (5.10) and (5.11), we get

(T + Axg,u) +sup, {(y,v) — L(u,v)} Z (y,2)+f+2x,
for all ¥y and 120. Therefore

A[(xo,u)—oco]+(:i,u)—-/3 = Supyinfv{(y:z_v)Jf'L(u:v)}
= (clyL)(u,2) = L(u,z)

by formula (2.4) for the closure of a convex function. This holds for all
220, so L(u,z)= — oo when (xy,u)—x<0. But for points € dom, L =
dom,L we have L(u,z)> —c by definition. Thus (zy,u)2x, for all
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u € dom, .. Now assume the latter; We shall prove the “only if”’ part
of (a). By Theorem 4, K is the lower conjugate of L. Calculating as in
(4.2), we get

K(x+Axg,y) 2 K(x+Axe,y)
inf, sup {(x + Axg, u) + (y,v) — L(u,v) | v € dom, L}
inf,sup {Axg + (@, %) + (y,v) — L(u,v) | w € dom, L}
= K(2,y)+ix

v

for arbitrary x,y and 22z0. When z eri(dom,; K) and y eri(dom,K),
we have K(x,y)=K(x,y)=K(x,y) by part (c) of Theorem 1, so (5.7a)
must hold. The proof of (b) is analogous.

6. Subgradient characterization of saddle-points.

Let K be any saddle-function on B™ x R*. For each € B™ and g € R®,
we denote by 0,K(Z,§) the set of subgradients at Z of the concave function
K(-,7), as defined in § 2. We denote by 9,K(Z,¥) the set of subgradients
at § of the convex function K(Z,-). The product of the closed convex
sets 0, K(Z,7) and 0,K(%,y) will be denoted by 0K(Z,y). According to
the remarks in § 2, 8K (%, 7) will be the singleton consisting of the ordinary
gradient of K, if K happens to be finite and differentiable at {x,y).
The following is a more general criterion for the existence of subgradients.

Lemma 5. Let K be a closed proper saddle-function. Then

0, K(Z,9) = 9  for all § whenever T €ri(dom, K),
and

0,K(Z,§) + O  for all T whenever i € ri(dom,K) .

In particular 0K(Z,5) 0 if {T,7) is a relative interior point of (dom, K) x
. (dom, K).

Proor. If 7 € dom, K, then K(Z,-) is a proper convex function, and
the relative interior of its effective domain is ri(dom,K). This follows
from the relations in Table 1, via Theorem lc, because K is closed and
proper. Hence 2,K(Z,%)+ @ in this case for all § € ri(dom, K) by (2.10).
If T ¢ dom, K, for similar reasons K(Z,-) is an improper convex function
having the value —co through ri(dom,K). Then 9,K(Z,7)= R trivially
for all 7 eri(dom,K). The fact about d,K(Z,7) has a parallel proof, and
the final assertion is just a combination of the two.

The theorem below relates the subgradients of a saddle-function A to
those of a conjugate L. When the criterion in Lemma 5 is applied to L,
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the theorem yields sufficient conditions for the existence of saddle-points
in minimax problems involving K. We shall put this fact to use in the
next section.

TarEOREM 6. Let K and L be closed saddle-functions conjugate to one
another. Then the following four conditions on a set of vectors Z, §, @ and ©
are equivalent:

(a) (u,7) € 0K(Z,7),

(b) (%.§) € 0L(w,?),

() (&, is a saddle-point of K(zx,y)— (x,%)—(§,v),

(d) <w,?) is a saddle-point of L(u,v)~—(Z,u)~(§,v).

Proor. Assume that (a) holds. By the definition of the subgradients,
we have
6.1) K(z,j) < K@, 9)+(x—z,u) forallx,

' Kz,y) 2 K(Z,9)+ (y—9,v) forall y .

Therefore, for K,(x,y)=K(x,y)— (z,%)— (y,7),
Kl(x:g) é Kl(?mg) = Kl(ﬁ’y)

for all « and y. This is the same as (¢). The argument can be reversed,
so (a) is equivalent to (c¢). Hence (b) and (d) are equivalent, too. We
shall now show that (a) implies (d). This will prove the theorem, be-
cause of the symmetry of the conjugate relationship. By definition,
L <L, where L is the upper conjugate of K. Hence, for all «,

L(u,?) < L(u,3) £ sup,{(&w)+(y,9) - K(Z.y)}
£ (@,u)+(7,0) - K(*,7)

by the second half of (6.1). Similarly

(6.3) L,v) =z (2,u)+(7,v) - K(Z,7)

for all v. Combining (6.2) and (6.3) we get

(6.2)

L(w,v) - (Z,u) — (§,%) = L(u,0)—(Z,%) - (4,7)
which is just (d).
CoroLLARY. If K and K’ are closed saddle-functions in the same minimax
equivalence class, then 0K(Z,§)=0K'(Z,§) for all T and §. Furthermore,

K and K' have the same value at all points where these subgradient sets are
non-empty.

Proor. Minimax equivalent saddle-function have the same saddle-
points and saddle-values.
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These results say that, for closed saddle-functions, the setvalued sub-
gradient mappings
@,5) ~ 0K(T,7)
depend only on minimax equivalence classes. The mapping for a given
class is the “inverse’” of the mapping for the class conjugate to it.

THEOREM 7. Let K be a closed saddle-function on R™x RB*, and fix any
u € R™ and ve R*. Then the infimum in (5.1b) is attained at Z if and
only if T € 8, L(u,v). The supremum in (5.1a) is attained at § if and only
Zf .77 € 321_‘4(%17)-

Proor. Let K be the upper member of the minimax equivalence class
of K. Then

(6'4) Supy {(:IJ,:I/) + (y’v) - K(x’ y)} = Supy {(x’u) + (y"v) - K(xa y)}

for all « by the definition of minimax equivalence. Denote the common
value in (6.4) by f(x). Since K=cl, K, K(-,y)is a closed concave function
for each y. The right side of (6.4) thus expresses f as a supremum of
closed convex functions. Therefore f is itself a closed convex function.
We must show that f attains its minimum at ¥ if and only if
% € 8L(u,v). The latter means that

L(w,v) £ L(u,v)+ @ w—-u) forall w.
This is equivalent to
(6.5) L(u,v) = sup,,{L(w,v)— (F,w—u)}.
The left side of (6.5) is inf_f(x). The right side is
sup,,{(x,u—w) + inf,sup, {(z,w) + (y,v) - K(z,y)}}

= sup,inf, {(Z —z, v —w)+f(x)}
= (clf)(®) = f(@).

The other half of the theorem has an analogous proof.

7. Minimax theorem.

We shall now give a formal statement of the special new minimax
results referred to in § 1, and show that they are an elementary conse-
quence of the general theory of conjugate saddle-functions. Our theorem
makes use of the following two conditions on a saddle-element{4,B,K}.
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(I) No non-zero vector x, has the property that, for all zeri4 and
yeriB, the half-line {x+Ary|A20} is contained in 4 and
K(x+ Azy,y) is a non-zero decreasing function of 12 0.

(II) No non-zero vector g, has the property that, for all x erid and
all y eriB, the half-line {y+Ay,|A20} is contained in B and
K(x,y + Ay,) is a non-increasing function of 1= 0.

Condition (I) is trivially satisfied, of course, if A is bounded. Indeed,
it is easy to see that (I) is satisfied if, for merely one yeriB and
x€R, {x | K(z,y)>«} is non-empty and bounded. The latter is very
similar to the type of condition used by Moreau [4].

When {4, B, K} is completely closed, the result below is a special case
of another minimax theorem developed by the author [5, Theorem 4].
The previous theorem was proved by an entirely different method, en-
tailing an extension of Helly’s theorem. It makes stronger assertions in
cases where polyhedral convex sets are involved in a certain way. Its
proof cannot be extended, however, to the present case of general closed
saddle-element.

THEOREM 8. Let {A,B,K} be any closed saddle-element on R™x R™. If
condition (1) is satisfied, then

(7.1) max inf K(z,y) = inf supK(z,y) < +.
reAd yeB yeB xeAd
If condstion (II) is satisfied, then
(7.2) —oo < sup inf K(z,y) = min supK(x,y) .
xeA yeB yeB weA
If (1) and (I1) are both satisfied, K has a saddle-point on A x B.
Proor. By Theorem 3b we can assume that K is a closed proper saddle-

function on B™x R*, with 4 =dom,; K and B=dom,K. Let L and L be
the lower and upper conjugate of K. Then

(7.3a) —L(0,0) = sup inf K(x,y),
zed yeB

(7.3b) —L(0,0) = inf sup K(z,y)
yeB wed

by Corollary 1 to Theorem 1. Let
= dom,L = dom,L, D = dom,L = dom,L .

If 0eriC, then L(O 0)=L(0,0)> —co by the corollary to Theorem 4.
Similarly, L(0,0)=L(0,0) < 4+ o0 if 0 e riD. According to Theorem 7, the
supremum in (7.3a) is attained at Z if and only if Z € 2,L(0,0). (Since
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inf, K(x,y) is always —oo for x ¢ A =dom, K, its supremum is attained
on A if it is attained at all.) But ¢,L(0,0) is non-empty by Lemma 5,
when 0 eriC. Thus the supremum in (7.3a) is attained when 0 eriC.
The infimum in (7.3b) is likewise attained when 0 eriD. We need only
observe finally that conditions (I) and (II) imply by Theorem 5 that
0eriC and 0 eriD, respectively. (They are actually equivalent to the
origins being interior points of ' and D.) The last assertion of the theo-
rem merely combines the first two. It also follows immediately and

independently from Lemma 5 and Theorem 6 via the same observation
about conditions (I) and (II).

ExampLE. Suppose that 4 and B are the non-negative orthants of B™
and R™ respectively, and that K is differentiable on the interior of A
and B, that is, for x>0 and y>0. Denote by V,K(x,y) and V,K(x,y)
the R™ and R™ components of the gradient of K at {x,y). Then (1) and
(I1) are equivalent to:

(I") No non-zero x,= 0 has the property that
(20, V:iK(2,9) 20 forallz > Oandy > 0;
IT') No non-zero y,=0 has the property that
0 property
(Y0, VoK (2,y)) <0 foralla > O0andy > 0.

These are certainly satisfied if there exist vectors x;>0 and y;> 0 such
that V,K(x,9,)<0, and there exist vectors z,>0 and y,>0 such that
VoK (5, 95) > 0.
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